Plane Wave Geometry and Quantum Physics

Matthias Blau

Abstract. I explain how the Lewis—Riesenfeld exact treatment of the time-
dependent quantum harmonic oscillator can be understood in terms of the
geodesics and isometries of a plane wave metric, and I show how a curious
equivalence between two classes of Yang-Mills actions can be traced back to
the transformation relating plane waves in Rosen and Brinkmann coordinates.
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1. Introduction

The characteristic interplay of geometry and gauge theory in string theory has led
to many new and exciting developments in recent years, in particular to progress
in the understanding of certain strongly coupled quantum field theories. However,
since string theorists were (regrettably) absent from the list of speakers at this
conference dedicated to recent developments in quantum field theory, I decided
to talk about a subject on the interface of geometry and quantum physics that is
only loosely inspired by, and not strictly dependent upon, string theory.

Thus, as an embryonic example of the interplay between geometry and quan-
tum physics in string theory (an example that requires neither knowledge nor
appreciation of string theory, but also does not do justice to the depth and rich-
ness of these ideas in the string theory context), I will explain the relation between
some geometric properties of plane wave space-time metrics on the one hand and
some corresponding statements about quantum (gauge) theories on the other.

In section 2, I briefly review some of the basic and entertaining features of
the geometry of plane wave metrics. In particular, I emphasise the ubiquitous and
multifaceted role of the time-dependent harmonic oscillator in this context, which
appears in the geodesic equations, in the description of the Heisenberg isometry
algebra of plane wave metrics, and in the coordinate transformation beween the
two standard (Rosen and Brinkmann) coordinate systems for these metrics.

The first application I will discuss is then naturally to the quantum theory
of time-dependent harmonic oscilators (section 3). In general one can quantise
these systems exactly using the powerful Lewis—Riesenfeld method of invariants.
Embedding the problem of a time-dependent harmonic oscillator into the plane
wave setting equips it with a rich geometric structure, and links the dynamics of
the harmonic oscillator to the conserved charges associated with the isometries. 1
will show that this provides a natural geometric explanation of the entire Lewis—
Riesenfeld procedure.

As a second application, I will discuss a curious equivalence between two a
priori apparently quite different classes of Yang-Mills theories (section 4). Once
again, it is the plane wave perspective which provides an explanation for this.
Namely, I will show that this equivalence can be traced back to the coordinate
transformation relating plane waves in Rosen and Brinkmannn coordinates, and
I add a few comments on what is the string theory context for these particular
Yang-Mills actions.

Section 2 is extracted (and adapted to present purposes) from my unpublished
lecture notes on plane waves and Penrose limits [1]. The material in section 3 is
based on [2], and section 4 is based on currently unpublished material that will
appear in [3].

In retrospect this was a wise choice, because of the hostile attitude towards string theory at
this, in all other respects very charming and enjoyable, meeting, expressed in particular by some
of the members of the senior pontificating classes.
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2. A brief introduction to the geometry of plane wave metrics

2.1. Plane waves in Rosen and Brinkmann coordinates: heuristics

Usually gravitational plane wave solutions of general relativity are discussed in the
context of the linearised theory. There one makes the ansatz that the metric takes
the form

Juv = Ny + h;ux (1>
where h,, is treated as a small perturbation of the Minkowski background met-
ric 1), To linear order in hy,, the Einstein equations (necessarily) reduce to a
wave equation. One finds that gravitational waves are transversally polarised. For
example, a wave travelling in the (¢, z)-direction distorts the metric only in the
transverse directions, and a typical solution of the linearised Einstein equations is

ds® = —dt® +dz* + (6;5 + hij(z — t))dy'dy’ . (2)
Note that in terms of lightcone coordinates U = z — ¢, V = (z + t)/2 this can be
written as
ds? = 2dUdV + (8;; + hij(U))dy'dy’ . (3)
We will now simply define a plane wave metric in general relativity to be a metric
of the above form, dropping the assumption that h;; be “small”,

ds* = 2dUdV + g;;(U)dy'dy’ . (4)

We will say that this is a plane wave metric in Rosen coordinates. This is not the
coordinate system in which plane waves are usually discussed, among other reasons
because typically in Rosen coordinates the metric exhibits spurious coordinate
singularities.

Another way of introducing (or motivating the definition of) these plane wave
metrics is to start with the D = d 4 2 dimensional Minkowski metric written in
lightcone coordinates,

ds® = N datdz” = 2dudv + Sapdz®da® | (5)
with a = 1,...,d. To this metric one adds a term corresponding to a perturbation
travelling at the speed of light in the v-direction,

ds® = 2dudv + A(u, z%)(du)? + dapdz®da® | (6)

and requires that the effect of this term is to exert a linear (harmonic) force on
test particles, leading to

ds* = 2dudv + Agp(u)x®2b (du)? 4 dapda®da’ . (7)

This is the metric of a plane wave in Brinkmann coordinates. We will see below
that the two classes of metrics described by (4) and (7) are indeed equivalent.
Every metric of the form (4) can be brought to the form (7), and conversely every
metric of the type (7) can be written, in more than one way, as in (4).

These exact gravitational plane wave solutions have been discussed in the
context of four-dimensional general relativity for a long time (see e.g. [4] and
[5]), even though they are not (and were never meant to be) phenomenologically
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realistic models of gravitational plane waves. The reason for this is that in the
far-field gravitational waves are so weak that the linearised Einstein equations
and their solutions are adequate to describe the physics, whereas the near-field
strong gravitational effects responsible for the production of gravitational waves,
for which the linearised equations are indeed insufficient, correspond to much more
complicated solutions of the Einstein equations (describing e.g. two very massive
stars orbiting around their common center of mass).

Rather, as the in some sense simplest non-trivial genuinely Lorentzian met-
rics, and as exact solutions of the full non-linear Einstein equations (see section
2.2), these plane wave metrics have always been extremely useful as a theoreti-
cal play-ground. It has also long been recognised that gravitational wave metrics
provide potentially exact and exactly solvable string theory backgrounds, and this
led to a certain amount of activity in this field in the early 1990s (see e.g. [6] for a
review). More recently, the observations in [7, 8, 9] have led to a renewed surge in
interest in the subject in the string theory community, in particular in connection
with the remarkable BMN correspondence [10].

In the following, however, we will just be interested in certain aspects of
the geometry of plane waves per se, and the role they play in elucidating certain
properties of much simpler physical systems. The most basic aspects of the geom-
etry of a space-time metric are revealed by studying its curvature, geodesics, and
isometries. This is actually all we need, and we will now address these issues in
turn.

2.2. Curvature of plane waves

While not strictly neded for the applications in sections 3 and 4, this brief discus-
sion of the curvature of plane waves provides some useful insight into the geometry
and physics of plane waves and the nature of Brinkmann coordinates.

Since the plane wave metric in Brinkmann coordinates (7) is so simple, it
is straightforward to see that the only non-vanishing components of its Riemann
curvature tensor are

Ruaub = *Aab . (8)
In particular, therefore, there is only one non-trivial component of the Ricci tensor,
Ruu = _6abAab P (9)

and the Ricci scalar is zero.

Thus the metric is flat iff A,, = 0. Moreover, we see that in Brinkmann
coordinates the vacuum Einstein equations reduce to a simple algebraic condition
on Agp (regardless of its u-dependence), namely that it be traceless. The number
of degrees of freedom of this traceless matrix Aqp(u) correspond precisely to those
of a transverse traceless symmetric tensor (a.k.a. a graviton). In four dimensions,
the general vacuum plane wave solution thus has the form

ds? = 2dudv + [A(u)(z? — y?) + 2B(u)wy]du® + dz* + dy* (10)
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for arbitrary fuctions A(u) and B(u). This reflects the two polarisation states or
degrees of freedom of a four-dimensional graviton. This family of exact solutions to
the full non-linear Einstein equations would deserve to have text-book status but
does not, to the best of my knowledge, appear in any of the standard introductory
texts on general relativity.

2.3. Geodesics, lightcone gauge and harmonic oscillators

We now take a look at geodesics of a plane wave metric in Brinkmann coordinates,
i.e. the solutions x*(7) to the geodesic equations

(1) + T\ (x())a" ()i (1) = 0, (11)

where an overdot denotes a derivative with respect to the affine parameter 7.
Rather than determining the geodesic equations by first calculating all the non-
zero Christoffel symbols, we make use of the fact that the geodesic equations can
be obtained more efficiently, and in a way that allows us to directly make use of
the symmetries of the problem, as the Euler-Lagrange equations of the Lagrangian

L = iguiti”
= a0+ LA (w)rtaba® + L2 (12)
supplemented by the constraint 2L = ¢, where ¢ = 0 (¢ = —1) for massless
(massive) particles. Since nothing depends on v, the lightcone momentum
oL
=~ =9 13
Po =5 (13)

is conserved. For p, = 0, the particle obviously does not feel the curvature term
Agp, and the geodesics are straight lines. When p, # 0, one has u = p,7 4+ ug, and
by an affine transformation of 7 one can always choose the lightcone gauge

u=rT . (14)

Then the geodesic equations for the transverse coordinates are the Euler-Lagrange
equations

(1) = Agp(T)2(7) . (15)

These are the equation of motion of a non-relativistic harmonic oscillator with

(possibly time-dependent) frequency matrix w? (1) = —Au (7). The constraint
2L = ¢, or

20(7) 4 Aap(1)2(7)2(7) + Sapd® (1) (7) = ¢, (16)

is then a first integral of the equation of motion for the remaining coordinate v(7),
and is readily integrated to give v(7) in terms of the solutions to the harmonic
oscillator equation for z*(7).

By definition the lightcone Hamiltonian is (minus!) the momentum p,, con-
jugate to u (in the lightcone gauge u = 7),

Hy, = —DPu - (17)
Using
Pu = Guud* =0+ Aab(T)x“:cb (18)
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and the constraint, one finds that the lightcone Hamiltonian is just (for € # 0 up
to an irrelevant constant) the Hamiltonian of the above harmonic oscillator,

H,. = %((Zlbjfajjb — Aab(T)xaxb) — %e = Hp, — %e . (19)
Note also that, in the lightcone gauge, the complete relativistic particle Lagrangian
L=0+3Aw(r)z%a’ + 132 = Ly +0 (20)

differs from the harmonic oscillator Lagrangian only by a total time-derivative.

In summary, we note that in the lightcone gauge the equations of motion of
a relativistic particle in the plane wave metric reduce to those of a non-relativistic
harmonic oscillator. This harmonic oscillator equation plays a central role in the
following and will reappear several times below in different contexts, e.g. when
discussing the transformation from Rosen to Brinkmann coordinates, or when
analysing the isometries of a plane wave metric.

2.4. From Rosen to Brinkmann coordinates (and back)
I will now describe the relation between the plane wave metric in Brinkmann
coordinates,
ds® = 2dudv + Agp(u)zzbdu® + di? | (21)
and in Rosen coordinates,
ds* =2dUdV + g;;(U)dy'dy’ . (22)
It is clear that, in order to transform the non-flat transverse metric in Rosen

coordinates to the flat transverse metric in Brinkmann coordinates, one should
change variables as

z* = B¢ | (23)
where F is a vielbein for g;; in the sense that
9ij = E%Ebjﬁab . (24)

Plugging this into the metric, one sees that this has the desired effect provided
that E satisfies the symmetry condition

B4 By = By EY, (25)
(such an E can always be found), and provided that one accompanies this by a
shift in V. The upshot of this is that the change of variables

U = u
V = v+ %EaiEibxa;vb
yi = Eiaaja ’ (26)

transforms the Rosen coordinate metric (22) into the Brinkmann form (21), with
Aqp given by [2]

Ay = Eg By (27)
This can also be written as the harmonic oscillator equation (again!)

Eui = AupEy; (28)
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we had already encountered in the context of the geodesic equation.

In practice, once one knows that Rosen and Brinkmann coordinates are in-
deed just two distinct ways of describing the same class of metrics, one does not
need to perform explicitly the coordinate transformation mapping one to the other.
All one is interested in is the relation between g¢;;(U) and Agp(u), which is just
the relation (8)

Aab = *EZQEJbRUin = *Ruaub (29)
between the curvature tensor in Rosen and Brinkmann coordinates.

There is a lot of nice geometry lurking behind the transformation from
Rosen to Brinkmann coordinates. For example, the symmetry condition (25) says
that E’ is a parallel transported co-frame along the null geodesic congruence
(U = 7,V,y* = const.) [11, 12], and the coordinate transformation itself can be in-
terpreted as passing from Rosen coordinates to inertial Fermi coordinates adapted
to the null geodesic (U =7,V = 0,y" = 0) [13].

For a different perspective, and a prescription for how to go back from
Brinkmann to Rosen coordinates, note that the index i on E,; in (28) can be
thought of as labelling d out of the 2d linearly independent solutions of the oscil-
lator equation. The symmetry condition (25) can equivalently be written as

EuFE') = EyE' & EuE% = E.E% (30)
and can now be interpreted as the condition that the Wronskian of the i’th and
k’th solution . '

W(E;, Ey) := E.E% — B4 ES, (31)
is zero. Thus, given the metric in Brinkmann coordinates, one can construct the
metric in Rosen coordinates by solving the oscillator (geodesic) equation, choosing
a maximally commuting set of solutions to construct F,;, and then determining
g;j algebraically from the E,; from (24).

2.5. The Heisenberg isometry algebra of a generic plane wave

We now study the isometries of a generic plane wave metric. In Brinkmann coor-
dinates, because of the explicit dependence of the metric on u and the transverse
coordinates, only one isometry is manifest, namely that generated by the parallel
(covariantly constant) and hence in particular Killing null vector Z = 9,. In Rosen
coordinates, the metric depends neither on V nor on the transverse coordinates
y¥, and one sees that in addition to Z = dy there are at least d more Killing vec-
tors, namely the 0,x. Together these form an Abelian translation algebra acting
transitively on the null hypersurfaces of constant U.

However, this is not the whole story. Indeed, one particularly interesting and
peculiar feature of plane wave space-times is the fact that they generically possess a
solvable (rather than semi-simple) isometry algebra, namely a Heisenberg algebra,
only part of which we have already seen above.

All Killing vectors X can be found in a systematic way by solving the Killing
equations

Lxgw =V, X, +V, X, =0 . (32)
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I will not do this here but simply present the results of this analysis in Brinkmann
coordinates (see [2] for details). The upshot is that a generic (2 + d)-dimensional
plane wave metric has a (2d 4 1)-dimensional isometry algebra generated by the
Killing vector Z = 0, and the 2d Killing vectors

X(fixy) = Xrey = [()a0a — F(x)a®® 00 - (33)

Here the f(x)q, K = 1,...,2d are the 2d linearly independent solutions of the
harmonic oscillator equation (yet again!)

Ja(u) = Aap(u) fo(u) . (34)

These Killing vectors satisfy the algebra

[ (J)s ] = 0, (36)
where the Wronskian W (f( 5, f(k)) is, exactly as in (31), given by
W (f, fiao) = _(Fnafiwa = firafina) - (37)

a

It is of course constant (independent of u) as a consequence of the harmonic
oscillator equation. This is already the Heisenberg algebra. To make this more
explicit, one can make a convenient choice of basis for the solutions f( ;) by splitting
the f( ) into two sets of solutions

{fon} = {awpw)} (38)

characterised by the initial conditions

4(a)p(u0) = Sab  d(ayp(u0) =0
Pa)p(uo) =0 Payy(uo) = dap - (39)

Since the Wronskian of these functions is independent of u, it can be determined
by evaluating it at u = ug. Then one can immediately read off that

W (4(a): 4v)) = W(p(a), Pv)) =

W(q(a),P(v)) = Gab - (40)
Therefore the corresponding Killing vectors
Q(a) = X(q(a)) ; P(a) = X(p(a)) (41)

and Z satisfy the canonically normalised Heisenberg algebra

[Q(a); Z) = [Pla), Z] = 0
[Q(a), Q)] = [Play Pvy) =0
[Qa)s Pyl = =02 - (42)

As we had noted before, in Rosen coordinates, the (d+ 1) translational isome-
tries in the V and y* directions, generated by the Killing vectors Z = dy and



Plane Wave Geometry and Quantum Physics 9

Q (k) = Oyr, are manifest. One can check that the “missing” d Killing vectors Py,
are given by

Pyy = —y" oy —|—/ du’ g*™ (u)Oym . (43)

It is straightforward to verify that together they also generate the Heisenberg
algebra (42).

These considerations also provide yet another perspective on the transfor-
mation from Brinkmann to Rosen coordinates, and the vanishing Wronskian con-
dition discussed at the end of section 2.4. Indeed, passing from Brinkmann to
Rosen coordinates can be interpreted as passing to coordinates in which half of
the translational Heisenberg algebra symmetries are manifest. This is achieved by
choosing the (transverse) coordinate lines to be the integral curves of these Killing
vectors. This is of course only possible if these Killing vectors commute, i.e. the
Wronskian of the corresponding solutions of the harmonic oscillator equation is
zero, and results in a metric which is independent of the transverse coordinates,
namely the plane wave metric in Rosen coordinates.

2.6. Geodesics, isometries, and conserved charges

We can now combine the results of the previous sections to determine the conserved
charges carried by particles moving geodesically in the plane wave geometry. In
general, given any Killing vector X, there is a corresponding conserved charge
C(X),
C(X) = guXHi" . (44)

That C'(X) is indeed constant along the trajectory of the geodesic z#(7) can easily
be verified by using the geodesic and Killing equations.

The conserved charge corresponding to the Killing vector Z = 9, the central
element of the Heisenberg algebra, is, none too surprisingly, nothing other than
the conserved lightcone momentum p, (13) of section 2.3,

C(Z) = gvyjfﬂ =U=p, . (45)

In addition to Z, for any solution f of the harmonic oscilator equation we have a
Killing vector X (f) (33),

X(f) = faaa - faxaav . (46)
The associated conserved charge is
C(X(f)) = fap® = faz® . (47)

(here we have used the, now more appropriate, phase space notation p® = %).
This is rather trivially conserved (constant), since both f, and z* are solutions of
the same ubiquitous harmonic oscillator equation and C(X(f)) is nothing other
than their constant Wronskian,

CX(f) =w(fz) . (48)

Thus these somewhat tautological conserved charges are not helpful in integrating
the geodesic or harmonic oscillator equations. Nevertheless, the very fact that they
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exist, and that they satisfy a (Poisson bracket) Heisenberg algebra, will turn out
to be conceptually important in section 3. We will denote the conserved charges
corresponding to the Killing vectors Qq) and P, (41) by

CQu)=%w C(Pw)=Pua - (49)

The Poisson brackets among the charges C(X(f)) can be determined from the
canonical Poisson brackets {z%, p’} = 645 to be

{X(fl)vX(f2)} = {flapa - flaxa7f2apa - fzaxa} = W(f17f2) (50)

(note the usual sign flip with respect to the Lie bracket (35) of the corresponding
vector fields). In particular, as a consequence of (40) the charges Q(,) and P(,)
have the canonical Poisson brackets

{Qw), Py} = bab - (51)

Generically, a plane wave metric has just this Heisenberg algebra of isome-
tries which acts transitively on the null hyperplanes v = const., with a simply
transitive Abelian subalgebra. However, for special choices of Ag(u), there may
of course be more Killing vectors. These could arise from internal symmetries of
Auap, giving more Killing vectors (and corresponding conserved angular momenta)
in the transverse directions, as for an isotropic harmonic oscillator.

Of more interest is the fact that for particular A,p(u) there may be Killing
vectors with a 0,-component. The existence of such a Killing vector renders the
plane wave homogeneous (away form the fixed points of this extra Killing vector).
These homogeneous plane waves have been completely classified in [2]. The sim-
plest examples, and the only ones that we will consider here, are plane waves with
a u-independent profile Agp,

ds® = 2dudv + Agpa®abdu® + di? | (52)
which obviously, since now nothing depends on u, have the extra Killing vector
X = 0y.

The existence of the additional Killing vector X = 0, extends the Heisenberg
algebra to the harmonic oscillator algebra, with X playing the role of the number

operator or harmonic oscillator Hamiltonian. Indeed, X and Z = 0, obviously
commute, and the commutator of X with one of the Killing vectors X (f) is

X, X ()] = X(f) . (53)

Note that this is consistent, i.e. the right-hand-side is again a Killing vector, be-
cause when Agp, is constant and f satisfies the harmonic oscillator equation then
so does its u-derivative f. In terms of the basis (41) we have

[X7Q(a)] = P(a)
(X, Pyl = AwQu) » (54)

which is the harmonic oscillator algebra.
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Another way of understanding the relation between X = 0,, and the harmonic
oscillator Hamiltonian is to look at the conserved charge associated with X = 0,,

C(au) = guuiu =Pu > (55)

which we had already identified (up to a constant for non-null geodesics) as minus
the harmonic oscillator Hamiltonian in section 2.3. This is of course indeed a
conserved charge iff the Hamiltonian is time-independent, i.e. iff A, is constant.

2.7. Synopsis

In the above I have reviewed, in somewhat more detail than strictly necessary for
the following, some of the interesting and entertaining aspects of the geometry of
plane wave metrics. The only things that we will actually directly make use of
below are, in section 3,

e the Heisenberg isometry algebra (section 2.5)
e and the existence of the corresponding conserved charges (section 2.6),

and, in section 4,

e the lightcone gauge geodesic Lagrangian (section 2.3)
e and the transformation from Rosen to Brinkmann coordinates (section 2.4).

3. The Lewis—Riesenfeld theory of the time-dependent quantum
oscillator

3.1. Description of the problem
We will now discuss the quantum theory of a time-dependent harmonic oscillator
(for simplicity in d = 1 dimension, but the discussion generalises in an obvious
way to d > 1), with Hamiltonian

Hpo(t) = 1(0* + w(t)?a?) . (56)
The aim is to find the solutions of the time-dependent Schrédinger equation (in
units with 2 = 1)

0¥ (t)) = Hpo(t)|2(2)) - (57)
Standard textbook treatments of this problem employ the following strategy:

e When the Hamiltonian is time-independent, then the standard procedure is
of course to reduce this problem to that of finding the stationary eigenstates

|¥n) of a ho> R

Hhohpn) = En|wn> ) (58)
with E, = w(n + %) etc., in terms of which the general solution to the time-
dependent Schrodinger equation can then be written as

() =3 cae " Ently,) (59)

where the ¢,, are constants.
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e When the Hamiltonian is time-dependent, on the other hand, then in principle
the solution is given by the time-ordered exponential of Hp,(t),

¢mw>=:(Te‘iﬁodffﬂW“”)|wuo» , (60)

but in practice this cannot be evaluated to get an exact solution. One thus
needs to then invoke some kind of adiabatic approximation to perturbatively
determine the solution (and then calculate transition and decay rates etc.).

What Lewis and Riesenfeld observed [14] is that, even in the time-dependent case,
there is a procedure analogous to the one used in the time-independent case which
allows one to explicitly find the exact solutions of the time-dependent Schodinger
equation.

3.2. Outline of the Lewis—Riesenfeld procedure

The idea of [14] is to base the construction of the solutions of the Schrédinger equa-
tion not on the stationary eigenstates of the Hamiltonian (which does not make
sense when the Hamiltonian depends explicitly on time) but on the eigenstates of
another operator I which is an invariant of the system. This means that

I(t,.p) = I(t) (61)
is a (typically explicitly time-dependent) operator satisfying
iL1(t) = 0, L(t) + [L(t), Hpo(t)] = 0 (62)

(when Hy, is time-independent, then one can of course just take I= ﬁho). The
Lewis—Riesenfeld procedure now consists of two parts:

1. The first is to show how one can construct all the solutions of the time-
dependent Schrodinger equation for H, ho(t) from the spectrum and eigenstates
of the invariant I(t).

2. The second is an algorithm which provides an invariant for any time-dependent
harmonic oscillator, and which moreover has the feature that I(¢) itself has
the form of a time-independent harmonic oscillator (so that it is straightfor-
ward to determine the spectrum and eigenstates of I(t)).

Issue (1) can be established by straightforward and relatively standard quantum
mechanical manipulations. I will briefly recall these below but have nothing new
to add to that part of the discussion. Issue (2), on the other hand, is usually es-
tablished by a direct but rather brute-force calculation which does not appear to
provide any conceptual insight into why invariants with the desired properties ex-
ist. I will show in section 3.3 that this conceptual insight is obtained by embedding
the time-dependent harmonic oscillator into the plane wave setting.

To address (1), let us assume that an invariant I(t) satisfying (62) exists and
that it is hermitian. We choose a complete set of eigenstates, labelled by the real
eigenvalues \ of I(t),

I®)A) = AN . (63)
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It follows from (62) that the eigenvalues A are time-independent, and that
(N[idy — Hyo(t)|A) = 0 (64)

for all A # \'. We would like this equation to be true also for the diagonal elements,
in which case we would have already found the solutions of the time-dependent
Schrédinger equation for H ho(t). To accomplish this, we slightly modify the eigen-
functions by multiplying them by a time-dependent phase,

A) = efax(®yy (65)

It can be seen immediately that this phase factor does not change the off-diagonal
matrix elements of id; — Hy,(t) (since the eigenstates are orthogonal). Requiring
the validity of (64) also for A = ) then leads to a first-order differential equation
for a(t),

groa(t) = (idy — Hno(t)|). (66)
Solving this equation, the general solution to the time-dependent Schrodinger
equation for Hy,(t) is, similarly to (59),

() =3 exel By (67)
A

where the ¢, are constants.

This is an extremely neat way of solving exactly the quantum theory of the
time-dependent harmonic oscillator. Its usefulness, however, depends on the ability
to construct a suitable invariant I(¢) which is such that (a) one can explicitly find
its spectrum and eigenstates and (b) it is sufficiently closely related to Hio(t)
so that one can evaluate the diagonal matrix elements of Hho(t) in the basis of
eigenstates |A) of the invariant (¢) (in order to determine the phases vy (t)).

In a nutshell, this is achieved in [14] as follows (see also [2] for a detailed
account with further comments on the procedure). Let o(t) be any solution to the
non-linear differential equation

5(t) +w(t)?o(t) = o(t) ™ | (63)

where w(t) is the harmonic oscillator frequency. Then it can be checked by a
straightforward but unenlightning calculation that

1(t) = §(@%0() " + (o()p — 6(1)2)*) (69)

is an invariant in the sense of (62). As a first sanity check on this construction,
note that for w time-independent one can also choose ¢ = w™/2 to be constant,
upon which the invariant becomes

I=L(wi?+w'p?) =w  Hy, , (70)
which is of course the privileged invariant of a time-independent system. In general,

in terms of the hermitian conjugate operators

0= d5(@o ! +ilop—5i)) ol = (@o ' —i(op—si))  (T1)
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which satisfy the canonical commutation relations [a,a'] = 1, I (t) has the standard
oscillator representation

I(ty=a'a+1 (72)

of a time-independent harmonic oscillator, and the original Hamiltonian is a qua-
dratic function of @ and af,

Hio(t) = e(t)(@)* + e(t)"(a")* + d(t)(a'a + 3) (73)

where e.g. d(t) = 3(w(t)?0(t)> + 6(t)* + o(t)~2). This makes it straightforward
to evaluate e.g. the diagonal matrix elements of H ho(t) in the standard basis of
cigenstates of I(t).

Finally, the general solution to (68) can be written in terms of any two linearly
independent solutions f1, f2 to the classical harmonic oscillator equation for Hp,(t)
(this is (68) with zero on the rhs instead of the non-linear term). Normalising their
Wronskian to 1, the general solution o(t) is [14]

1/2
o=+ |3+ R EASE - D20 (74)

where ¢; are constants subject to the condition that the solution is real, and the
signs can be chosen independently.

3.3. Deducing the procedure from the plane wave geometry

While the procedure outlined above provides a concrete (and in practice also very
useful) algorithm to solve exactly the quantum theory of a time-dependent har-
monic oscillator (and certain other time-dependent systems [14]), it remains some-
what unsatisfactory from a conceptual point of view. In particular, it is not clear
from the construction

e why invariants with the desired properties exist in the first place;

e why solutions to the classical equations play a role in the construction of
these quantum invariants;

e why one should solve the non-linear equation (68) if, in any case, in the end it
all boils down to solutions of the ordinary linear classical harmonic oscillator
equation apearing in (74).

Here is where insight is gained by realising the harmonic oscillator equation as
the geodesic equation in a plane wave metric. Recall that in section 2.5 we had
found a Heisenberg isometry algebra which, in particular, includes the “hidden”
symmetries generated by the Killing vector fields (33,46)

X(f) = faaa - faxaav 9 (75>

where f is a solution of the classical harmonic oscillator equation, and the corre-
sponding “hidden” conserved charges (47)

C(X(f)) = fap" — fax" . (76)



Plane Wave Geometry and Quantum Physics 15

In particular, we had obtained the conserved charges Q) and P(4) (49). These
are linear in the phase space variables ® and p®, and thus we can unambiguously
associate to them quantum operators

Qu = Q0 P~ P (77)
which, by construction, are invariants in the sense of (62),
#9w = #Pw =0, (78)
and which satisfy the canonical commutation relations (cf. (51))
[Q(a)s Pwy] = i6ap - (79)

Note that to “see” these invariants, one has to extend the harmonic oscillator
configuration space not just by the time-direction ¢ = u, but one also has to add
yet another dimension, the null direction v.

The rest is now straightforward. Since Q(a) and 75(1,) are invariants, also any
quadratic operator in these variables (with constant coefficients) is an invariant.
In the one-dimensional case (d = 1), we can e.g. consider invariants of the form

Bty = LB 4 M2G2 (80)

wich we can write in terms of invariant creation and annihilation operators A and
AT (constructed in the usual way from Q and P) as

I(t)=QATA+ 1) . (81)

Let us now compare this in detail with the results of section 3.2. First of all, to
match with the (arbitrary choice of) normalisation of the invariant (72), we choose
Q) = 1. Next we can identify what o (¢)? is by identifying it with the coefficient of
in the expansion of (80) in terms of p and . The upshot is that o(t) has precisely
the form given in (74), with ¢ = 1 and ¢2 = 1/M. Finally, one sees that the
invariant oscillators A and A" are related to the oscillators @ and af by a unitary
transformation which is precisely the unitary transformation that implements the
phase transformation (65) on the eigenstates of the invariant.

We have thus come full circle. Starting with the conserved charges associated
with the Heisenberg algebra Killing vectors, we have constructed quadratic quan-
tum invariants and have reproduced all the details of the Lewis—Riesenfeld algo-
rithm, including the phase factors a(t). Constructing the Fock space in the usual
way, one then obtains all the solutions (67) to the time-dependent Schrodinger
equation.

4. A curious equivalence between two classes of Yang-Mills actions

4.1. Description of the problem

A prototypical non-Abelian Yang-Mills + scalar action in n = p+1 dimensions, ob-
tained e.g. by the dimensional reduction of pure Yang-Mills theory (with standard
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Lagrangian L ~ tr Fy;y FMY) in D space-time dimensions down to n dimensions,
has the form

Syar= [ 40T (oA B o — 5 Dag Dt + L6, ')

(82)
Here the ¢, a = 1,..., D —n, are hermitian scalar fields arising from the internal
components of the gauge field and thus taking values in the adjoint representation
of the gauge group, the covariant derivative is

Da¢a = aa¢a - i[Aav (ba] ) (83)

A, is the gauge field, F,s its curvature, g2, denotes the Yang-Mills coupling
constant, Tr a Lie algebra trace, and in writing the above action I have suppressed
all Lie algebra labels.

This basic action can of course be modified in various ways, e.g. by adding
further fields (we will not do this), or by modifying the couplings of the scalar
fields. We will consider two such modifications. The first one simply consists of
adding (possibly time-dependent) mass terms for the scalars. Denoting the scalars
in this model by X, the action reads

Spe = /d"a r (_ig;ﬂnavnﬁéFaﬂFv - %77&65abDaX“DﬁXb (84)
+19% mr0acdbal X, XP)[XC, XU + g Aw(t)X°X")

with Agp(t) minus the mass-squared matrix.

The second class of actions arises from (82) by replacing the flat metric d,;
on the scalar field space (suppressed in (82) but written out explicitly in (84)) by
a time-dependent matrix g;;(t) of “coupling constants”, but without adding any
mass terms. Denoting the scalars in this model by Y, the action reads

Sre = /dnUT&r (=197 2117 FapFys — 51°79i; () DaY ' DY’

+ig%’Mgtk(t)g]l(t)[YZa Yj][Yka Yl])
The reason for the subscripts g and rc on the actions will, if not already obvious
at this stage, become apparent below. In any case, the claim is now that these two,
apparently rather different, classes of Yang-Mills actions are simply related by a
certain linear field redefinition Y* = E? X@ of the scalar fields,

SrolAa,Y' = B, X = Spc[Aa, X . (86)

We could straightaway prove this by a brute-force calculation, but this would
be rather unenlightning. Instead, we will first consider a much simpler classical
mechanics toy model of this equivalence (section 4.2), and we will then be able to
establish (86) with hardly any calculation at all (section 4.3). At the end, I will
briefly indicate why one is led to consider actions of the type (84,85) in the first
place, and why from that point of view one can a priori anticipate the validity of
an identity like (86).

(85)
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4.2. A classical mechanics toy model

As a warm-up exercise, consider the standard harmonic oscillator Lagrangian (now
mysteriously labelled )

Lyc(z) = 5(3° — w?a?) | (87)
and the (exotic) Lagrangian
L,.(y) = %sin2 wt 42 (88)
with a time-dependent kinetic term. Now consider the transformation
y = (sinwt) 'z . (89)
Then one finds
Lyc(y) = 2(3% + w?2? cot® wt — 2wzd cot wt)
= 1(i® — w?a?) — £ (wa® cotwt) (90)

~ Liola) + 4(...)

Thus, up to a total time-derivative the linear transformation (89) transforms the
exotic (and seemingly somewhat singular) Lagrangian (88) to the completely regu-
lar “massive” Lagrangian (87), and the corresponding actions are essentially iden-
tical. This should be thought of as the counterpart of the statement that the Rosen
coordinate plane wave metric

ds* = 2dUdV + sin® wU (dy)* (91)
can, in Brinkmann coordinates, be written as
2dUdV + sin® wU (dy)? = 2dudv — w?x?(du)? + (dz)? . (92)

We can now generalise this in the following way. Consider the Lagrangian L.
corresponding to the lightcone Hamiltonian (19) of a (massless, say) particle in a
plane wave in Brinkmann coordinates (in the lightcone gauge u = t),

Lbc(x) = %(&zbiaj:b + Aab(t)'raxb) ) (93)
and the corresponding Lagrangian in Rosen coordinates,
Lre(y) = 595039 - (94)

The claim is that these two Lagrangians are equal up to a total time-derivative.
To see this, recall first of all the coordinate transformation (26)

yi _ Ez %

a
V = v+ %E‘aiEibxaxb , (95)
where E°, satisfies (24) and (25). Substituting y* = E% 2% in L,., one can now
verify that one indeed obtains L. up to a total time-derivative. The way to see
this without any calculation is to start from the complete geodesic Lagrangian in
Rosen coordinates in the lightcone gauge U = t,
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This Lagrangian is still invariant under coordinate transformations of the remain-
ing coordinates, and is hence equal, on the nose, to its Brinkmannn coordinate
counterpart (20),

Lpe(z) +0 = Lye(y) + V. (97)
This implies that the two Lagrangians Ly.(z) and L,.(y) differ only by a total time-
derivative, namely the derivative of the shift of V in the coordinate transformation
(95).

4.3. The explanation: from plane wave metrics to Yang-Mills actions

We can now come back to the two types of Yang-Mills actions Spc (84) and
Src (85), which are obviously in some sense non-Abelian counterparts of the
classical mechanics Brinkmann and Rosen coordinate actions actions Sp. = f Ly
and S,. = f L. discuussed above. The claim is that these two actions are related
(perhaps up to a total derivative term) by the linear transformation

Yi=FE" X (98)
of the scalar fields (matrix-valued coordinates) Y and X, where E, is the vielbein
that enters in the relation between Rosen and Brinkmann coordinates.

Even though in general non-Abelian coordinate transformations are a tricky
issue, this particular transformation is easy to deal with since it is linear as well as

diagonal in matrix (Lie algebra) space. Consider e.g. the quartic potential terms

in (84) and (85). With the substitution (98), one obviously has
girgn Y YR YY) = gingy B B BB (X, XP][X°, X1 (99)
= 6ac(5bd[XaaXb] [XC,Xd] )

so that the two quartic terms are indeed dirctly related by (98). Now consider the
gauge covariant kinetic term for the scalars in (85). Since E*, = E" (t) depends
only on (lightcone) time ¢, the spatial covariant derivatives transform as

a#t: D)Y'=FE" (t)D, X" , (100)

so that the spatial derivative parts of the scalar kinetic terms are mapped into
each other. It thus remains to discuss the term Trg;;(t)D;Y*D,Y7 involving the
covariant time-derivatives. For the ordinary partial derivatives, the argument is
identical to that in section 4.2, and thus one finds

T Trgi;()Y'YT = L Tr(0ap X X" + Agp() X X%) + L(..) . (101)

The only remaining subtlety are terms involving the t-derivative Eia of E' | arising
from cross-terms like

Trgij (1) [Ar, YO, Y7 = Tr gij (t) E%, [Ar, X0, (B, X°) . (102)
However, these terms do not contribute at all since
9i; (1) EL B, Tr[Ay, X)X = g;;(t) E%, EY, Tr A, [ X, X*) =0 (103)

by the cyclic symmetry of the trace and the symmetry condition (25). It is pleasing
to see that this symmetry condition, which already ensured several cancellations
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in the standard tranformation from Rosen to Brinkmann cooordinates (and thus
also in establishing e.g. (101)), cooperatively also serves to eliminate some terms
of genuinely non-Abelian origin.

Putting everything together, we have now established the claimed equivalence
(86) between the two apparently quite different classes of Yang-Mills theories,
namely standard Yang-Mills theories with (possibly time-dependent) mass-terms
on the one hand, and Yang-Mills theories with non-standard time-dependent scalar
couplings on the other.

I still owe you an explanation of where all of this comes from or what it
is good for. The appropriate context for this is provided by a non-perturbative
description of type IIA string theory in certain backgroounds known as matriz
string theory [15]. In this context, the standard action (82), with p =1 and D =
10, suitably supersymmetrised, and with gauge group U(N), describes ITA string
theory in a Minkowski background. The Yang-Mills coupling constant gy s is
inversely related to the string coupling constant g,. At weak string (strong gauge)
coupling, the quartic term forces the non-Abelian coordinates ¢, witha = 1,...,8,
to commute, so that they can be considered as ordinary coordinates. One can
show that (oversimplifying things a bit, since this should really be thought of as a
second quantised description) in this limit one reproduces the usual weak coupling
lightcone quantisation of the string.

However, the description of string theory based on the action (82) is equally
well defined at strong string (weak gauge) coupling, where the full non-Abelian
dynamics of the gauge theory becomes important. This is one indication that at
strong coupling the target space geometry of a string may be described by a very
specific kind of (matrix) non-commutative geometry.

The generalised actions (84,85) arise in the matrix string description of strings
propagating in plane wave backgrounds, and the general covariance of this descrip-
tion leads one to a priori expect a relation of the kind (86). These kinds of models,
generalisations of the Matrix Big Bang model of [16], become particularly interest-
ing for singular plane waves with a singularity at strong string coupling (so that a
perturbative string description is obviously inadequate), and one can investigate
what the non-Abelian dynamics (non-commutative geometry) says about what
happens at such a space-time singularity. Some of these issues will be explored in
[3], from which also the entire discussion of this section 4 is taken.
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