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1 Introduction

At the macroscopic level our world seems to be pretty much governed by the
laws of classical physics, i.e. by Newtonian mechanics on the one hand and by
Maxwell theory on the other. The former describes the motion of particles
under the influence of forces acting on them and applies to such diverse fields
as celestial mechanics and elasticity theory. The latter covers almost the entire
spectrum of phenomena occurring in electromagnetism and optics. The dynam-
ics in these two theories is governed by deterministic equations of motion and
(in principle) it is possible, given the initial conditions, to predict the results of
measurements on the system at any later time.

Classical physics could thus provide us with a very satisfactory description of
the world we live in, were it not for the fact that it not only fails to give an
explanation for a number of phenomena observed at the microscopic level but
is, in fact, in plain contradiction with experimental evidence.

As an illustration of what these phenomena are and what they may be trying
to tell us about a theory which will have to replace classical physics, I want
to mention just two examples. The first has to do with the stability of atoms.
From scattering and other experiments it had been deduced that atoms consist
of a tiny positively charged nucleus orbited at some distance by negatively
charged point-like particles called electrons. Within the realms of classical
physics such structures are highly unstable and would be predicted to collapse
within fractions of a second, in glaring contradiction with the relative stability
of the world around us: orbital motion is accelerated motion, and according
to Maxwell theory accelerated charges emit radiation; the electron would thus
radiate away energy and spiral into the nucleus of the atom. It was also observed
that simple atoms (like Hydrogen atoms) were able to emit and absorb energy
only in certain discrete quantities. Combining these two observations it thus
appeared to be necessary to postulate the existence of stable orbits for electrons
at certain discrete radii (energy levels). This suggests that at the microscopic
level nature allows for a discrete (or quantized) structure quite unfamiliar from
classical physics.

The second is the famous two-slit (gedanken)experiment or other experiments
investigating the diffraction and interference patterns of beams of particles like
electrons. These indicated that under certain circumstance particles (like elec-
trons) can show interference patterns (and thus a wave-like nature) and that
under certain conditions light (whose wave-like nature had finally been univer-
sally accepted) showed behaviour characteristic of particles and not of waves. In
short, at the microscopic level nature was found to be mind-bogglingly strange
and wonderful. Or, in the words of Dirac (quoted from [1, p. 3], the authorita-
tive book on quantum mechanics):

We have here a very striking and general example of the break-
down of classical mechanics - not merely an inaccurracy of its laws
of motion, but an inadequacy of its concepts to supply us with a
description of atomic events.



To make things worse, the outcome of these experiments appeared to depend
on the measuring process itself, i.e. on whether or not one was checking through
which slit the electron went.! This, for the first time, pointed to the necessity of
including the effects of observation of a system into a description of the system
itself. In particular, it had to be taken into account that one can not make
any observations on a suitably ‘small’ system without perturbing the system
itself (technically this is expressed in the uncertainty principle). In the words
of Dirac [1, p. 4]:

A consequence of the preceding discussion is that we must revise
our ideas of causality. Causality applies only to a system which is
left undisturbed. If a system is small, we cannot observe it with-
out producing a serious disturbance and hence we cannot expect to
find any causal connexion between the results of our observations.
Causality will still be assumed to apply to undisturbed systems and
the equations which will be set up to describe an undisturbed system
will be differential equations expressing a causal connexion between
conditions at one time and conditions at a later time. These equa-
tions will be in close correspondence with the equations of classical
mechanics, but they will be connected only indirectly with the re-
sults of observations. There is an unavoidable indeterminacy in the
calculation of observable results, the theory enabling us to calculate
in general only the probability of our obtaining a particular result
when making an observation.

Heisenberg and Schrédinger provided two mathematical models (or recipes),
later shown to be equivalent, which were able to reproduce the above results
and make many other successfully tested predictions. These models, collectively
known as quantum mechanics, describe the quantum behaviour of (point) par-
ticles in flat space under the influence of external forces. Supplemented by
some intepretation of, roughly speaking, the role of the measuring process or
observer, they constitute a major step forward in the understanding of quantum
physics in general.

At a conceptual level, however, the situation was not very satisfactory. In par-
ticular, it was not clear how general the proposed models were, which features
were to be regarded as fundamental to any quantum version of a classical the-
ory and which were to be attributed to particular properties of the systems
considered so far.

In an attempt to gain some insight into this question, it was in particular
Dirac who emphasized the formal similarities between classical and quantum
mechanics and the necessity of properly understanding these. Again in the
words of the master himself [1, p. 84]:

'Recent experiments indicate that interference patterns will disappear whenever there is in
principle the possibility of detecting through which slit the particle (photon, electron) went,
regardless of whether there was actually a detector there (switched on) or not. This highly
counter-intuitive result appears to be in agreement with theory.



The value of classical analogy in the development of quantum me-
chanics depends on the fact that classical mechanics provides a valid
description of dynamical systems under certain conditions, when the
particles and bodies composing the system are sufficiently massive
for the disturbance accompanying an observation to be negligible.
Classical mechanics must therefore be a limiting case of quantum
mechanics. We should thus expect to find that important concepts
in classical mechanics correspond to important concepts in quantum
mechanics, and, from an understanding of the general nature of the
analogy between classical and quantum mechanics, we may hope to
get laws and theorems in quantum mechanics appearing as simple
generalizations of well-known results in classical mechanics; ...

Abstracting from the analogy found between classical mechanics and Schrédinger
and Heisenberg quantum mechanics, Dirac formulated a general quantum con-
dition, a guideline for passing from a given classical system to the correspond-
ing quantum theory. This process in general is known as quantization. And,
roughly speaking, quantization consists in replacing the classical algebra of ob-
servables (functions on phase space) by an algebra of operators acting on some
Hilbert space, the quantum condition relating the commutator of two operators
to the Poisson bracket of their classical counterparts. I will explain these rules
of canonical quantization in section 3, after having introduced the ‘important
concepts in classical mechanics’ referred to in the above quote. Readers famil-
iar with the mathematical description of classical mechanics may wish to move
right on to that section and read it as part of the introduction.

Parenthetically, I want to issue a word of caution at this point. At first sight
(and perhaps even at second sight), the very concept of quantization appears
to be ill-founded since it attempts to construct a ‘correct’ theory from a theory
which is only approximately correct. After all, our world is quantum, and while
it seems a legitimate task to try to extract classical mechanics in some limit from
quantum mechanics, their seems to be little reason to believe that the inverse
construction can always be performed. Furthermore, there is no reason to
believe that such a construction would be unique as there could well be (and, in
fact, are) lots of different quantum theories which have the same classical limit.
Unfortunately, however, it is conceptually very difficult to describe a quantum
theory from scratch, without the help of a reference classical theory. Moreover,
there is enough to the analogy between classical and quantum mechanics to
make quantization a worthwile approach. Perhaps, ultimately, the study of
quantization will tell us enough about quantum theory itself to allow us to do
away with the very concept of quantization.

But let us now return to less philosophical matters. Unfortunately, Dirac’s
quantum condition is not as general as one might have hoped it to be or, at
least, not sufficiently unambiguous. Thus, to make some headway, it is desir-
able to find a more intrinsic and constructive description of this quantization
procedure. This is the aim of Geometric Quantization which, as the name sug-
gests, attempts to provide a geometric interpretation of quantization within



an extension of the mathematical framework of classical mechanics (symplec-
tic geometry). More specifically, geometric quantization (abbreviated to GQ
henceforth) refers to a body of ideas pioneered independently by Souriau [2]
and Kostant [3] in the late 60’s and early 70’s.

It is the purpose of these lectures to provide an introduction to the role of
symplectic geometry in quantization in general and, as a concrete realization
of this general picture, to give an introductory account of GQ. Unfortunately,
although the fundamental ideas in GQ are very elegant and simple, things
tend to become more complicated and mathematically more demanding rather
quickly. In these notes I have therefore tried to emphasize primarily these
basic ideas and to hint at or illustrate the more advanced machinery (like half-
density and half-form quantization, BKS kernels, Bohr - Sommerfeld varieties
and distributional wave functions) in terms of simple examples rather than
develop it in any great detail. The reason for proceeding in this way is partly
lack of space and time and partly that I do not want to advocate GQ as an
efficient calculational tool in quantum mechanics anyway (in fact, at present at
least it is far from being that), but rather as a procedure of more conceptual
interest.

Section 2.1 is a crash-course on the formalism of symplectic geometry. It serves
mainly to introduce the nomenclature and (differential form) notation to be
used throughout. Section 2.2 explains why this is a natural framework for
classical mechanics.

Section 3, in a sense the heart of these notes, is an introduction to the question
‘What is quantization?’. It also deals with the no less important questions
‘What is it not?” and ‘What should or can it not expected to be?’. My own
views on this subject have been heavily influenced by the article [4] of Isham
which I warmly recommend to anyone interested in these questions.

Section 4 deals with the first step of GQ, known as prequantization. This is
an elegant procedure which associates to any ‘quantizable’ symplectic manifold
a Hilbert space carrying a faithful representation of the classical observable
algebra. Section 4.1 describes the construction and contains a discussion of the
conditions for existence of a prequantization, and their topological classification.
Certain simple and prototypical examples are discussed in section 4.2.

Unfortunately, the Hilbert space provided by prequantization, as elegant as
the procedure may be, is not the correct one for quantum mechanics, and one
needs some way of ‘cutting it in half’. This is achieved via the introduction
of a polarization of the phase space. Splitting the quantization process into
these two steps is nevertheless useful because it serves to isolate some of the
ambiguities inherent in passing from a classical to a quantum system. The
ambiguity in the choice of a prequantum Hilbert space corresponds, roughly
speaking, to the presence of topological superselection rules, while the choice of
polarization corresponds to choosing a particular representation within a given
topological sector. I hope that the meaning of this sentence will become clearer
in the following sections.

In section 5.1 T try to explain why, in the framework of GQ, polarizations arise



naturally at this point. Section 5.2 deals with real polarizations, in particular
with the vertical polarization of a cotangent bundle. Section 5.3 describes
the second important class of polarizations, namely Kahler polarizations. As
background material, it also contains a synopsis of facts about complex and
Kahler vector spaces and manifolds.

Section 6, finally, deals with the construction of the quantum Hilbert space
associated to a polarization and with the construction of operators acting on it.
It is at this crucial point that GQ becomes somewhat murky. In section 6.1 T
show how polarization preserving observables give rise directly to operators at
the quantum level and how the scheme needs to be modified to quantize other
observables (via BKS kernels). We then turn to the construction of the quantum
Hilbert space. I will describe three prototypical situations (vertical polarizations
positive Kahler polarizations and real polarizations with non-simply conected
leaves), point out the complications arising in each of these, and explain briefly
how these problems can be overcome.

Here these notes end rather abruptly, but I hope that they will have prepared
the ground for further inquiries into the existing literature. In particular, I want
to draw attention to the recent investigations into the polarization dependence
of GQ in [5], motivated by questions arising in topological and conformal field
theory, and to the application of GQ to the quantization of constrained systems
[6]-[8] (which is a rather natural thing to attempt as constrained systems are
also described most effectively in terms of symplectic geometry).

The most glaring omission of these notes is probably the representation theoretic
aspect of GQ, i.e. the quantization of coadjoint orbits of a Lie group, which I
only touch upon briefly in section 3 and when discussing the quantization of the
two-sphere in sections 4 and 6. This relation between GQ and the representation
theory of Lie groups is important both mathematically and historically. See [9]
for that part of the story.

The basic references for section 2 are Abraham and Marsden [10] and Arnol’d
[11]. A wealth of other information on symplectic geometry can be found in
the book [12] by Guillemin and Sternberg. My favourite references for section
3 are the book [1] by Dirac and the lectures [4] by Isham. Most of what I
will say about GQ (and much more) can be found in the book by Woodhouse
[13]. Its imprints on these notes are rather obvious in sections 5 and 6. Other
monographs on GQ include [14] and [15].

2 Symplectic Geometry and Classical Mechanics

Symplectic Geometry is the adequate mathematical framework for describing
the Hamiltonian version of classical mechanics. As such it is also the most
suitable starting point for a geometrization of the canonical quantization pro-
cedure.

The purpose of section 2.1 is to introduce the formalism of symplectic geometry
and the coordinate independent differential form notation we will use through-



out these lectures. Section 2.2 serves to establish the relation of this formalism
with that of classical Hamiltonian mechanics.

2.1 Symplectic Geometry

By a symplectic manifold (M,w) we will mean a smooth real m-dimensional
manifold M without boundary, equipped with a closed non-degenerate two-form
w, the symplectic form.? ‘Closed’ means that

dw =10 (2.1)
(¢ Ojjwjr) = 0 in local coordinates), where d is the exterior differential
d: QM) - QL) ., d? =0, (2.2)

on differential forms on M. And ‘non-degenerate’ means that at each point
x € M the antisymmetric matrix w, is non-degenerate, i.e.

det(wy) #0 Vze M . (2.3)

The most important example of a symplectic manifold is a cotangent bundle
M = T*@. This is nothing but the traditional phase space of classical mechan-
ics, (@ being known as the configuration space in that context. A cotangent
bundle has a canonical symplectic two-form which is globally exact,

w=df (2.4)

(and hence, in particular, closed). Any local coordinate system {¢¥} on @ can
be extended to a coordinate system {¢¥,pi} on T*Q such that # and w are
locally given by

0 = ppdg® | w = dppAdgF . (2.5)

We will return to the specific case of cotangent bundles at the end of this section,
when we discuss the relation with classical mechanics.

Other examples of symplectic manifolds are orientable two-dimensional surfaces
31: choose any volume form w on ¥; as such it is certainly non-degenerate; as a
two-form on a two-dimensional manifold it is also certainly closed (dw is a three-
form and and there are no anti-symmetric three-tensors in two dimensions); and,
although it is a fact (known as Darboux’s theorem) that on any symplectic
manifold one can choose a local coordinate system such that w takes the form
(2.5), w cannot be globally exact in this case because otherwise the volume of
3} would be zero by Stoke’s theorem: If w = df were true, then

VOIW(E)::/w:/dOZ 0=0
b b 0%

because ¥ = (). More generally, all Kédhler manifolds are symplectic, and we
will come back to them in section 5.3.

2Like a Riemannian manifold (M, g) is a manifold equipped with a non-degenerate sym-
metric two-tensor g, the Riemannian metric.



Condition (2.3) has several important consequences. First of all, it implies
that M is even-dimensional, m = 2n, as an odd-dimensional antisymmetric
matrix has zero determinant. The same argument as above shows that the
symplectic form of any compact symplectic manifold is cohomologically non-
trivial (i.e. closed but not globally exact), because otherwise the symplectic
volume

Vol,(M) =4 /M w" (2.6)

would be zero.

Moreover, as w is invertible, at each point z € M it gives an isomorphism
between the tangent and cotangent spaces of M at =z,

wy : ToM X TEM | (2.7)
expressed in local coordinates as

Crudely speaking, like a metric a symplectic form allows us to raise and lower
indices on tensors. This extends to an isomorphism between T'M and T*M and
between vector fields and one-forms on M,

X iX)w=wX,.)e Q' (M) (2.9)

(here i(X) denotes the contraction of a differential form with the vector field
X, as in (2.8), i.e. the insertion of X into the first ‘slot’ of a differential form).

In particular, therefore, the existence of w allows us to associate a vector field
Xy to every function f € C*°(M) via

i(Xf)w = —df (2.10)

(the minus sign is for later convenience only). Xy, the ‘symplectic gradient’
of f, is known as the Hamiltonian vector field of f. It generates a flow on M
which leaves w invariant, as the Lie derivative of w along X is zero,

L(X[)w = di(Xj)w +i(X;)dw = —ddf =0 . (2.11)

Via (2.10), the symplectic form provides an anti-symmetric pairing {f, g} be-
tween functions f,g on M called the Poisson bracket of f and g. It is defined
by

{f,9} == w(Xy, Xq) € C™(M) , (2.12)

and describes the change of g along X (or vice versa),
{f,9} = i(Xg)i(Xf)w = i(Xf)dg = L(Xf)g . (2.13)

In particular, f is constant (i.e. preserved) along the integral curves of X;. The
Poisson bracket satisfies the Jacobi identity

{fi{g,h}}y ={{f g}, h} + {9, {f, h}} - (2.14)



This can be shown either by writing out explicitly (dw)(X, X4, Xp) =0 (w is
closed), or by using the tensoriality of the Lie derivative and L(Xf)w = 0 to
deduce

L(Xy) (w(Xg, Xp)) = w(L(Xf) Xg, Xn) +w(Xg, L(X7)Xp)

which is just a rewriting of (2.14). This gives (C*°(M),{.,.}) the structure of
an infinite dimensional Lie algebra.

One further important identity we will need, which relates the Lie algebras of
vector fields and functions on M, is

(X7, Xgl = X(1g} (2.15)

which shows that the Hamiltonian vector fields also form an infinite dimensional
Lie algebra. Moreover, regarding the map (Lie algebra homomorphism) f — X/
as an assignment of differential operators to functions, the identity (2.15) is also
an illustration of the quantization paradigm (Dirac’s quantum condition)

Poisson Brackets — Commutators

and will play an important role in the following. To prove (2.15) one again
makes use of the tensoriality of the Lie derivative, this time in the form

(X, Y]) = LIX)i(Y) —i(V)L(X)
to show that i([Xy, Xg])w = i(X{fg)w.

Lastly, we will need to consider certain submanifolds of symplectic manifolds.
A subspace (V,wly) of a symplectic vector space (W,w) (i.e. a vector space W
equipped with a non-degenerate antisymmetric two-tensor w) is called isotropic
if w|y: = 0. By linear algebra, an isotropic subspace of W has dimension at most
%dim(W), and in that case V is called a Lagrangian subspace® of W. Likewise,
we now define a Lagrangian submanifold of (M,w) to be an n-dimensional
submanifold N C M such that w|ry = 0. For example, it is evident from
(2.5) that @ (defined by pr = 0) is a Lagrangian submanifold of M = T*Q, as
is the fibre T;7Q) of the cotangent bundle at ¢ € (). Locally, any Lagrangian
submanifold N is given by the vanishing of n functions Fj, on M which are in
involution, i.e. which satisfy

(Fo,F} =0 Vk,I . (2.16)

In fact, it follows from this condition that the Hamiltonian vector fields X,
are tangent to ();{#; = 0} so that they locally span the tangent bundle T'N.
Reading (2.16) as w(Xp,, X)) = 0 then says that w|7n = 0.

This concludes our crash-course on symplectic geometry. The second half of this
century has witnessed a great deal of activity in this field, which has established
itself as an independent mathematical descipline fertilized by the relation with
classical mechanics. I have not mentioned any results of modern symplectic
geometry which can be obtained within this framework and the adventurous
reader is referred to [10] for a detailed account.

3The terminology arises from the relation between such subspaces and the Hamilton-Jacobi
theory of Lagrangian mechanics, see [10, 13].



2.2 Relation with Classical Mechanics

Now, what has all this got to do with classical mechanics? In the simplest
mechanical systems the areana for classical mechanics in the Hamiltonian (or
first order) formalism is the phase space, a 2n-dimensional real vector space
~ R?" with coordinates ¢',...,q", p1,...,pn describing the position and the
momentum (velocity) of the particles involved. The dynamics (time evolution)
of the system is governed by Hamilton’s equations

ake _ 9H
at Opi,
0OH
d _
aPk = _3—qk ) (2.17)

where H(q*,py), the Hamiltonian, is a function on phase space describing the
energy of the system.

Typically, H is of the form H = T 4+ V where T ~ p? is the kinetic energy and
V = V(¢*) is the potential energy whose gradient descibes the forces acting on
the particles. For example, a harmonic oscillator in one dimension is described
by the Hamiltonian H = (p? + ¢?)/2, the equations of motion ¢ = p, p = —¢q
leading to the characteristic oscillating behaviour ¢(¢) = ¢(0) cost + p(0) sin t.

If H does not depend on time explicitly, the equations of motion (2.17) imply
that H is conserved along any trajectory in phase space,

OH 0H
d -k .
dg — 2= -

dt dq" ¢+ Opk Pk

OH OH _ OH OH _ (2.18)
0q* Op,  0q* Opy,

(summation over repeated indices being understood) while the evolution of any

other function f on phase space (observable) is given by

of 0H of oH

d

dy_ 2J 777 ) 77 2.19
= Ok Ops ~ Opr 0" (2.19)
In our simple one-dimensional example above, (2.18) already determines the
phase space trajectories uniquely to be the circles p? +¢> = const., in agreement

with the explicit solution of the equations of motion.

In general, any constant of motion, i.e. any function f on phase space in invo-
lution with the Hamiltonian, {H, f} = 0, can be used to reduce the dynamical
system to a lower dimensional one on the common level surfaces of the functions
H and f. It follows from the Jacobi identity (2.14) that the Poisson bracket
of any two constants of motion is also a constant of motion. If it is possible
to find n constants of motion in involution (and independent in the sense that
their Hamiltonian vector fields are linearly independent) the system is called
integrable and there are then standard methods available for solving the system
completely (Hamilton-Jacobi theory, action-angle variables, ...). Most text-
book examples of classical mechanics are integrable, but integrability is by no

10



means prototypical and only occurs in systems with a high degree of symmetry.
In the general case one has to resort to more qualitative (instead of quantitative)
methods of investigation. For a detailed exposition with numerous applications
(e.g. to the rigid body and celestial mechanics) see [10].

The equations (2.17-2.19), characterising Hamiltonian mechanics, arise natu-
rally if we think of R?" as the cotangent bundle T*R" of the configuration
space R™, with the canonical symplectic form (2.5). Namely, in that case the
Hamiltonian vector field X of a function f (¢, py) is

of o of o

sz—f———f— ; (2.20)

Ipr, OgF  dq" Opy;
as it is easily verified that i(X;)dpyAdg® = —df (cf. (2.10)). Therefore the
Poisson bracket is

of dg  Of 9y
{(f9y =555 5575 > (2.21)
Opk 09" 0q” Opy,
and, in particular, the canonical Poisson brackets (classical canonical commu-

tation relations) between the coordinates and momenta are

{d", ¢}y ={pr,m} = 0
{prrd'} = 0; (2.22)
The functions ¢* and p; form a complete set of observables in the sense that any

function which Poisson commutes (has vanishing Poisson brackets with) all of
them is a constant.

The equations (2.17-2.19) can now be written succinctly as

(217) & 44" ={H,¢"} , 4p.={Hp} , (2.23)
(2.18) < {H,H} =0, (2.24)
(219) & Lf={H f}y=Xuf, (2.25)

so that time evolution in classical mechanics is determined by the Hamiltonian
vector field X g of the Hamiltonian H.

This formulation makes manifest the form-invariance of the equations of clas-
sical mechanics under canonical transformations or symplectomorphisms (dif-
feomorphisms leaving the symplectic form invariant). For instance, Liouville’s
theorem that the volume of any portion of phase space is invariant under time
evolution (i.e. behaves like an incompressible fluid) is a trivial consequence of
L(Xp)w =0 and is thus built into the formalism from the outset.

It also has the added advantage of generalizing immediately to more compli-
cated systems (e.g. with constraints) where the configuration space is some
curved manifold (), or even where the phase space is some compact symplectic
manifold (and hence cannot possibly be a cotangent bundle). The necessity
to consider such more exotic systems in physics has arisen in recent years in
a number of different contexts, e.g. for the description of internal degrees of
freedom and in topological and conformal field theory. In mathematics, quan-
tization of compact symplectic manifolds plays a central role in representation
theory (where the symplectic manifolds in question are coadjoint orbits).

11



3 What is Quantization?

In this section we take a first step away from the classical theory outlined above.
It is, in a sense, a continuation of the introduction (why quantum theory?) and
tries to give a general flavour of what quantization is about, without entering
too far into the formalism and interpretation of quantum mechanics itself.

Classically, the space C°°(M,w) of observables has, in addition to a Lie alge-
bra structure provided by the Poisson bracket, the structure of a commutative
algebra under pointwise multiplication,*

(f9)(x) = fx)g(x) = (9f)(x) (3.1)

It appears that it is this property which has to be sacrificed when moving from
the classical to the quantum theory, the non-commutative nature of observables
in the quantum theory being at the heart of the phenomena discussed in the
introduction. More specifically, quantization usually refers to an assignment

Q: f— Q) (3.2)

of operators Q(f) on some Hilbert space to classical observables f. This Hilbert
space can be finite-dimensional (in which case one can think of the Q(f)’s sim-
ply as finite-dimensional matrices) but will, in general, be infinite-dimensional.
The scalar product in the Hilbert space is necessary for the probabilistic inter-
pretation of the theory and is thus of fundamental importance. This assignment
Q has to satisfy some more or less obvious requirements like

Q1: R-linearity,
Qrf+9)=rQ(f)+Q(9) VreR,f,geC®M), (3.3)

and the condition that

Q2: the constant function 1 is mapped into the identity operator or matrix 1,
Q) =1 . (3.4)

Furthermore, real functions should correspond to hermitian operators (as the
eigenvalues of Q(f) are the possible results of measurements in the quantum
theory and hence should be real),?

Q3:
Q(f) = Q(f) - (3.5)
But, of course, we need more guidelines than that to construct a quantum theory

from a classical theory (even keeping in mind the limitations to this programme
mentioned in the introduction). It is here where Dirac’s observation enters that

“These are related by the Leibniz rule {f, gh} = {f, g}h + g{f, h} and give C*°(M,w) the
structure of a Poisson algebra.

SHere and in the following I will gloss over functional analytic complications. This is,
however, not meant to imply that they are not important.

12



it is the commutator of two operators which is the quantum counterpart of the
classical Poisson bracket. More precisely, to the conditions (3.3-3.5) one adds

Q4: the quantum condition

[Q(f), Q9)] = —ihQ({f,9}) - (3.6)

Here h is Planck’s constant, a constant of nature (dimension of an action)
characteristic of quantum effects. It is a very small number, and for most
macroscopic considerations the fact that it is not zero can be neglected. This
is also reflected in the fact that for i — 0 (now treating i just as a parameter)
one recovers from (3.6) the commutative structure of classical mechanics. At
the microscopic level, however, order i effects can no longer be neglected and
this is where classical mechanics needs to be replaced by quantum mechanics.

It would perhaps be more natural, if & appeared as a (free) parameter in the
theory - see [4]. One could also contemplate the possibility of adding higher-
order terms in & to the right hand side of (3.6); this leads to what is known as
deformation quantization.

Experience has taught that there is yet one more condition to be imposed for
the assignment (3.2) to produce a valid quantization (in those examples where
one ‘knows’ what it should look like). This last requirement is some kind of
irreducibility condition. A reasonably general and satisfactory way of phrasing
it makes use of the concept of a complete set of observables introduced in section
2.2. In complete analogy, we define a complete set of operators to be one such
that the only operators which commute with all the operators from that set are
multiples of the identity. The condition then reads that

Q5: if {f1,..., fr} is a complete set of observables, {Q(f1),...,Q(fx)} is a
complete set of operators.

Unfortunately, it is in general not possible to satisfy both Q4 (for all f and g)
and Q5, and the best one can hope for is some ‘optimal’ compromise, e.g. de-
manding Q4 only for a complete set of observables and perhaps some additional
observables which are of particular interest in the quantum theory. Of course,
nothing tells us how to find a complete set of observables, or which one to
choose. Nor is it ruled out that different choices of complete sets will lead to
inequivalent quantum theories (i.e. to inequivalent predictions for the result
of experiments). It is here, in what one means by ‘optimal’, that extrane-
ous information and requirements enter the construction of a quantum theory,
e.g. certain symmetries or geometric properties of the classical system which
may make one complete set more ‘natural’ than another.

Common sense must be used here to avoid embarking on an over-
axiomatised, and hence misguided, piece of theoretical physics. We
...should not be trapped into axiomatising theoretical ideas out of
existence. [4, p. 1155]

This discussion shows that it is very difficult to address the question of exis-
tence and classification of quantizations satsifying Q1-Q5 (in some sense) in
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general. By changing slightly the rules of the game, GQ nevertheless provides
one method for doing precisely this. I will come back to this below.

First, it will be instructive to see how all this works in the simplest case ) =
R", M = T*Q. In that case we have already encountered a complete set of
observables in section 2.2, namely the coordinate functions ¢* and p;. According
to the rule Q4 we demand the corresponding operators to satisfy the canonical
commutation relations

[Q(¢"), Q)] = [Qpx), Qp)] =0 ,
[Q(¢"), Q(p)] = ihdh . (3.7)

This is the so-called Heisenberg algebra and, by the Schur lemma, rule Q5 is
now equivalent to finding an irreducible representation of the Heisenberg algebra
(this is why I called Q5 ‘some kind of irreducibility condition’ above). By the
Stone - von Neumann theorem any such representation is unitarily equivalent
to L?(Q) = L?*(R") with ¢* and p; represented by

Qe )(x) =2 p(x) ,  Qlp)v(z) = —hiz 5 (@) (3.8)
(more precisely, for this uniqueness theorem to hold, one has to require that
the representations exponentiate to representations of the Heisenberg group -
there are inequivalent representations of the Heisenberg algebra). The spectrum
(range of eigenvalues) of these operators is (—oo,400). This is the standard
Schrodinger picture of quantum mechanics. It is important to keep in mind
that the fact that in this case ‘wave functions’ can be represented by functions
on the configuration space is a consequence of our quantization rules Q1-Q5
and the Stone - von Neumann theorem, and not some fundamental dogma of
quantization (as which it is often presented).

Now, the coordinates and momenta are certainly not the only observables of
interest. Can we quantize any others as well in accordance with the rule Q47
Indeed we can, albeit not many more. One important observable is the kinetic
energy operator p?> = pFp'dy; and evidently it should be represented by the
Laplacian,

, 07
Q(pkpl) = —h Ok ozl
2 2 0 2
Qpr°) = —Wouggag=-"A. (3.9)

Likewise, we have little choice but to represent observables quadratic in the co-
ordinates by multiplication operators. Classically, the Poisson bracket between
these two quadratic operators is proportional to pq' and we thus need to assign
an operator to this third class of quadratic observables as well. Imposing either
the hermiticity condition Q3 or the quantum condition Q4 one finds

Qprd") = § (Qpr) Q(d) + Q) Q(px)) - (3.10)
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This can be interpreted as a particular operator ordering of Q(prq') ~ Q(pr)Q(q!)
(but note that a priori there is no logical necessity for the assignment Q to sat-
isfy some condition like Q(fg) ~ Q(f)Q(g) in general).

The quadratic observables form a closed Lie algebra under Poisson brackets,

{pipj,pimi} = {d'd’,d"¢} = 0
{pidd,pkpiy = —6Lpipr — 6 pipk
{pidprd'y = i’ — O]pid!
{pid,d"¢} = ofdd +6dd"
{pipj,d"d'ty = oFpid + dhpid® + oFp;d + oip;d* , (3.11)

the symplectic Lie algebra sp(n) (in the non-compact form, sp(1) ~ si(2,R)).
Thus, what the above means is that when we quantize a symplectic vector
space we can always obtain a representation of the symplectic Lie algebra on
the quantum Hilbert space which reflects the classical symplectic invariance
of the theory (and which exponentiates to a projective representation of the
symplectic group).

If we now try to extend this quantization to cubic observables we run into con-
flict with the quantum condition Q4. That this is not due to some particularly
unfortunate choices we have made but rather an inevitable consequence of the
rules Q1-Q5 is the content of the Groenewald - van Hove theorem (for a careful
exposition see [10]). Thus, even in the simplest case of a symplectic vector
space no full (in the sense that Q4 holds for all observables) quantization ex-
ists. This is not a severe set-back, however, since there is no reason to expect
any arbitrarily crazy classical ‘observable’ to be quantizable and to qualify as a
true observable of the quantum system. The choice of classical functions which
are to be promoted to quantum operators depends on the system under con-
sideration and should feed its way back into e.g. the choice of complete set of
observables entering the condition Q5.

Let us now look at the case when Q # R™, M # R?". Even if M is a cotangent
bundle, M = T*(Q, canonical coordinates (¢*,p;) will in general not exist glob-
ally. It thus makes little sense to choose these as a complete set of observables
and to impose the canonical commutation relations (3.7) at the quantum level.
If one does that one is ignoring completely the geometry of the phase space and
is thus performing something that could be regarded as only a tangent space
approximation to the true quantum theory.

Take, for instance, the example M = T*S' (a cylinder) with angular coor-
dinate ¢, angular momentum p and symplectic form dpAdp. If one required
the canonical commutation relations [Q(y), Q(p)] = ih, this would imply that
the spectrum of both operators is (—oo, +00), but this is wrong! In fact, it is
known that in quantum mechanics angular momentum is quantized in units of
h, specQ(p) = hZ (while the spectrum of ¢ ought to be [0,27)). The source of
the problem is, of course, the fact that ¢ is not a globally defined coordinate
on the circle and that one is really dealing with the real line when one pretends
that it is.
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One way to get around this problem is to replace by a globally defined function
on the circle, like sin¢. If one does that, one is also forced to include cos ¢ to
obtain a complete set of functions closed under Poisson brackets. One then
arrives at the following globally well defined canonical Poisson bracket algebra
of the cylinder,

{p,sinp} =cosp , {p,cosp}=—sinp , {sinp,cosp}=0. (3.12)

Quantization of the cylinder then amounts to finding a representation of (3.12)
and this yields the expected result.

Is there a more systematic way of arriving at (3.12)7 And what is going to
replace the canonical commutation relations (3.7) in general? A clue to this
comes from the following observation. The fact that the canonical coordinates
are globally defined for M = T*R"™ implies that (via their Hamiltonian vector
fields) translations act on the phase space, completeness corresponding to the
fact that these translations act transitively. The canonical Poisson bracket
algebra (2.22) can thus be regarded as a central extension of the translation
algebra, and the quantization conditions instruct one to find its irreducible
representations.

This suggests a general strategy whenever the phase space is a homogenous
space (i.e. one with a transitive action of some group G). Assuming that this
action is generated by Hamiltonian vector fields, the corresponding functions
form (roughly speaking) a complete set of observables. One then looks for
irreducible representations of their Poisson bracket algebra. Thus the canonical
commutation relations of the Heisenberg algebra are replaced by those of the
‘canonical’ group G and the problem of quantization is again reduced to one
of representation theory. In general, there will be no Stone - von Neumann
theorem so that quantization will not be unique. And, even if M = T*(Q), the
Hilbert space of the quantum theory will not necessarily turn out to be L?(Q).

Applied to the above example one finds that quantization of the cylinder amounts
to finding representations of the Euclidean group E(2) which in turn can be ex-
pressed via the Poisson bracket relations (3.12), as had been anticipated above.
Note that the first guess, that the canonical group could be chosen to be S xR
itself, acting on the cylinder by rotations and translations, fails, because the
generator d/dp of translations is not globally Hamiltonian. This is the same
problem in disguise we encountered above with regard to the ‘naive’ canonical
commutation relations. For a detailed explanation of this programme, with
many other finite and infinite dimensional examples, see [4].

More generally, one may say that whenever there is a preferred complete set of
observables (in some sense) there is a preferred class of quantizations, and in
this form Isham’s programme has been applied successfully to gauge theories
and quantum gravity in the Ashtekar variables by the Syracuse group.

In order to avoid these questions (which require more of a case by case analysis)
and to geometrize the question of existence and classification of quantizations,
GQ focusses on a slightly different way of looking at quantum mechanics on
R". Essentially, the concept of a complete set of observables (like the ¢* and
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p1) is replaced by that of a maximally (Poisson) commuting set of observables
(like the ¢*). Thus, wave functions are considered to be functions (or sections of
some complex line bundle) on the classical or quantum spectrum of a maximally
commuting set of observables (which are diagonal in this representation).

Alternatively, still for Q = R™, wave functions can be characterized as functions
on phase space which are annihilated by the Hamiltonian vector fields of a max-
imally commuting set of observables. It is this way of looking at Schrodinger
quantization that generalizes most readily to other symplectic manifolds M. In
section 2.2, we had already seen that such a maximally commuting set {Fj}
defines a Lagrangian submanifold of M. By varying the constants c; in the
equations Fj = ¢ one then obtains a foliation of M by Lagrangian submani-
folds. This is also called a real polarization of M. The quantum Hilbert space
is then constructed from those functions (sections of a line bundle) on M which
are (covariantly) constant along the leaves of this foliation. It is, roughly speak-
ing, this condition that replaces the quantization condition Q5 (emphasizing the
role of a complete set of observables).

At first, this approach to quantization appears to be rather restrictive. In the
finite dimensional case, however, there is considerable overlap among the results
arising from this, Isham’s, and other quantization schemes. One of the reasons
for this is that the concept of a polarization is more flexible than it perhaps
seems.

First of all, it is possible to replace real by complex polarizations (integrable La-
grangian subbundles of the complexified tangent bundle of M - see section 5.1).
This is also familiar from ordinary quantum mechanics on R” in the form of the
Bargmann representation in which wave functions are represented by holomor-
phic functions of z; ~ ¢* +ipj. In many cases covered by Isham’s scheme there
are more or less natural polarizations which are compatible with (i.e. invariant
under) the canonical group. GQ can then be used to construct representations
of this canonical group. In this context it can thus be regarded as investigating
the question to which extent representations of the canonical group, featuring
in Isham’s approach, can be constructed from symplectic geometry.

Moreover, it can be seen in examples that, with due care, it is also possible to
apply GQ when the {F}} or the real polarization are not globally defined but
are singular somewhere. Such singular polarizations are more likely to exist
and thus extend the range of applicability of GQ.

A final word of warning: it is possible that GQ is overambitious in attempting
to make quantization ‘work’ for (almost, see section 4.1) arbitrary symplectic
manifolds. Since it is really quantum theory that should be regarded as funda-
mental, there is no a a priori reason to believe that every classical theory has a
quantum counterpart.
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4 Geometric Quantization I: Prequantization

As mentioned a couple of times above, GQ accomplishes the quantization of
a symplectic manifold in a two- (or more-) step procedure. The first is the
construction of a faithful representation of the Poisson algebra of functions by
linear operators on a Hilbert space. This is known as prequantization and
satisfies the quantization conditions Q1-Q4. In a second step, a variant of Q5
is imposed in terms of a polarization, at the inevitable expense of sacrificing
part of the quantum condition Q4.

In section 4.1 the construction of the prequantum Hilbert space from a complex
line bundle over phase space is explained, as well as the classification of line
bundles with connections. Examples are discussed in section 4.2.

4.1 The Prequantum Hilbert Space

In order to geometrize the notion of quantization, it is natural to attempt to
construct the quantum phase space (= Hilbert space) from the space of func-
tions on the classical phase space M instead of regarding the two as completely
separate entities. An important role is played by the identity (2.15),

(X5 Xg] = X101

which shows that Hamiltonian vector fields give a representation of the classical
Poisson bracket algebra by first order differential operators on M. In fact, the
assignment

[ — —ih Xy (4.1)

satisfies the conditions Q1 (obviously), Q3 (with respect to the Liouville mea-
sure, because X leaves w invariant), and Q4 (by (2.15)). However, since the
zero vector field is assigned to any constant function, (4.1) fails to satisfy Q2.
One may try to remedy this by replacing —ihX; by —ihX; + f, but this is also
not quite right, now violating Q4. A little further experimenting shows that
if M = T*Q (where the symplectic form w is globally the differential of the
canonical one-form @), the assignment

P f—=P(f)
P(f) = —ih Xy — Q(Xf) +f (4.2)

indeed satisfies Q1 — Q4 and thus gives a faithful representation of the Poisson
algebra by first order differential operators on L?(M,w). For Q = R" one has
(denoting the multiplication operator simply by ¢¥)

Plq") =ifgl-+d" . Plp) = —ifigy - (4.3)
This evidently only reduces to the Schrodinger representation (3.8) when acting
on functions of the coordinates alone. (4.3) also shows that P fails to satisfy

the irreducibility condition Q5 as e.g. the operator d/0p; commutes with all the
P(¢*) and P(p;). Another problem with prequantization is, that it certainly
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fails to reproduce the second order differential operators (3.9) associated to
observables quadratic in the momenta. To reobtain these from GQ requires
much more work. The crucial point is, that the operator P(p?) (being linear in
the momenta) does not even act on the space of functions of the coordinates
alone. It thus changes the representation space or, in the language of GQ, the
polarization. Thus, to associate an operator to p? one has to compensate for
the change in the polarization caused by the flow of p?. This is an analytically
rather involved procedure based on the so-called Blattner - Kostant - Sternberg
(BKS) kernels which is very incompletely understood in general. We will only
come back to it briefly in section 6.1.

There is still one minor difficulty with the above construction. Namely, instead
of # one could have chosen a symplectic potential of the form 6 + df for some
function f on M. This can be compensated for by multiplying the functions of
L?(M,w) by the phase factor exp(if/h) (showing that the resulting prequan-
tizations are unitarily equivalent). f is, however, only determined by df up
to a constant, resulting in an overall phase ambiguity of the prequantum wave
functions.® This suggests that it is more convenient to regard the operators
P(f) as acting on the space of sections of a trivial complex line bundle L over
M equipped with a connection D which in a particular trivialization takes the
form

D=d—(i/h)d . (4.4)

As we will need the construction later on when switching from real to complex
polarizations, I will briefly explain the reation between trivializations, sections,
and connection forms in the case at hand. The same arguments apply to local
trivializations (whose existence is guaranteed by the definition of a fiber bundle)
in the general case of non-trivializable bundles.

If there is a global nowhere vanishing section s of the complex line bundle L, this
section gives us an identification L ~ M x C. Conversely, beginning with M x C
(as we did above before starting to worry about line bundles) we can think of it
as a line bundle L with the natural trivializing section so(m) = (m, 1). Given
a connection (covariant derivative) D on L, and a trivializing section s, the
corresponding connection one-form [s is defined by

Ds = —iflss . (4.5)

Any other section of L is of the form s for some complex valued function ),
and one has

D(¢s) = (d)s +¢(Ds) = (dyp — iBsi))s (4.6)
which can be read as
Dy = dyp — 1859 (4.7)
‘in local coordinates’. If one chooses a different trivializing section, say s’ =
exp(—if)s then the connection one-form will change according to

Ds' = D(exp(—if)s) = —i(Bs + df)s' = —ifys" . (4.8)

5The more exotic possibility of replacing # by 6 + «, where a is a closed but non-exact
one-form on M, will be dealt with below. It leads to a unitarily inequivalent theory.
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With respect to s’ the section s will be represented by exp(+if)y and this
recovers the argument given above. The upshot of this is that we should think
of (4.4) as being valid in the trivializtion so(m) = (m,1) and that we now
know how to relate changes in the symplectic potential (which it is occasion-
ally convenient to perform) to changes of local trivializations. This point of
view actually becomes mandatory when one is dealing with general symplectic
manifolds (M, w) where w is not necessarily exact. In that case expressions like
(4.2) and (4.4) only make sense locally, with & — 6, say, on a coordinate patch
U, while on overlaps U, N Ug of a (good) cover one has

0o — 05 = dfop , (4.9)

where f,z is related to the transition function connecting the local trivializing
sections s, and sg over U, N Ug.

In terms of D, the prequantum operator P(f) can be written as
P(f) =—ihD(Xs)+ f . (4.10)

There is another way of looking at P(f) which sheds some light on its definition.
Via its Hamiltonian vector field Xy the function f generates a flow

& . m — & (m) (4.11)

of canonical transformations of M. Up to an overall phase (related to the
ambiguity f — f + ¢, ¢ a constant) there is a unique way of lifting this flow to
an automorphism of L preserving the Hermitian structure and the compatible
connection. This, in turn, induces a ‘pull-back’ action

& p s By (4.12)
on sections of L and their local representatives 1. Introducing the quantity
Ly o= 0] (4.13)
= Pk —
Opk
the Lagrangian of f, one finds that (4.11) is given explicitly by

(81) 0m) = (@l omyes (=4 [ £o@homnar) . (1)

Thus ‘time evolution’ is given by the exponential of the classical action, some-
thing that is highly reminiscent of the path integral. There are numerous other
connections between GQ and path integrals, see [13, 14]. Anyway, as P(f) can
be expressed in terms of L as

P(f) = —ihXy — Ly , (4.15)

it follows that P(f)« is nothing but the derivative of (4.14) at ¢t = 0,
P(f)¢ = —ing, (&)tf@/)) lt=0 - (4.16)
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We can thus interpret P(f) intrinsically as the generator of a connection pre-
serving automorphism of L lifting the action of the Hamiltonian vector field X,
on M.

Let us now retrun to more down-to-earth matters. It follows from (4.4) that
the curvature 2 of L, defined by

QX,Y) =i ([D(X), D(Y)] - D([X,Y])) , (4.17)

) Q=1iD? = (1/h)df = (1/h)w . (4.18)

The definition (4.10) still makes sense for non-trivial line bundles and

[P(£), P(9)] = —ihP({f,g}) (4.19)

is satisfied for all f and g provided that L is a line bundle with connection D
whose curvature two-form is (1/h)w. Moreover, P(f) can still be understood
as the generator of a connection preserving automorphism of (L, D).

As w is real, there always exists a compatible Hermitian structure on L and we
thus arrive at the following

Definition: A prequantization of a symplectic manifold (M, w) is a pair (L, D)
where L is a complex Hermitian line bundle over M and D a compatible connec-
tion with curvature (1/h)w. The prequantum Hilbert space H is the completion
of the space of smooth sections of L, square-integrable with respect to the Li-
ouville measure on M (and the Hermitian structure on the fibers).

Topologically, line bundles are classified by their first Chern class ¢;(L) €
H?(M,27Z). In de Rham cohomology, ci(L) can be represented by the cur-
vature form of any connection on L (the cohomology class of the curvature
form is independent of the choice of connection). Thus a necessary (and, in
fact, sufficient) condition for a prequantization (L, D) of a symplectic manifold
to exist is that (1/2wh)w represent an integral cohomology class or, in other
words, that the integral of (1/27h)w over every closed, orientable two-surface
in M be an integer. Such symplectic manifolds are called quantizable (although
prequantizable would be more accurate).

Cotangent bundles T*(Q), equipped with the canonical symplectic structure w =
df, are always quantizable as w is exact. Moreover, as the cohomology class of w
is trivial, so is any prequantum line bundle L over (T*Q,w) (as we had already
noted above). In certain cases, however, the quantizability condition imposes
a quantization condition on parameters appearing in the classical system. For
instance, Dirac’s famous quantization condition on the electric charge e of a
particle moving in the field of a magnetic monopole can be understood in this
way. This is a consequence of the fact that the coupling of particles to an
Abelian gauge field (connection) A with field strength (curvature) F' = dA can
be accomplished by replacing the original symplectic structure w = df on T*Q
by the ‘charged’ symplectic structure

wp =w+eF

21



(which is still non-degenerate and closed). This is equivalent to using the stan-
dard minimal coupling prescription p; — p; — eA;(¢*) with the unmodified
symplectic structure w. Quantizability of (T*Q,wp) is now equivalent to inte-
grality of (e/27h)F. If F represents a non-trivial cohomology class (so that A
is only defiined locally), this gives a restriction on the possible values of e and
the prequantum line bundle L will be non-trivial as well. (As an aside: the cou-
pling constant quantization conditions appearing in certain field theories like
the Wess-Zumino-Witten model and topologically massive gauge theory can be
understood in the same way.)

Likewise, if M = S?, the two-sphere with radius r, and w is the volume form
w = rsin¥ddde, then w is only integral for certain discrete values of r, namely
r = nh/2, n € Z. It is, by the way, no coincidence that this looks like the
quantization rule for angular momentum or like representation theory of SU(2).
52 is a homogeneous space for SU(2), S? ~ SU(2)/U(1) (in fact, a coadjoint
orbit), and quantization of S? hence leads to representations of SU(2). The
prequantum Hilbert space is, of course, infinite dimensional, but by considering
only holomorphic sections of the prequantum line bundle (which corresponds
to a particular choice of complex polarization) one obtains finite dimensional
Hilbert spaces which are irreducible representation modules of SU(2). This
relation between transitive group actions (homogeneous symplectic spaces) and
irreducible representations is one of the origins of GQ. It is appropriate to regard
GQ as a generalization of the Borel-Weil-Bott theorem and Kirilov’s method of
orbits [9] to the non-homogeneous case.

As the above examples may have given rise to the impression that all symplectic
manifolds (M, w) can be made quantizable by a rescaling of the symplectic form
w, I will mention a simple counterexample: the product of two two-spheres
M = S? x S? with incommensurate radii 7 and s. Attempts have been made
to generalize GQ to such spaces but I will have nothing to say about this here.

After having discussed this necessary condition for a prequantization to exist,
we now turn to a brief discussion of the classification of prequantizations of a
quantizable symplectic manifold (M,w). As a key role is played by the con-
nection D in the defintion of prequantization, the topological classification of
line bundles (by their Chern class) is too coarse to provide a classification of
prequantizations or prequantum line bundles on (M,w). What one needs is a
refinement in which two prequantizations (L, D) and (L', D) are regarded as
equivalent if there is a bundle isomorphism f : L — L’ such that f*D’ = D.

To address this problem in a somewhat more pedestrian manner, we will need
the following terminology: a connection is called flat if its curvature vanishes; a
flat line bundle is a line bundle with a flat connection. Furthermore we will need
the fact that one can form the tensor product E® F' of two vector bundles £ and
F (this is simply done fiberwise) and that the tensor product of two complex
line bundles L and L' is again a complex line bundle (because C @ C ~ C).
These tensor product bundles inherit naturally a tensor product connection
Dpgr = D ® D' from connections on L and L'. In a local trivialization, if
D =d—iaand D' =d—id/, then D ® D' = d —i(a +'). Thus the curvature
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(4.18) of D® D' is simply the sum of the curvatures of D and D’. Furthermore,
the curvature of the complex conjugate line bundle (L*, D*) is minus that of
(L,D) as D* =d+ia and (L ® L*, D ® D* = d) is the trivial flat line bundle
with trivial connection d.

This implies that, given a prequantization (L, D) and a flat line bundle (Lg, Dy),
the tensor product (L ® Lo, D ® Dy) is again a prequantization. Conversely,
given two prequantizations (L, D) and (L', D’), they differ by a flat line bundle
because

(L, D) ~ (I',D) @ ((L, D) (L, D*))
~ (L,D)® ((L',D') & (L*, D¥)) (4.20)

and the second factor in the second line is flat. Thus the classification of
prequantizations of (M,w) amounts to the classification of flat line bundles
on M (and is, in particular, independent of w). This is quite standard and
can be accomplished in a number of different ways. An argument using Cech
cohomology and exact sequences can be found in [13] and leads to the result
that isomorphism classes of flat line bundles (and prequantizations) are in one-
to-one correspondence with the elements of

HYM,U(1)) ,

the first cohomology group of M with coefficients in U(1). Alternatively, one
can determine directly the (moduli) space of flat U(1) connections on M modulo
gauge transformations which is well known to be

Hom(m (M),U(1)) ,

where 71 (M) is the fundamental group of M. This result follows from the fact
that the holonomy of a flat connection along a loop is invariant under deforma-
tions of the loop so that a flat connection is uniquely determined, modulo gauge
transformations, by its holonomies along homotopy classes of non-contractible
loops. By the universal coefficient theorem [16] the above two expressions are
equal.

There are two possible sources of non-equivalent flat line bundles on M, and
thus two kinds of contributions to H'(M,U(1)). One is the possibility of having
non-equivalent flat connections on a given line bundle. It is of the form”

HI(M,R)/HI(M’Z) ~ U(l)bl(M)

with by (M) = dim H'(M,R) the first Betti number of M. This can be read as
saying that, given a flat connection Dgy on the line bundle Lg, so that any other
flat connection on Ly is of the form Dy + a with « a closed one-form, Dy + «
is inequivalent to Dy provided that « is neither integral nor (a fortiori) exact.
We had already seen above that symplectic potentials differing by exact one-
forms (infinitesimal gauge transformations) lead to equivalent prequantizations.

"More precisely, H'(M,Z) should be replaced by its image i.H'(M,Z) in H'(M,R) in
this expression, where i is the inclusion i : Z — R.
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Connection forms differing by non-trivial integral one-forms, on the other hand,
are related by ‘large’ gauge transformations. We will see an example of this
torus’ worth of prequantizations below. It has the interpretation of vacuum
angles or Aharonov-Bohm phases.

The second contribution comes from topologically inequivalent flat line bundles.
As line bundles are topologically classified by their Chern class (¢1(L)/27m) €
H?(M,Z) and the curvature form represents the image of this class in H2(M, R),
these correspond to the kernel

Keri,: H*(M,Z) — H*(M,R)

(i, kills the torsion in H2(M,Z)). I will not give an example where such a
possibility occurs but want to just mention that the choice of isomorphism class
of flat line bundles can in certain cases be interpreted as a choice of statistics
(Fermi versus Bose, for instance).

4.2 Examples

In this section we will take a brief look at some two-dimensional examples, the
cylinder T*S' and the two-sphere S2. Each has its own characteristic features
which serves to illustrate one or the other of the issues encountered above in a
rather more abstract manner.

Example 1 M = T*5!
As M is a cotangent bundle, the symplectic form w = dpAdyp is globally exact,

w=db , 0 =pdy , (4.21)

and the prequantum line bundle L is trivial. A prequantization of M is given
by the connection D = d — (i/h)f. As M is not simply connected,

m(M)=27Z , HYM,UQ1)=UQ1), (4.22)

we expect, however, to find not a unique but a U(1)’s worth of prequantiztions.
This expectation is indeed borne out. dy is a non-exact closed one-form, the
generator of H'(M,R), and we can thus modify the prequantum connection to

D :=d — (i/h)0 +iXdyp . (4.23)

One way of seeing that for A € [0,1) these are all mutually inequivalent is the
following. The prequantum operator P*(p) of p with respect to the connection
D> is

PMp) = —ihis + X . (4.24)
As L is trivial, we can identify the prequantum Hilbert space with the space of
functions on M which are, in particular, periodic in ¢. Likewise, the Hilbert
space in the Schrodinger representation, on which (4.24) is a well defined op-
erator, is L?(S'). Thus the spectrum of (—id/dy) is the integers and that of
P (p) is also discrete (as expected) and is

spec (PA(p)) ={(n+\Nh, neZ} . (4.25)
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As these are only equal when ) is an integer, this shows that for all A € [0,1) the
quantum theories obtained from the prequantization (L, D) are inequivalent.

The parameter A leads to an additional contribution to the holonomy picked up
by a state upon parallel transport around the circle. It can thus be regarded as
a simple toy-model of the Aharonov-Bohm effect, Ady representing a magnetic
field running through the interior of the circle. Alternatively, the above example
can be regarded as an embryonic illustration of the field theoretic phenomenon
of vacuum angles (or theta vacua). Such topological quantization ambiguities
(superselection sectors) occur (almost) always when the configuration space
is not simply connected, most prominently in four-dimensional gauge theories
where they are related to the strong CP problem.

Example 2 M = S?

Above, we have already discussed the conditions for M to be quantizable. Here
we will fix the volume form w by [, w = 27h so that (M, kw) is quantizable
iff k € Z. As H*(M,Z) = Z and (M) = 0 there is a unique prequantum
line bundle (Lg, Dg) with i(Dg)? = (k/h)w in every topological (monopole)
sector. Moreover, from the arguments of the previous section we can deduce
that Ly is the £’th tensor power of L and Dy, the corresponding tensor product
connection. Thus all we need to determine is the ‘generator’ (L, D). I will
give three different descriptions of this bundle.

e The first is in terms of the Hopf fibration. The three-sphere is itself a U(1)
bundle over S$? with monopole (Chern) number 1. By letting U(1) act on
the complex plane C in the standard fashion, one can associate to this
U(1) bundle over S? a complex line bundle over S? which is just Li. This
description is useful because it shows that element of the prequantum
Hilbert space H, sections of the non-trivial bundle L, can be represented
by complex valued functions on S? transforming equivariantly under the
action of U(1) on S3.

e The second makes use of the identification of S? with the complex pro-
jective plane CP!, the space of complex lines in C2. Over CP! there
is a natural complex line bundle obtained by attaching to each point of
CP! the complex line it represents. For obvious reasons this bundle is
called the tautological line bundle and it again represents L;. This de-
scription is useful because it makes it evident that L; can be regarded as
a holomorphic line bundle.

e Finally, the last description is in terms of local coordinates. Think of
S? as being given by the equation 2? + 22 + 23 = 1 in R?. Let x4 be
the north and south poles of S? determined by z3 = 41. Then on the
coordinate neighbourhoods Uy = S?\{z.} one can introduce the complex

coordinates )
r1 £ i1x9
2y = ——
1 F x3
related by zyz_ = 1 on the overlaps of the two regions. As the U are

topologically trivial, any line bundle is trivial when restricted to one of
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these. Thus, all we have to do is to give a prescription for glueing these
trivial bundles together over, say, the equator. If one does this with the
transition function (24 )¥ = (2_)* one obtains the line bundle Lj. The
advantage of this description is that it provides us with explicit expressions
for the symplectic potentials (and hence for the prequantum connection
Dy). Namely, on Uy the symplectic form w can be written as

. dzidz4
w=—th——— , 4.26
(1 + 227 20
and the symplectic potentials # can be chosen to be
., Z+dzy
0y = —ith—— . 4.27
N 4.27)

This explicit description will also allow us to read off immediately the
dimension of the space of holomorphic sections of Ly, which is k + 1, the
dimension of the spin k/2 representation of SU(2), see section 6.3.

5 Geometric Quantization II: Polarizations

Up to now, GQ has been quite straightforward and elegant. Unfortunately,
prequantization is not the end of the story and some additional structures have
to be introduced to obtain a quantization of a symplectic manifold (in the
sense of section 3) from this. In GQ, one of these is a polarization, and this
leads to rather severe technical complications in general. Most of them are
related to the fact that there is no natural measure on the space of quantum
states and that, even when there is, GQ is still not completely ‘correct’. One is
then forced to modify the quantization scheme to what is known as half-form
or metaplectic quantization. And although at this stage GQ becomes quite
successful, it simultanously becomes rather complicated and unwieldy.

In section 5.1 I will show that the concept of a polarization arises rather natu-
rally in GQ when one tries to ‘cut down’ the prequantum Hilbert space. The
theory of real and complex polarizations and of Lagrangian submanifolds of
symplectic manifolds is very rich and rewarding but I will not attempt to go
far beyond the formal definition of a polarization.

In practice, there are two classes of symplectic manifolds for which GQ is
fairly well understood and works with comparative ease, cotangent bundles and
Kahler manifolds. These have natural and well-behaved polarizations which we
will take a look at in sections 5.2 and 5.3. Although there are compact sym-
plectic manifolds which are not Kahler and symplectic manifolds which admit
no polarization whatsoever, an understanding of these two cases is usually suf-
ficient for specific applications.

The construction of the quantum Hilbert space and of operators acting on it is
then the subject of section 6.
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5.1 Polarizations

In section 3 we have already seen that a possible generalization of Schrodinger
quantum mechanics on 7*@Q = R?" is based not on the concept of a complete set
of observables (as in Q5) but rather on that of a maximal commuting set. We
have also seen that from that point of view it is possible to regard the Hilbert
space L%(QQ) as the space of functions on the phase space constant along the
leaves of a polarization.

As this may appear to be a rather contrived and unnecessarily complicated
way of arriving at the Hilbert space, I will now show that the concept of a
polarization arises quite naturally if one attempts to construct the quantum
Hilbert space from the prequantum Hilbert space H. I want to point out,
however, that the physical justification for this procedure

...1s not based on general mathematical results (such as the Borel-
Weil theorem), but on the way in which the construction works in
particular examples. It generalizes and unifies a number of quan-
tization techniques that, in the past, have not appeared to have
any obvious connection with each other and that have sometimes
seemed overspecialized with applications only to particular physical
systems. [13, p. 171]

Roughly speaking, the problem with the prequantum Hilbert space H is that it
is too large, consisting of functions 1 which depend on all the 2n coordinates
of the symplectic manifold (M,w). A way of eliminating ‘half’ of these is to
demand that the wave functions are constant along n vector fields on M. As
ordinary differentiation has no invariant meaning for sections of a bundle, one
must take this to mean that they are covariantly constant. Thus, one way to
proceed is to choose some n-dimensional subbundle P of the tangent bundle
TM of M and to consider only those wave functions that satisfy

D(X)y =0 VXEP (5.1)

(where ‘X € P’ is short, and sloppy, for ‘X is a section of P’). Now there could
be non-trivial integrability conditions for those equations which would form an
obstruction to finding any (or a sufficient number of) solutions to (5.1). From
(5.1) it follows that [D(X), D(Y)]y = 0 for all X,Y € P. Combined with (4.17)
this leads to the integrability condition

D(X, Y)Y — (i/h)w(X,Y ) =0 VX, YeP . (5.2)
We see that this condition is automatically satisfied provided that
XePYeP=[X,Y]eP (5.3)

and
XePYeP=uwlXY)=0. (5.4)

The first condition means that P is integrable, so that locally there exist integral
manifolds in M through P. As these are n-dimensional the second condition
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means that these integral manifolds are Lagrangian. We have thus arrived
precisely at the definition of a real polarization given in section 3. We see that
there are no local integrability conditions® if we demand the wave functions to
be covariantly constant along the leaves (integral manifolds) of a polarization
P, i.e. of a Lagrangian subbundle of T'M. This approach, which is a natural
generalization of that based on a maximal commuting set of observables, thus
arises quite naturally from prequantization and is the one adopted in GQ.

Life is, of course, not as simple as that. The problem with the above definition of
a polarization is that it is far too restrictive. For instance, on a two-dimensional
surface a polarization corresponds to a nowhere vanishing vector field. S? has
none and among the closed two-dimensional surfaces the torus is the only one
which has. The way to get around this problem is to complexify the tangent
bundle of M, TM — TMF¢€, and to consider integrable Lagrangian subbundles
of TM¢. These are more likely to exist while the integrability condition (5.2)
is still satisfied. We thus make the following

Definition: Let (M, w) be a symplectic manifold. A polarization P of (M, w) is
an integrable maximally isotropic (Lagrangian) subbundle of the complexified
tangent bundle TM¢ of M.

Naively, one would now like to construct the quantum Hilbert space from the
space P(L) of polarized sections, i.e. sections of the prequantum line bundle L
covariantly constant (parallel) along P. This is not as straightforward as one
might have hoped it to be (e.g. because H N P(L) may be empty). We will
come back to this problem in section 6, after having seen some examples of
polarizations.

For technical reasons one imposes some additional conditions on P. The first,
usually included in the definition of a polarization, is that the dimension of
P, NP, NT,,M be constant. Here P,, denotes the fiber of P at m € M and
Py, the complex conjugate of P,,. To state the other conditions we note that
any complex subbundle F, of TM?¢ satisfying F, = F, is the complexification of
some real subbundle F of TM, F, = F¢. Thus the complex subbundles P N P
and P + P of TMF¢ are of the form

PNP=D°, P+P=E°, (5.5)

where
D=PNnPNTM , E=(P+P)NTM (5.6)

(this notation is standard, no confusion with the prequantum connection D
should arise). As P is integrable, so is D. We assume that the integral manifolds
of D are complete and we denote by M /D the space of all integral manifolds of
D. A polarization is called strongly admissible if E is integrable and the spaces
M/D and M/E are smooth Hausdorff manifolds.

In the following we will deal almost exclusively with polarizations which are
either ‘real’,
P=P,

8There can still be global integrability conditions related to the holonomy of D along the
leaves of P. We will encounter these later on in the guise of Bohr-Sommerfeld conditions.
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i.e. the complexification of a real polarization, or Kahler,
PNP={0} .

In the former case, D = E so that P = D¢ is strongly admissible if the space
of leaves of the underlying real polarization D is smooth and Hausdorff. In the
latter, D = {0} and hence F = T M so that any Kéhler polarization is strongly
admissible. Other properties of polarizations will be mentioned below, in the
context of either real or Kahler polarizations.

5.2 Real Polarizations

As noted above, real polarizations are characterized by the property P = P
which implies that P = D¢ The prime example of a real polarization is the
vertical polarization of a cotangent bundle M = T*@Q. In local coordinates it is
spanned by the vectors (0/0py) tangent to the fibers of T7*@Q. Thus D is the
vertical tangent bundle, P its complexification, and the integral manifolds of
D are the fibers T,/Q, isomorphic to R". The space M/D of integral manifolds
is just the configuration space @ itself and all our regularity conditions are
obviously satisfied.

As this vertical polarization always exists for cotangent bundles, so does (once
the question of the measure has been settled, see section 6) the Schrodinger
representation of quantum mechanics on @, based on the Hilbert space L?(Q).
Whether this is good or bad may be a matter of debate (after all, in section
3 we had understood the emergence of L?(Q) for Q = R" as a consequence of
the Stone - von Neumann theorem which is not available for general @), but
this is what GQ predicts.

There are real polarizations that are not vertical polarizations of some cotangent
bundle, but there are not many more possibilities satisfying our rather stringent
regularity conditions. To see an example of such a polarization, let us go back
to the cylinder M = T*S' discussed as example 1 of section 4.2. Instead of
choosing the vertical polarization, spanned by (9/9dp), we can also choose a
‘horizontal’” polarization spanned by (9/0y) (as far as being Lagrangian and
integrable is concerned there is nothing to prove when n = 1). This leads to
what is known (for @ = R"™) as the momentum representation. In this case the
integral manifolds of D are circles S' and M/D = R..

However, in general something like a horizontal polarization (momentum rep-
resentation) will not exist at all. And even when it does, it will not necessarily
be of the naive form ‘) is a function of the momenta’. This is something that
is often ignored and therefore good to keep in mind. Again, see [17]. In fact,
although @ is a Lagrangian submanifold of T*Q (via the zero section, say),
it cannot be an integral manifold of some polarization unless ) has the rather
special form Q = T* x R"™*. This is a consequence of the interesting result that

9There are some interesting subtleties arising in this representation, related to the emer-
gence of vacuum angles and the discreteness of the spectrum of the momentum operator on
the real line M/D of momenta. See section 6.4 and [17]

29



(under our regularity conditions) the integral manifold of a real polarization of
any symplectic manifold (M,w) is necessarily of this form. This can easily be
proven by showing that the operator V defined by

i(VxY)w=i(X)di(Y)w  for X,Y €D (5.7)

satisfies all the conditions of a (partial) connection and restricts to a torsion
free and flat affine connection on each leaf of D. V is called the Weinstein
connection. For instance,

X,YeED=VxYeD (5.8)

is equivalent to

w(VxY,Z)=0 VZeD

(by the maximality of P) and follows from the formulae of section 2:

w(VxY,Z) = (i(VxY)w)(Z)
i(Z)i(X)di(Y )w
= L(X)i(Z)i(Y)w —i([X,2)i(Y)w =0 . (5.9)

Likewise the property that V is torsion free,
VxY -VyX =[X,Y] , (5.10)
can be established by calculating

i(VyY —VyX)w = i(X)di(Y)w —i(Y)di(X)w
= (X)L )w— LOV)i(X)w = i([X,Y])w , (5.11)

etc.. .. Thus the most general possibility is indeed an integral manifold of the
form T* x R"*. The two above examples are of the type k = 0 and k = n
respectively. And if the leaves are simply connected (k = 0) then essentially
the only possibility is the vertical polarization.'®

This concludes our discussion of real polarizations. Polarizations with k # 0
have their subtleties and generally force one to consider either distributional or
cohomological wave functions, see section 6.4.

5.3 Kahler Polarizations

Kiihler polarizations are characterized by the condition P N P = {0}. They
have this name because every Kéhler manifold (complex manifold with a com-
patible symplectic structure) has a natural Kéhler polarization and conversely
the existence of such a polarization implies that (M, w) is (pseudo) Kéhler (the
‘pseudo’ referring to the possible indefiniteness of the Kahler metric).

19The precise statement is [13] that if & = 0 and if there is some Lagrangian submanifold
N of (M,w) intersecting each leaf nicely (transversally) in exactly one point, then there is a
natural identification of M with T"N.
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We shall first take a look at what this means and how it works in the case of a
2n-dimensional symplectic vector space (V,w) (where, for concreteness, we can
think of V' = T*R™). We begin with some linear algebra. V' is a real vector
space. A complex structure on V' is a linear transformation J : V' — V with
J? = —1. Such a J gives V the structure of a complex vector space where
multiplication by the complex number a + b is defined by

(a + ib)v := av + bJv . (5.12)

The complex structure J is called compatible with the symplectic structure w
if

w(Jv, Jw) = w(v,w) Yo,weV . (5.13)
In that case, w(v, Jw) is symmetric in v and w and defines a non-degenerate
symmetric bilinear form ¢(.,.) and a Hermitian metric A(.,.) on V via

g(v,w) = w(v,Jw) ,
h(v,w) = g(v,w)+iw(v,w) . (5.14)

h is antilinear in the first entry and linear in the second so that e.g.
h(Jv,w) = —ih(v,w) . (5.15)

J is called positive if ¢ is positive definite. A symplectic structure with a
compatible complex structure is called a pseudo Kahler structure and a Kahler
structure if J is positive.

V' can be complexified in the obvious (J-independent) way, V' — V¢, and V¢ is
a complex 2n-dimensional vector space. If J is a complex structure on V' then
J can be diagonalized in V¢. The +i eigenspaces of J are denoted by V(10 and
V(01 and are spanned by vectors of the form v F iJv. Obviously, V(19 and
V(1) are complex n-dimensional complex conjugates of each other and satisfy

V(I,O) N V(Ovl) — {0} .

If J is compatible with w, then V(10 and V(1 are Lagrangian subspaces of
Ve. Conversely, a Lagrangian subspace P of V¢ satisfying P N P = {0} defines
a compatible complex structure on V' such that P is its 4+ or —:¢ eigenspace
in V¢ (we will, by a slightly misleading usage of terms, refer to the latter as
a holomorphic polarization because the corresponding polarized states can be
represented by holomorphic functions).

Comparing with our above definition of a Kahler polarization we see that a
Kahler polarization equips each tangent space of M with a compatible com-
plex structure. A smoothly varying complex structure on the tangent bundle
of a manifold M is called an almost complex structure. If this almost complex
structure is integrable in the sense that the 44 eigenbundles are integrable, J is
called a complex structure on M and gives M the structure of a complex man-
ifold (i.e. there are local holomorphic coordinates with holomorphic transition
functions). Thus, because polarizations are integrable, a Kahler polarization
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gives (M,w) the structure of a complex manifold with a compatible symplectic
structure. Such manifolds are called (pseudo) Kahler manifolds. And conversely
every Kéhler structure (J,w) on M defines a positive holomorphic Kéahler po-
larization of (M,w) via P = T(OV M, the —i eigenspace subbundle of TM¢.

k one has

In local holomorphic coordinates z
w= iwjkdzjdék , Wik = Wk (5.16)

(it would be better to introduce barred and unbarred indices at this point, but
I will refrain from doing so). Locally, any Kéhler form can be written as

w =id0K (5.17)

for some real valued function K, the Kahler potential, where

3:dzk/\_3%k , ézdik/\% ,
d=0+0 ,
P*=0°=00+00=0 . (5.18)

Thus natural local symplectic potentials on a Kihler manifold are i0K and
—i0K.

All this is best illustrated in the case of a flat phase space M = T*R™ with
coordinates (¢¥,p;) and the canonical symplectic form. We will give it the
structure of a (flat) Kihler manifold, R?® ~ C™, by introducing the complex
coordinates

* = 25 (o +ig") (5.19)
corresponding to the complex structure defined by
J(0/dpr) = (0/04") ,  J(0/dqr) = —(8/ps) - (5.20)

The symplectic form can be written as

w = idydFdZ = i90K
K = ou2id =22 . (5.21)

The holomorphic polarization P is spanned by the vectors §/0z* or, equiva-
lently, by the Hamiltonian vector fields of the coordinate functions z*. Later on
we will use the symplectic potential §xg = —i0K which vanishes on P so that
the covariant derivative along directions in P takes the particularly simple form
D(0/07%) = (8/0z%). This has the advantage that P-polarized sections can be
identified directly with holomorphic functions in the corresponding trivializa-
tion. Generally, a connection potential vanishing on a given polarization P,
Blp =0, is called adapted to P. Under our regularity conditions local adapted
potentials always exist.

Another example of a Kahler manifold is the two-sphere which we investigated
from the point of view of prequantiztion in section 4.2. For the third description
of its prequantum line bundle we introduced complex coordinates on S? ~ CP!.
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We now recognize the symplectic form (4.26) as a Kéhler form with Kéahler
potential
K = hlog(1 + |2)?) (5.22)

The local symplectic potentials given in (4.27) are also adapted to the holomor-
phic polarization spanned locally by (0/0zZ+).

6 Geometric Quantization III: Quantization

Now finally, after having accumulated all these bits and pieces of information,
we come to the quantization of symplectic manifolds. This involves the deter-
mination of the quantum Hilbert space Hp corresponding to a polarization P,
and the construction of operators acting on Hp.

After some general remarks we will look at the question how to construct op-
erators on the quantum Hilbert space. This turns out to be straightforward
for observables preserving the polarization, but a rather drastic modification
of that procedure is required to associate operators to observables whose flow
moves the polarization. This will lead us to the pairing construction of Blattner,
Kostant, and Sternberg and to BKS kernels whose construction I will sketch in
the simplest of cases (a family of positive Kéahler polarizations).

We will then deal seperately with the three examples of polarizations we have
discussed above: vertical polarizatons (section 6.2), Kéhler polarizations (sec-
tion 6.3), and real polarizations with non-simply connected leaves (section 6.4).
They all have their particular complications and pitfalls. Initially one is likely
to expect the example of a vertical polarizations to be the least problematic
of the lot, coresponding just to the familiar Schrodinger representation gener-
alized to curved configuartion spaces. However, it turns out that there is no
natural measure on the space of polarized states and although certain more or
less ad hoc resolutions of this problem are conceivable one is eventually con-
fronted with the necessity of modifying the entire quantization scheme. I will
present a version of the half-density quantization scheme which is fairly easy
to understand. Eventually this would have to be replaced by the significantly
less transparent half-form quantization scheme, but this will only make a brief
appearance in the following.

In the case of a general real polarization the situation is even worse because there
may be no polarized sections at all. One is then forced to permit distributional
wave functions to appear whose support is concentrated on the so-called Bohr-
Sommerfeld varieties in M /D. In section 6.4 we will see how these arise in the
case of the cylinder and the harmonic oscillator in the energy representation.

Given all these difficulties it may thus come as a surprise that in the case of
Kahler polarizations there is a natural measure on the space of polarized states
and no obstruction to constructing Hp. In fact, a positive Kahler polarization
just picks out a particular subspace of the prequantum Hilbert space . Un-
fortunately, this construction fails to give correct results in even the simplest
of quantum mechanical examples, the harmonic oscillator. The same (wrong)
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spectrum of the harmonic oscillator is also predicted if one tries to quantize the
system in a real polarization. The required modification is again that which
works in the case of vertical polarizations, namely half-form or metaplectic
quantization. This scheme also appears to account correctly for changes in the
polarization and for the quantization of certain operators which do not preserve
a given polarization, but the general theory is far from completely understood
at the moment.

6.1 Polarized States and the Construction of Quantum Opera-
tors

We begin with some general remarks. Let us fix a prequantization (L, D) of a
symplectic manifold (M, w) and a strongly admissible polarization P. The basic
idea is, as mentioned repeatedly above, to construct the quantum Hilbert space
from the linear space P(L) of P-polarized sections of (L, D), i.e. of (smooth)
sections ¢ of L satisfying

D(X)p)=0 VXeP . (6.1)

Ideally, one would like to go ahead and define the quantum Hilbert space Hp as
Hp :=HNP(L), i.e. as the space of P-polarized sections of L square integrable
with respect to the Liouville measure on (M,w). This, however, usually does
not work, either because polarized sections are not square integrable (e.g. the
Schrodinger wave functions, which depend only on the coordinates so that the
momentum integral will diverge), or because there are no smooth polarized
sections of L at all. These difficulties are best illustrated by concrete examples
and we will do this below. First, however, we will come to the issue of quantum
operators acting on polarized states, which can be stated and addressed in more
generality.

In section 4, to every function on M we were able to associatexd a prequantum
operator P(f),

P(f) = —ihD(Xy) + f
acting on the sections of L and satisfying the quantization conditions Q1-Q4;
in particular,

Q4: [P(f),P(9)l = —inP({f,9})  Vf,geCF(M) . (6.2)

On the basis of our experience with flat space quantum mechanics and keeping
in mind the Groenewald - van Hove theorem we expect to have to sacrifice at
least parts of (6.2) when moving from prequantization to quantization. We
also expect to have to modify the assignment P in general because we don’t
expect nor want all quantum operators to be at most first order differential
operators. In fact, we know from quantum mechanics (3.9) that the usual
kinetic energy term quadratic in the momenta should come out as proportional
to the Laplacian, at least if Q = R"™.

The first step is to check which of the prequantum operators P(f) can be
promoted directly to operators on P (L) (the necessary modifications due to half-
density quantization are irrelevant for our present purposes and will be given in
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the next section). The requirement is obviously that P(f) map polarized states
to polarized states, i.e.

D(X)y =0 YX € P=DX)P(f)y =0 VX € P . (6.3)

The obstruction to this comes from the term D([X, X])« so that (6.3) is equiv-
alent to

(63) < [X;,X]eP VXeP
& [X;,PlCcP. (6.4)

This is a very intuitive result because it says that a classical observable f defines
an operator on the space of P-polarized states via the prequantum assignment
f — P(f) provided that its flow leaves the polarization P invariant. This
follows also from the argument given in (4.11-4.16): if Cﬁ{ leaves P invariant,
one can use (4.16) directly to define the operator Q(f) on polarized states. Let
us call the space of these functions, which is not particularly large, C'%°(M).
It is closed under Poisson brackets and contains, in particular, the functions
whose Hamiltonian vector fields span the polarization. The latter are diagonal
on polarized states in the sense that

QNY = [ . (6.5)

For example, in the case of the vertical polarization of a cotangent bundle one
finds

fECRT*Q) & [Xfg5]€P Vk

9? el 9? el
(3pk3q’ ) opr (3Pkl9plf) aqt € P Vk

e FL-f=0, (6.6)
so that f € CP(T*Q) iff it is at most linear in the momenta,
feCR(T* (@) & fla,p) = fola) + fH @)k - (6.7)

For such f the quantum operator is

(Q(N¥)(9) = fol@)ele) — ik f* (32 (a) - (6.8)

This expression will still have to be modified by a correction term coming from
the measure, see (6.25) below. By the same reasoning as above one finds that
the only real valued observables preserving the holomorphic polarization on
T*R™ ~ C™ (see section 5.3) are of the form

f(2,2) = fo+ frz® + fed® + fruzb2 (6.9)

where f; € R and f;, and fi; = fi, are complex constants. This makes the
holomorphic representation particularly suitable for the quantization of the har-
monic oscillator whose Hamiltonian is proportional to |z|?, see section 6.3.
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For the time being, this is all [ have to say about polarization preserving observ-
ables and we are now confronted with the question what to do with functions
which move the given polarization P. Another way of stating this, in which the
polarization plays a more passive role, is that via its canonical lift @,{ (4.14)
to (L, D) the Hamiltonian flow on M generated by such a function f moves a
P-polarized state ¢ out of P(L). The evolved state

Py = 0o (6.10)

is now polarized with respect to the pulled-back polarization

p=(ef) P, (6.11)
b€ P(L) = € P(L) . (6.12)

Thus evidently what we need is a way of relating states to each other which are
polarized with respect to different polarizations. To proceed, let us make the
simplifying assumption that the quantum Hilbert spaces H; = Hp, constructed
from the family of polarizations P; can all be regarded as subspaces of the
prequantum Hilbert space H. This assumption holds, for instance, when P; is
a family of positive Kahler polarizations. In that case we have the orthogonal
(wrt the scalar product on H) projections

Uyy = He—Hy
Hgt = Ht : Ht — 7’[0 =Hp (613)

available to project the state v, back to Hp. Thus, in analogy with (4.16) we
can now attempt to define the quantum operator Q(f) on Hp by

Q) = —ihid (Tyahy) =0
= —ing (M®y) =0 . (6.14)

This is the basic idea of the Blattner - Kostant - Sternberg construction. Even
in this situation, determining when (6.14) exists, when it exists as a self-adjoint
operator and when the projections are unitary is a highly non-trivial problem.

In the general case, when the quantum Hilbert spaces cannot be regarded as
subspaces of H, the orthogonal projection operators have to be replaced by
some other, less natural, linear maps from one Hilbert space Hp to the other,
‘Hpr, and the problem becomes correspondingly more difficult.

One case which is tractable is the following: Consider a symplectic vector space,
regarded as the flat symplectic manifold M = T*R™, and let P, P’ and P" be
the vertical, horizontal, and holomorphic polarization respectively. In all three
cases we have an irreducible representation of the Heisenberg group on the
corresponding quantum Hilbert space. Thus, by the Stone - von Neumann
theorem (section 3), the existence of unitary(!) linear operators from Hp to
Hp and Hp to Hpr is guaranteed. The former is just the Fourier transform
from the coordinate to the momentum representation, and the latter is the
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Bargmann transform realizing the unitary equivalence of the configuration and
holomorphic representations.

It can, moreover, be shown that in the case of a vertical polarization the quan-
tum operator associated to the kinetic energy function in flat space comes out
correctly to be the Laplacian (plus scalar curvature terms in the case of a
curved configuration space). The calculation is, unfortunately, too lengthy to
be reproduced here, see [14, 13].

By such considerations one is also naturally led to the important and subtle
question to which extent the resulting quantum theory depends on the choice of
polarization and which polarizations give rise to unitarily equivalent theories.
Some interesting progress has been made on this question recently [5] motivated
by topological and conformal field theory. Unfortunately, I will not be able to
go into this here. For an explanation of half-form quantization from this point
of view see [13].

6.2 The Vertical Polarization and Half-Densities

We now discuss the construction of the quantum Hilbert space in the most
familiar looking case of the vertical polarization. Recall that this is the polar-
ization P = D¢ spanned by the tangents to the fibers of a cotangent bundle
M = T*Q. The prequantum line bundle (L, D) is trivializable and in terms
of the trivializing section so(m) = (m, 1) the Hermitian structure on the fibers
and the compatible connection potential are

<sp,s0>(m)=1, (= (1/h)0 = (1/h)prdg" . (6.15)

[ is adapted to the vertical polarization so that the covariant derivative along
the fibers of P is simply the ordinary derivative acting on functions on 7@,

D(0/0pk) = 0/0px. ,

Thus polarized sections corespond to functions which are independent of the
momenta pg, i.e. to functions on ). We now need to turn this into a Hilbert
space. The first guess would be to use the Hilbert space structure on the
prequantum Hilbert space H and to define the quantum Hilbert space Hp as
H N P(L), i.e. as the space of sqare integrable P-polarized sections of L. Un-
fortunately, this space is empty as pi-independent wave functions are certainly
not square integrable with respect to the Liouville measure - the integral over
the fibers diverges.

In this particular example a (partial) remedy to the problem immediately comes
to mind: one should integrate polarized sections not over M but over @) (which
is, more invariantly, to be regarded as the space M /D of leaves of the polariza-
tion). However, there is no natural measure on Q. If a metric on @ is given,
perhaps implicitly via a Hamiltonian of the form H = gklpkpl/Q + ..., then
one can construct the density ,/gd"q (g = det g;) which can be used to define
a scalar product on P(L). Alternatively, and more generally, one can try to
work from the outset with a bundle whose (polarized) sections are square-roots
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of densities (n-forms) on @ so that the scalar product of two such objects is
automatically well defined. This leads to the half-density quantization scheme.

Under the assumption that @ is oriented we can, following [13], proceed as
follows (for the full fledged half-density quantization scheme see [14] or the first
edition of [13]). The material will be presented in such a way that the extension
to other real polarizatons (with simply connected leaves) should be self-evident.
Let us introduce the (determinant) line bundle

Det(Q) := A" (T*Q)°) (6.16)

whose sections are complex valued volume forms on ). As we assumed () to be
orientable (and oriented) we can form the square root Det'/?(Q), e.g. by choos-
ing real and positive transition functions for Det(Q) and using their positive
square roots to define Det1/2(Q). Via the projection 7 : T*Q) — ) we can pull
these line bundles back to T*(@) where we denote them by

™ (Det(Q)) =: Kp
™ (Det'/?(Q)) =: dp = (Kp)/? (6.17)

It should be kept in mind that, as bundles over T*(), their spaces of sections are
now C°°(T*Q)-modules (i.e. sections can be multiplied by functions on 7*@Q).
Thus sections of Kp are not necessarily pull-backs of volume forms on Q. We
would now like to replace the prequantum line bundle L by Lp = L ® ép. In
order to define P-polarized sections we need the notion of a covariant derivative
of sections of dp along P. We define the covariant derivative of a section pu of
Kp along P by

D(X)p =i(X)du . (6.18)

This (partial) connection is flat,
([D(X), DY) = DX, Y])p =0 (6.19)

(because du can have at most one ‘vertical’ direction) and p is the pull-back
of an n-form on @ iff it is covariantly constant along P. (6.18) gives rise to a
covariant derivative on sections v of dp via the obvious definition

D(X)w?*=2vD(X)v or DX)u?=1u"2D(X)u . (6.20)

For vector fields preserving the vertical polarization one can also define the
Lie derivative of sections of Kp via the usual formula L(.) = di(.) + i(.)d for
differential forms. Obviously, L(X)u = D(X)u if X € P. L(.) extends to dp
in the same way as D(.) in (6.20).

Sections of Lp are of the form sv where s is a section of L and v a section of
0p and we call sv a P wave function if

D(X)(sv)=(D(X)s)v+sD(X)yr=0 vXeP . (6.21)

As the product of two sections of dp is a section of Kp and the scalar product
on the fibers,
< 81V1, 8919 >:1=< 81,82 > V1o , (6.22)
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is parallel along P by (6.21), we can identify it with an n-form on ). We have
thus arrived at our goal of defining a natural scalar product on the space of
polarized sections, namely

<< 811, S99 >>§:/ < 81,82 > Vg . (623)
Q

The quantum Hilbert space Hp is now defined to be the L?-completion of the
space of smooth P wave functions with resepct to this scalar product.

The construction of quantum operators acting on Hp now proceeds exactly
as in section 6.1. For a polarization preserving function f we saw that the
prequantum operator P(f) was well defined on the space P(L) of P-polarized
sections of L. It thus remains to define its action on sections of dp. Keeping
in mind that P(f) is nothing but the generator of the canonical flow of X/
on sections of L (4.16) and that its generator on differential forms is the Lie
derivative, we set

Q(f)(sv) = (P(f)s)v — ihsL(Xp)v , (6.24)

In particular, if we fix a volume element x4 on () then P wave functions are of
the form sqt)(q)p'/? with scalar product

/QZ/;WQM

and the required modification to (6.8) is

(Q())(9) = (fola) — 3t divu(F)(@)) (g) — inf* (52rv) (a) - (6:25)

Here the divergence of a vector field Y on @) with respect to p is the function
on () defined by
div,(Y)p := L(Y)p = di(Y)pe . (6.26)

This correction term can be regarded as arising from a particular symmetric
‘operator ordering’ of the classical expression f¥p, an issue which, as such, is
not present in GQ. It vanishes, e.g., when p = ,/gd"q and Y is a Killing vector
of the metric gg;.

The construction of operators corresponding to observables not preserving the
vertical polarization proceeds via BKS kernels whose naive construction I indi-
cated in section 6.1. Matters are complicated by the fact that one has to take
into account the variation in dp,. In order to keep track of relative phase factors
in the corresponding Hilbert spaces one eventually has to modify the definition
of 0p in such a way that it does not depend on the orientation of M/D. The
resulting quantization is half-form or metaplectic quantization. Virtually the
same correction term as above appears as the metaplectic correction to a po-
larization preserving operator in other polarizations. In that form it will turn
out to be responsible for the ground state energy of the harmonic oscillator (see
the discussion in sections 6.3 and 6.4).
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6.3 Kahler Quantization and Metaplectic Correction

We now deal with the simpler case of a positive Kahler polarization. We thus
consider a Kéhler manifold (M,w,J), a prequantum line bundle (L, D), and
choose P = T(%V M (see section 5.3) to be the polarization spanned by the —i
eigenspaces of .J. Locally, P is spanned by the vector fields (9/0z") where the
2* are holomorphic coordinates on M. The space of holomorphic (P-polarized)
sections of (L, D) can be shown to be a closed subspace of the prequantum
Hilbert space H. It is thus a Hilbert space in its own right which we take to be

the quantum Hilbert space Hp of the system.

To obtain a more explicit description of Hp it is useful to work with local
connection potentials adapted to P. We noted in section 5.3 that a convenient
choice is 0 = —i0K where K is the Kahler potential. Let us see how this
works in the case of a Kéhler vector space. According to (5.21), K is given by

k=l
K =622

so that
O = —iéklzldzk . (6.27)

To account for this change from 6 to 0k, we have to change the local trivializing
section. Tracing through the formulae of section 4 one finds that s is to be
replaced by

SKg = exp (—ﬁ(&clqkql + 6*pepr — 2ipqu)) So - (6.28)
Polarized sections of the (trivial) prequantum line bundle are thus of the form
5(2,2) = sic (2 2)(2) (6.20)

where 1(z) is a holomorphic function on C™. It follows from < sp,sp >= 1 and
(6.28) that the Hermitian structure in this trivialization is given by

< sg,skg > (2,2) = exp(—|z[*/h) = exp(=K/h) . (6.30)

From this we can also read off that with respect to the canonical symplectic
potential and the section sy polarized wave functions are of the form

6(22) = () exp (=|22/2h)
as could of course also have been deduced directly from solving D(0/97)(sp¢) =

0 in this trivialization. Either way Hp can be identified with the space of holo-
morphic functions on C™ with scalar product

<<t >>= [ dpdghiEa( en(-K/m) . (631)

It is clear from this expression that the Hilbert space would have been empty if
we had chosen a non-positive Kahler polarization (with K corresponding to an
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indefinite quadratic form) because there would not have been any normalizable
holomorphic functions.

As we already noted above, this holomorphic representation with

QM (z) = 2" y(z) , QM)W =nhge(z) (6.32)

is unitarily equivalent to the Schrédinger representation. It is also known as
the oscillator representation, with Q(z*) and Q(2z*) interpreted as creation and
annihilation operators respectively. As one has a direct particle (occupation
number) interpretation in this representation, it is the conventional starting
point in canonical quantum field theory.

This representation is particularly convenient for quantizing the harmonic os-
cillator as its Hamiltonian (we take n = 1 for notational convenience)

H(q,p) = 50"+ ¢°) = 22 (6.33)

preserves the holomorphic polarization, c.f. (6.9). Acting on holomorphic func-
tions, the corresponding (pre-) quantum operator is

(QUH)Y)(2) = hzrip(2) - (6.34)

which spells doom because its eigenfunctions are the monomials 2™ with eigen-
values nh. It is, of course, well known from quantum mechanics that this is
incorrect and that the spectrum should be shifted by the ground state energy
%h. In the standard treatment this term arises from symmetrizing

H =2z — L(22 4 22)

before substituting the operators (6.32) for z and Z so that one obtains the
quantum operator R
H=n(zZ+3) . (6.35)

This shows that, in spite of the fact that everything has run so smoothly so
far in the case of positive Kahler polarizations, the necessity arises to modify
the quantization procedure for Kahler manifolds as well. Interestingly, it turns
out that the half-form quantization scheme which solves a number of problems
arising in the context of real polarizations also takes care of the present short-
coming. Namely, one of the consequences of the metaplectic correction is that
it gives rise to an additional term in the expression for the quantum operator of
a polarization preserving observable (similar to the one encountered in (6.25)).
A recipe for constructing the corresponding quantum operator will be given
below. For the harmonic oscillator the effect of this will be precisely to replace
(6.34) by (6.35). This is quite remarkable because a priori it is not at all clear
what half-forms have to do with operator ordering.

A general rule of thumb for including the metaplectic correction to the operator
corresponding to a polarization preserving obervable is the following (see [14]).
Let the polarization P be spanned by the n complex vector fields X, & =
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1,...,n. If f preserves the polarization P, there is a matrix a(f) = (ax(f)) of
functions on M satisfying

(X7, Xi] = af())Xi - (6.36)
In terms of this matrix, the half-form corrected quantum operator is
Q(f) = P(f) — gih tr(a(f)) - (6.37)

In the case of the harmonic oscillator, P is spanned by % and the Hamiltonian
vector field is

Thus,

Q(H) =h(z2 + 1) (6.38)
and the energy spectrum

spec(Q(H)) = {(n+ §)h, n>0} . (6.39)

In the general case of a Kahler manifold (M, w, J) everything works as above. In
particular, expressions like (6.27) and (6.29) are still valid locally and allow one
to represent polarized sections locally by holomorphic functions on M. Certain
interesting and new features arise when M is compact so that the only globally
defined holomorphic functions on M are the constants. To explain these, I will
make use of some algebraic geometry (see e.g. [18]).

First of all, we can use local non-vanishing polarized sections of L as trivializing
sections. Then the transition functions will be holomorphic and hence give L
the structure of a holomorphic Hermitian line bundle over M. The space of
holomorphic sections of L can be identified with the zero’th sheaf cohomology
group H°(M, L) of M with values in the sheaf L of germs of holomorphic sec-
tions of L. By general theorems, this is finite dimensional so that the quantum
Hilbert space will be finite dimensional as well,

dimHp = dim H°(M,L) < o . (6.40)

It is for this reason that compact symplectic manifolds are usually used to
introduce internal degrees of freedom. For instance, if one quantizes T*R" x M
using the vertical polarization in the first and the holomorphic representation
in the second factor, the resulting Hilbert space is a tensor product of L?(Q)
with the finite dimensional Hilbert space Hp(M). If M is e.g. a coadjoint orbit
of a group G such that Hp(M) carries an irreducible representation of G, then
the resulting tensor product wave functions are usually interpreted as wave
functions taking values in this representation or carrying a representation of G.

I will illustrate this in the case of the two-sphere whose prequantization we had
discussed in Example 2 of section 4.2. Recall that we introduced two coordinate
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patches Uy with local complex coordinates zy and that the transition functions
for the line bundle Lj were given by (z;)*¥ = (z_)~*. Furthermore, for k = 1
the Kahler potential, symplectic form and adapted symplectic potential were

Ki = hlog(l+|zl”) ,
dzidz4
w = —th————s ,
(1 +]2+[)?
. Zydzy
0 = —th—————
Kz RETRPNE

(see (4.26,4.27,5.22)). To determine the global holomorphic sections of Lj in
this trivialization, we have to check which local holomorphic functions on Uy
can be patched together via the transition functions. This is easy. A basis for
holomorphic functions on U, is given by the monomials (2, )! and on U_ by
(z_)™ for [ and m non-negative integers. We thus have to find the solutions to
the equation

(24)! = (2 )z )™ .
This gives
l=k—m

which has non-negative integer solutions for [ < k£ and m < k. Thus the
dimension of the space of holomorphic sections is k + 1, precisely the dimension
of the spin k/2 representation of SU(2). As the patch Uy covers everything
but one point on S? we can define the scalar product by integration over U,
alone. As in (6.30) the Hermitian structure on the fibers of Lj gives an extra
contribution to the measure of the form (we now call z; simply z)

exp(—kK/h) = (1+ |2)*)7F (6.41)

so that overall the scalar product (with the standard normalization) is

b1 (2) o (2)dzNdZ

(6.42)

(the additional power of two coming from the symplectic form).

There are two other things worth noting about (6.40). On the one hand, if the
Kihler polarization is not positive, then dim H°(M,L) = 0 and the Hilbert
space is empty (as in the non-compact case). On the other hand, if L is
‘sufficiently positive’ then the dimension of Hp can be computed from the
Riemann-Roch theorem. More precisely, the RR theorem expresses the Euler
characteristic

X(M,L) :=> (-1)"dim H"(M, L) (6.43)

(3

in terms of characteristic classes,

MMQszwﬂM- (6.44)

Here ch(L) is the Chern character of L and can be represented by exp(w/27h)
while 7 (M) is the Todd class of M whose precise form will not interest us. If
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one replaces L by L* (and hence w by kw) for some positive integer k, then
for some sufficiently large value of k the higher cohomology groups in (6.43)
will vanish and the right hand side of (6.44) calculates directly the dimension
of Hp. In particular, 7 (M) does not contribute for k¥ — oo and one finds (see

(2.6))
dim H°(M, L*) — (27}% /M w" = (52=)"Vol, (M) . (6.45)

The limit £k — oo can be interpreted as the semi-classical limit 7 — 0 and one
thus recovers the folklore wisdom that in the semi-classical limit the number
of quantum states is equal to the number of cells in phase space (measured in
units of 7). Equation (6.45) has been used recently by Witten to calculate the
symplectic volume of certain moduli spaces of flat connections from quantum
field theory [19].

6.4 Real Polarizations and Bohr-Sommerfeld Varieties

In this final section we will, following [14], take a brief look at the compli-
cations which can arise when the leaves of a real polarization are not simply
connected. In that case, there can be global integrability conditions to the equa-
tion (5.1) defining polarized states. These lead to the necessity of permitting
distributional wave ‘functions’ whose support is restricted to lower dimensional
subvarieties of M.

Let P = D¢ be a real polarization and (L, D) a prequantization of (M,w).
We denote by A a leaf (integral manifold) of D and, more specifically, by A,,
the leaf passing through m € M. The operator D, restricted to covariant
differentiation along P, induces a flat connection Dy on L|s. If A is not simply
connected, then it is possible for Dy to have non-trivial holonomy along the
non-contractible loops in A. On the other hand, the condition (5.1) implies
that 1p is a covariantly constant section of L. It is thus invariant under
parallel transport and, in particular, cannot pick up a phase from the non-
trivial holonomy of Dj. Therefore either 1)y = 0 or the holonomy group of Dy
is trivial (i.e. Dy is the trivial flat connection). Call S C M the union of points
in M such that Dy, is trivial. S is known as the Bohr - Sommerfeld variety
and S = M if all the A, are simply connected. From the above it follows that
polarized sections of (L, D) vanish in the complement of S,

Y € P(L) = supp(¢)) C S . (6.46)

Instead of working with such distributional wave functions, it is possible to
work with so-called cohomological wave functions (i.e. one trades singularities
for cohomology as is familiar from algebraic geometry), see [14].

The relation with the usual Bohr - Sommerfeld quantization conditions is that
m € S & expli/h) f 61 (6.47)
v

for all loops = in A,,, where 6 is a local symplectic potential. In terms of local
canonical coordinates (¢, p;) one can write @ as ppdg® and thus (6.47) becomes
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the quantization condition
%pkqu =2nhn, , n,€Z . (6.48)
v

Taking into account the contribution exp(—2mid,) to the holonomy from the
flat connection on the bundle of half-forms (d, defined up to an integer), one
obtains the modified Bohr - Sommerfeld conditions

7{ prdg® = 27h(n, +d,) . (6.49)
Y

As the above discussion was rather abstract, let us now take a look at two simple
examples where these distributional wave functions and the corresponding Bohr
- Sommerfeld conditions arise quite naturally (and turn out to be important).
The first of these is the cylinder, whose prequantization and quantization in
the vertical polarization we have already dealt with in Example 1 of section
4.2. Here we shall look at the same model in the momentum representation
[17]. This is the representation defined by the horizontal polarization spanned
by 0/0¢. Consequently, polarized sections have to satisfy

DNZ)d =0
(recall equation (4.23)) or
ad(p,p) = 4 (p — BNP(p,p) - (6.50)
Polarized sections are thus of the form
(i, p) = exp(f (p — hA)@)b(p) (6.51)

where ¢(p) is some function of the momentum. The first thing to note is that
this is not what one would naively have expected the momentum representation
to look like. The phase factor appears because of the choice of symplectic
potential, 8 = pdy. If we had been able to choose —pdp as a symplectic
potential (adapted to the horizontal polarization), polarized states would have
been of the expected form ¢(p). However, this potential is not globally defined,
and the fact that we are dealing with quantum mechnics on the circle and not
on the real line is reflected in the peculiar form of the wave functions. It is this
which guarantees that the vacuum angle A is equally visible in the momentum
representation although the space of momenta itself is topologically trivial.

Now we have to remember that the prequantum Hilbert space is the space of
L?-functions on the cylinder so that, in particular, ¢» has to be periodic in ¢.
From (6.51) it follows that this is only possible if the support of ¢(p) is restricted
to those p which satisfy

p=(n+Ah

for some integer n. This is nothing but the Bohr - Sommerfeld condition (6.48)
and obviously leads inevitably to distributional wave functions with support on
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S ~ Z. Along the way we have also recovered the discrete and shifted spectrum
(4.25) of the momentum operator (diagonal in this representation).

As a second example let us take a brief look at the one-dimensional harmonic
oscillator in the real energy representation. This corresponds to the polarization
defined by the Hamiltonian vector field Xz of the Hamiltonian H. In polar
coordinates (r, ) on the plane we have

H(Ta (P) = %T2 )
w = rdrAdy =d(Hdy) ,
Xp = & . (6.52)

To avoid having to deal with singular polarizations, we remove the origin from
the plane and thus the phase space is R2\{0} with the above symplectic form.
Polarized wave functions are of the form

D(Xp)tp =0 = (r, ) = exp(55r°)d(r) (6.53)
so that single valuedness of 1) imposes the (Bohr - Sommerfeld) condition

r®=nh .

NO[—

Unfortunately, this is only almost correct as it leads to the same wrong energy
spectrum we initally found in the previous section. As is also apparent from the
form of the wave function, topologically this example is the same as the cylinder
we discussed above, so that we could obtain the correct spectrum by fine-tuning
the value of the vacuum angle to A\ = % However, this is rather ad hoc. A more
satisfactory way of obtaining the result is to take into account the contribution
from the bundle of half-forms. In the previous section, this changed the form
of the energy operator. Here, it gives rise to the modified Bohr - Sommerfeld
condition (6.49). The flat connection on the bundle of half-forms is non-trivial,
with d, = % This leads to the same shift in the spectrum as the choice A = %
and to the correct result (6.39).
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