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� Introduction

At the macroscopic level our world seems to be pretty much governed by the
laws of classical physics
 i�e� by Newtonian mechanics on the one hand and by
Maxwell theory on the other� The former describes the motion of particles
under the in�uence of forces acting on them and applies to such diverse �elds
as celestial mechanics and elasticity theory� The latter covers almost the entire
spectrum of phenomena occurring in electromagnetism and optics� The dynam�
ics in these two theories is governed by deterministic equations of motion and
�in principle� it is possible
 given the initial conditions
 to predict the results of
measurements on the system at any later time�

Classical physics could thus provide us with a very satisfactory description of
the world we live in
 were it not for the fact that it not only fails to give an
explanation for a number of phenomena observed at the microscopic level but
is
 in fact
 in plain contradiction with experimental evidence�

As an illustration of what these phenomena are and what they may be trying
to tell us about a theory which will have to replace classical physics
 I want
to mention just two examples� The �rst has to do with the stability of atoms�
From scattering and other experiments it had been deduced that atoms consist
of a tiny positively charged nucleus orbited at some distance by negatively
charged point�like particles called electrons� Within the realms of classical
physics such structures are highly unstable and would be predicted to collapse
within fractions of a second
 in glaring contradiction with the relative stability
of the world around us� orbital motion is accelerated motion
 and according
to Maxwell theory accelerated charges emit radiation� the electron would thus
radiate away energy and spiral into the nucleus of the atom� It was also observed
that simple atoms �like Hydrogen atoms� were able to emit and absorb energy
only in certain discrete quantities� Combining these two observations it thus
appeared to be necessary to postulate the existence of stable orbits for electrons
at certain discrete radii �energy levels�� This suggests that at the microscopic
level nature allows for a discrete �or quantized� structure quite unfamiliar from
classical physics�

The second is the famous two�slit �gedanken�experiment or other experiments
investigating the di�raction and interference patterns of beams of particles like
electrons� These indicated that under certain circumstance particles �like elec�
trons� can show interference patterns �and thus a wave�like nature� and that
under certain conditions light �whose wave�like nature had �nally been univer�
sally accepted� showed behaviour characteristic of particles and not of waves� In
short
 at the microscopic level nature was found to be mind�bogglingly strange
and wonderful� Or
 in the words of Dirac �quoted from ��
 p� 	�
 the authorita�
tive book on quantum mechanics��

We have here a very striking and general example of the break�
down of classical mechanics � not merely an inaccurracy of its laws
of motion
 but an inadequacy of its concepts to supply us with a

description of atomic events�
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To make things worse
 the outcome of these experiments appeared to depend
on the measuring process itself
 i�e� on whether or not one was checking through
which slit the electron went�� This
 for the �rst time
 pointed to the necessity of
including the e�ects of observation of a system into a description of the system
itself� In particular
 it had to be taken into account that one can not make
any observations on a suitably �small� system without perturbing the system
itself �technically this is expressed in the uncertainty principle�� In the words
of Dirac ��
 p� ���

A consequence of the preceding discussion is that we must revise
our ideas of causality� Causality applies only to a system which is
left undisturbed� If a system is small
 we cannot observe it with�
out producing a serious disturbance and hence we cannot expect to
�nd any causal connexion between the results of our observations�
Causality will still be assumed to apply to undisturbed systems and
the equations which will be set up to describe an undisturbed system
will be di�erential equations expressing a causal connexion between
conditions at one time and conditions at a later time� These equa�
tions will be in close correspondence with the equations of classical
mechanics
 but they will be connected only indirectly with the re�
sults of observations� There is an unavoidable indeterminacy in the
calculation of observable results
 the theory enabling us to calculate
in general only the probability of our obtaining a particular result
when making an observation�

Heisenberg and Schr
odinger provided two mathematical models �or recipes�

later shown to be equivalent
 which were able to reproduce the above results
and make many other successfully tested predictions� These models
 collectively
known as quantum mechanics
 describe the quantum behaviour of �point� par�
ticles in �at space under the in�uence of external forces� Supplemented by
some intepretation of
 roughly speaking
 the role of the measuring process or
observer
 they constitute a major step forward in the understanding of quantum
physics in general�

At a conceptual level
 however
 the situation was not very satisfactory� In par�
ticular
 it was not clear how general the proposed models were
 which features
were to be regarded as fundamental to any quantum version of a classical the�
ory and which were to be attributed to particular properties of the systems
considered so far�

In an attempt to gain some insight into this question
 it was in particular
Dirac who emphasized the formal similarities between classical and quantum
mechanics and the necessity of properly understanding these� Again in the
words of the master himself ��
 p� ����

�Recent experiments indicate that interference patterns will disappear whenever there is in
principle the possibility of detecting through which slit the particle 	photon� electron
 went�
regardless of whether there was actually a detector there 	switched on
 or not� This highly
counter�intuitive result appears to be in agreement with theory�

	



The value of classical analogy in the development of quantum me�
chanics depends on the fact that classical mechanics provides a valid
description of dynamical systems under certain conditions
 when the
particles and bodies composing the system are su�ciently massive
for the disturbance accompanying an observation to be negligible�
Classical mechanics must therefore be a limiting case of quantum
mechanics� We should thus expect to �nd that important concepts
in classical mechanics correspond to important concepts in quantum
mechanics
 and
 from an understanding of the general nature of the
analogy between classical and quantum mechanics
 we may hope to
get laws and theorems in quantum mechanics appearing as simple
generalizations of well�known results in classical mechanics� � � �

Abstracting from the analogy found between classical mechanics and Schr
odinger
and Heisenberg quantum mechanics
 Dirac formulated a general quantum con�

dition
 a guideline for passing from a given classical system to the correspond�
ing quantum theory� This process in general is known as quantization� And

roughly speaking
 quantization consists in replacing the classical algebra of ob�
servables �functions on phase space� by an algebra of operators acting on some
Hilbert space
 the quantum condition relating the commutator of two operators
to the Poisson bracket of their classical counterparts� I will explain these rules
of canonical quantization in section 	
 after having introduced the �important
concepts in classical mechanics� referred to in the above quote� Readers famil�
iar with the mathematical description of classical mechanics may wish to move
right on to that section and read it as part of the introduction�

Parenthetically
 I want to issue a word of caution at this point� At �rst sight
�and perhaps even at second sight�
 the very concept of quantization appears
to be ill�founded since it attempts to construct a �correct� theory from a theory
which is only approximately correct� After all
 our world is quantum
 and while
it seems a legitimate task to try to extract classical mechanics in some limit from
quantum mechanics
 their seems to be little reason to believe that the inverse
construction can always be performed� Furthermore
 there is no reason to
believe that such a construction would be unique as there could well be �and
 in
fact
 are� lots of di�erent quantum theories which have the same classical limit�
Unfortunately
 however
 it is conceptually very di�cult to describe a quantum
theory from scratch
 without the help of a reference classical theory� Moreover

there is enough to the analogy between classical and quantum mechanics to
make quantization a worthwile approach� Perhaps
 ultimately
 the study of
quantization will tell us enough about quantum theory itself to allow us to do
away with the very concept of quantization�

But let us now return to less philosophical matters� Unfortunately
 Dirac�s
quantum condition is not as general as one might have hoped it to be or
 at
least
 not su�ciently unambiguous� Thus
 to make some headway
 it is desir�
able to �nd a more intrinsic and constructive description of this quantization
procedure� This is the aim of Geometric Quantization which
 as the name sug�
gests
 attempts to provide a geometric interpretation of quantization within
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an extension of the mathematical framework of classical mechanics �symplec�
tic geometry�� More speci�cally
 geometric quantization �abbreviated to GQ
henceforth� refers to a body of ideas pioneered independently by Souriau ���
and Kostant �	� in the late ���s and early ���s�

It is the purpose of these lectures to provide an introduction to the role of
symplectic geometry in quantization in general and
 as a concrete realization
of this general picture
 to give an introductory account of GQ� Unfortunately

although the fundamental ideas in GQ are very elegant and simple
 things
tend to become more complicated and mathematically more demanding rather
quickly� In these notes I have therefore tried to emphasize primarily these
basic ideas and to hint at or illustrate the more advanced machinery �like half�
density and half�form quantization
 BKS kernels
 Bohr � Sommerfeld varieties
and distributional wave functions� in terms of simple examples rather than
develop it in any great detail� The reason for proceeding in this way is partly
lack of space and time and partly that I do not want to advocate GQ as an
e�cient calculational tool in quantum mechanics anyway �in fact
 at present at
least it is far from being that�
 but rather as a procedure of more conceptual
interest�

Section ��� is a crash�course on the formalism of symplectic geometry� It serves
mainly to introduce the nomenclature and �di�erential form� notation to be
used throughout� Section ��� explains why this is a natural framework for
classical mechanics�

Section 	
 in a sense the heart of these notes
 is an introduction to the question
�What is quantization��� It also deals with the no less important questions
�What is it not�� and �What should or can it not expected to be��� My own
views on this subject have been heavily in�uenced by the article ��� of Isham
which I warmly recommend to anyone interested in these questions�

Section � deals with the �rst step of GQ
 known as prequantization� This is
an elegant procedure which associates to any �quantizable� symplectic manifold
a Hilbert space carrying a faithful representation of the classical observable
algebra� Section ��� describes the construction and contains a discussion of the
conditions for existence of a prequantization
 and their topological classi�cation�
Certain simple and prototypical examples are discussed in section ����

Unfortunately
 the Hilbert space provided by prequantization
 as elegant as
the procedure may be
 is not the correct one for quantum mechanics
 and one
needs some way of �cutting it in half�� This is achieved via the introduction
of a polarization of the phase space� Splitting the quantization process into
these two steps is nevertheless useful because it serves to isolate some of the
ambiguities inherent in passing from a classical to a quantum system� The
ambiguity in the choice of a prequantum Hilbert space corresponds
 roughly
speaking
 to the presence of topological superselection rules
 while the choice of
polarization corresponds to choosing a particular representation within a given
topological sector� I hope that the meaning of this sentence will become clearer
in the following sections�

In section ��� I try to explain why
 in the framework of GQ
 polarizations arise
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naturally at this point� Section ��� deals with real polarizations
 in particular
with the vertical polarization of a cotangent bundle� Section ��	 describes
the second important class of polarizations
 namely K
ahler polarizations� As
background material
 it also contains a synopsis of facts about complex and
K
ahler vector spaces and manifolds�

Section �
 �nally
 deals with the construction of the quantum Hilbert space
associated to a polarization and with the construction of operators acting on it�
It is at this crucial point that GQ becomes somewhat murky� In section ��� I
show how polarization preserving observables give rise directly to operators at
the quantum level and how the scheme needs to be modi�ed to quantize other
observables �via BKS kernels�� We then turn to the construction of the quantum
Hilbert space� I will describe three prototypical situations �vertical polarizations
positive K
ahler polarizations and real polarizations with non�simply conected
leaves�
 point out the complications arising in each of these
 and explain brie�y
how these problems can be overcome�

Here these notes end rather abruptly
 but I hope that they will have prepared
the ground for further inquiries into the existing literature� In particular
 I want
to draw attention to the recent investigations into the polarization dependence
of GQ in ���
 motivated by questions arising in topological and conformal �eld
theory
 and to the application of GQ to the quantization of constrained systems
������� �which is a rather natural thing to attempt as constrained systems are
also described most e�ectively in terms of symplectic geometry��

The most glaring omission of these notes is probably the representation theoretic
aspect of GQ
 i�e� the quantization of coadjoint orbits of a Lie group
 which I
only touch upon brie�y in section 	 and when discussing the quantization of the
two�sphere in sections � and �� This relation between GQ and the representation
theory of Lie groups is important both mathematically and historically� See ���
for that part of the story�

The basic references for section � are Abraham and Marsden ���� and Arnol�d
����� A wealth of other information on symplectic geometry can be found in
the book ���� by Guillemin and Sternberg� My favourite references for section
	 are the book ��� by Dirac and the lectures ��� by Isham� Most of what I
will say about GQ �and much more� can be found in the book by Woodhouse
��	�� Its imprints on these notes are rather obvious in sections � and �� Other
monographs on GQ include ���� and �����

� Symplectic Geometry and Classical Mechanics

Symplectic Geometry is the adequate mathematical framework for describing
the Hamiltonian version of classical mechanics� As such it is also the most
suitable starting point for a geometrization of the canonical quantization pro�
cedure�

The purpose of section ��� is to introduce the formalism of symplectic geometry
and the coordinate independent di�erential form notation we will use through�
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out these lectures� Section ��� serves to establish the relation of this formalism
with that of classical Hamiltonian mechanics�

��� Symplectic Geometry

By a symplectic manifold �M��� we will mean a smooth real m�dimensional
manifoldM without boundary
 equipped with a closed non�degenerate two�form
�
 the symplectic form�� �Closed� means that

d� � � �����

�� ��i�jk� � � in local coordinates�
 where d is the exterior di�erential

d � �k�M�� �k���M� � d� � � � �����

on di�erential forms on M � And �non�degenerate� means that at each point
x �M the antisymmetric matrix �x is non�degenerate
 i�e�

det��x� �� � �x �M � ���	�

The most important example of a symplectic manifold is a cotangent bundle
M � T �Q� This is nothing but the traditional phase space of classical mechan�
ics
 Q being known as the con�guration space in that context� A cotangent
bundle has a canonical symplectic two�form which is globally exact


� � d� �����

�and hence
 in particular
 closed�� Any local coordinate system fqkg on Q can
be extended to a coordinate system fqk� pkg on T �Q such that � and � are
locally given by

� � pkdq
k � � � dpk�dqk � �����

We will return to the speci�c case of cotangent bundles at the end of this section

when we discuss the relation with classical mechanics�

Other examples of symplectic manifolds are orientable two�dimensional surfaces
�� choose any volume form � on �� as such it is certainly non�degenerate� as a
two�form on a two�dimensional manifold it is also certainly closed �d� is a three�
form and and there are no anti�symmetric three�tensors in two dimensions�� and

although it is a fact �known as Darboux�s theorem� that on any symplectic
manifold one can choose a local coordinate system such that � takes the form
�����
 � cannot be globally exact in this case because otherwise the volume of
� would be zero by Stoke�s theorem� If � � d� were true
 then

Vol���� ��

Z
�
� �

Z
�
d� �

Z
��

� � �

because �� � �� More generally
 all K
ahler manifolds are symplectic
 and we
will come back to them in section ��	�

�Like a Riemannian manifold 	M� g
 is a manifold equipped with a non�degenerate sym�
metric two�tensor g� the Riemannian metric�
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Condition ���	� has several important consequences� First of all
 it implies
that M is even�dimensional
 m � �n
 as an odd�dimensional antisymmetric
matrix has zero determinant� The same argument as above shows that the
symplectic form of any compact symplectic manifold is cohomologically non�
trivial �i�e� closed but not globally exact�
 because otherwise the symplectic
volume

V ol��M� �� �
n�

Z
M
�n �����

would be zero�

Moreover
 as � is invertible
 at each point x � M it gives an isomorphism
between the tangent and cotangent spaces of M at x


�x � TxM
iso� T �xM � �����

expressed in local coordinates as

Xi �� Xi�ik � �����

Crudely speaking
 like a metric a symplectic form allows us to raise and lower
indices on tensors� This extends to an isomorphism between TM and T �M and
between vector �elds and one�forms on M 


X �� i�X�� � ��X� � � � ���M� �����

�here i�X� denotes the contraction of a di�erential form with the vector �eld
X
 as in �����
 i�e� the insertion of X into the �rst �slot� of a di�erential form��

In particular
 therefore
 the existence of � allows us to associate a vector �eld
Xf to every function f � C��M� via

i�Xf �� � 	df ������

�the minus sign is for later convenience only�� Xf 
 the �symplectic gradient�
of f 
 is known as the Hamiltonian vector 	eld of f � It generates a �ow on M
which leaves � invariant
 as the Lie derivative of � along Xf is zero


L�Xf �� 
 di�Xf �� � i�Xf �d� � 	ddf � � � ������

Via ������
 the symplectic form provides an anti�symmetric pairing ff� gg be�
tween functions f� g on M called the Poisson bracket of f and g� It is de�ned
by

ff� gg �� ��Xf � Xg� � C��M� � ������

and describes the change of g along Xf �or vice versa�


ff� gg � i�Xg�i�Xf �� � i�Xf �dg � L�Xf �g � ����	�

In particular
 f is constant �i�e� preserved� along the integral curves of Xf � The
Poisson bracket satis�es the Jacobi identity

ff� fg� hgg � fff� gg� hg � fg� ff� hgg � ������
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This can be shown either by writing out explicitly �d���Xf �Xg� Xh� � � �� is
closed�
 or by using the tensoriality of the Lie derivative and L�Xf �� � � to
deduce

L�Xf � ���Xg� Xh�� � ��L�Xf �Xg�Xh� � ��Xg� L�Xf �Xh�

which is just a rewriting of ������� This gives �C��M�� f�� �g� the structure of
an in�nite dimensional Lie algebra�

One further important identity we will need
 which relates the Lie algebras of
vector �elds and functions on M 
 is

�Xf �Xg� � Xff�gg � ������

which shows that the Hamiltonian vector �elds also form an in�nite dimensional
Lie algebra� Moreover
 regarding the map �Lie algebra homomorphism� f � Xf

as an assignment of di�erential operators to functions
 the identity ������ is also
an illustration of the quantization paradigm �Dirac�s quantum condition�

Poisson Brackets � Commutators

and will play an important role in the following� To prove ������ one again
makes use of the tensoriality of the Lie derivative
 this time in the form

i��X�Y �� � L�X�i�Y �	 i�Y �L�X� �

to show that i��Xf � Xg��� � i�Xff�gg���

Lastly
 we will need to consider certain submanifolds of symplectic manifolds�
A subspace �V� �jV � of a symplectic vector space �W��� �i�e� a vector space W
equipped with a non�degenerate antisymmetric two�tensor �� is called isotropic

if �jV � �� By linear algebra
 an isotropic subspace ofW has dimension at most
�
� dim�W �
 and in that case V is called a Lagrangian subspace� of W � Likewise

we now de�ne a Lagrangian submanifold of �M��� to be an n�dimensional
submanifold N � M such that �jTN � �� For example
 it is evident from
����� that Q �de�ned by pk � �� is a Lagrangian submanifold of M � T �Q
 as
is the �bre T �qQ of the cotangent bundle at q � Q� Locally
 any Lagrangian
submanifold N is given by the vanishing of n functions Fk on M which are in
involution
 i�e� which satisfy

fFk� Flg � � �k� l � ������

In fact
 it follows from this condition that the Hamiltonian vector �elds XFk

are tangent to
T
lfFl � �g so that they locally span the tangent bundle TN �

Reading ������ as ��XFk �XFl� � � then says that �jTN � ��

This concludes our crash�course on symplectic geometry� The second half of this
century has witnessed a great deal of activity in this �eld
 which has established
itself as an independent mathematical descipline fertilized by the relation with
classical mechanics� I have not mentioned any results of modern symplectic
geometry which can be obtained within this framework and the adventurous
reader is referred to ���� for a detailed account�

�The terminology arises from the relation between such subspaces and the Hamilton�Jacobi
theory of Lagrangian mechanics� see ��
� ����
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��� Relation with Classical Mechanics

Now
 what has all this got to do with classical mechanics� In the simplest
mechanical systems the areana for classical mechanics in the Hamiltonian �or
�rst order� formalism is the phase space
 a �n�dimensional real vector space
� R�n with coordinates q�� � � � � qn� p�� � � � � pn describing the position and the
momentum �velocity� of the particles involved� The dynamics �time evolution�
of the system is governed by Hamilton
s equations

d
dtq

k �
�H

�pk

d
dtpk � 	�H

�qk
� ������

where H�qk� pk�
 the Hamiltonian
 is a function on phase space describing the
energy of the system�

Typically
 H is of the form H � T � V where T � p� is the kinetic energy and
V � V �qk� is the potential energy whose gradient descibes the forces acting on
the particles� For example
 a harmonic oscillator in one dimension is described
by the Hamiltonian H � �p� � q����
 the equations of motion �q � p� �p � 	q
leading to the characteristic oscillating behaviour q�t� � q��� cos t� p��� sin t�

If H does not depend on time explicitly
 the equations of motion ������ imply
that H is conserved along any trajectory in phase space


d
dtH �

�H

�qk
�qk �

�H

�pk
�pk

�
�H

�qk
�H

�pk
	 �H

�qk
�H

�pk
� � � ������

�summation over repeated indices being understood� while the evolution of any
other function f on phase space �observable� is given by

d
dtf �

�f

�qk
�H

�pk
	 �f

�pk

�H

�qk
� ������

In our simple one�dimensional example above
 ������ already determines the
phase space trajectories uniquely to be the circles p��q� � const�
 in agreement
with the explicit solution of the equations of motion�

In general
 any constant of motion
 i�e� any function f on phase space in invo�
lution with the Hamiltonian
 fH� fg � �
 can be used to reduce the dynamical
system to a lower dimensional one on the common level surfaces of the functions
H and f � It follows from the Jacobi identity ������ that the Poisson bracket
of any two constants of motion is also a constant of motion� If it is possible
to �nd n constants of motion in involution �and independent in the sense that
their Hamiltonian vector �elds are linearly independent� the system is called
integrable and there are then standard methods available for solving the system
completely �Hamilton�Jacobi theory
 action�angle variables
 � � � �� Most text�
book examples of classical mechanics are integrable
 but integrability is by no
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means prototypical and only occurs in systems with a high degree of symmetry�
In the general case one has to resort to more qualitative �instead of quantitative�
methods of investigation� For a detailed exposition with numerous applications
�e�g� to the rigid body and celestial mechanics� see �����

The equations �����������
 characterising Hamiltonian mechanics
 arise natu�
rally if we think of R�n as the cotangent bundle T �Rn of the con�guration
space Rn
 with the canonical symplectic form ������ Namely
 in that case the
Hamiltonian vector �eld Xf of a function f�qk� pk� is

Xf �
�f

�pk

�

�qk
	 �f

�qk
�

�pk
� ������

as it is easily veri�ed that i�Xf �dpk�dqk � 	df �cf� �������� Therefore the
Poisson bracket is

ff� gg � �f

�pk

�g

�qk
	 �f

�qk
�g

�pk
� ������

and
 in particular
 the canonical Poisson brackets �classical canonical commu�
tation relations� between the coordinates and momenta are

fqk� qlg � fpk� plg � �

fpk� qlg � � lk � ������

The functions qk and pl form a complete set of observables in the sense that any
function which Poisson commutes �has vanishing Poisson brackets with� all of
them is a constant�

The equations ����������� can now be written succinctly as

������ � d
dtq

k � fH� qkg � d
dtpk � fH� pkg � ����	�

������ � fH�Hg � � � ������

������ � d
dtf � fH� fg � XHf � ������

so that time evolution in classical mechanics is determined by the Hamiltonian
vector �eld XH of the Hamiltonian H�

This formulation makes manifest the form�invariance of the equations of clas�
sical mechanics under canonical transformations or symplectomorphisms �dif�
feomorphisms leaving the symplectic form invariant�� For instance
 Liouville�s
theorem that the volume of any portion of phase space is invariant under time
evolution �i�e� behaves like an incompressible �uid� is a trivial consequence of
L�XH�� � � and is thus built into the formalism from the outset�

It also has the added advantage of generalizing immediately to more compli�
cated systems �e�g� with constraints� where the con�guration space is some
curved manifold Q
 or even where the phase space is some compact symplectic
manifold �and hence cannot possibly be a cotangent bundle�� The necessity
to consider such more exotic systems in physics has arisen in recent years in
a number of di�erent contexts
 e�g� for the description of internal degrees of
freedom and in topological and conformal �eld theory� In mathematics
 quan�
tization of compact symplectic manifolds plays a central role in representation
theory �where the symplectic manifolds in question are coadjoint orbits��
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� What is Quantization�

In this section we take a �rst step away from the classical theory outlined above�
It is
 in a sense
 a continuation of the introduction �why quantum theory�� and
tries to give a general �avour of what quantization is about
 without entering
too far into the formalism and interpretation of quantum mechanics itself�

Classically
 the space C��M��� of observables has
 in addition to a Lie alge�
bra structure provided by the Poisson bracket
 the structure of a commutative
algebra under pointwise multiplication
�

�fg��x� � f�x�g�x� � �gf��x� � �	���

It appears that it is this property which has to be sacri�ced when moving from
the classical to the quantum theory
 the non�commutative nature of observables
in the quantum theory being at the heart of the phenomena discussed in the
introduction� More speci�cally
 quantization usually refers to an assignment

Q � f � Q�f� �	���

of operators Q�f� on some Hilbert space to classical observables f � This Hilbert
space can be �nite�dimensional �in which case one can think of the Q�f��s sim�
ply as �nite�dimensional matrices� but will
 in general
 be in�nite�dimensional�
The scalar product in the Hilbert space is necessary for the probabilistic inter�
pretation of the theory and is thus of fundamental importance� This assignment
Q has to satisfy some more or less obvious requirements like

Q�� R�linearity


Q�rf � g� � rQ�f� �Q�g� �r � R� f� g � C��M� � �	�	�

and the condition that

Q�� the constant function � is mapped into the identity operator or matrix �


Q��� � � � �	���

Furthermore
 real functions should correspond to hermitian operators �as the
eigenvalues of Q�f� are the possible results of measurements in the quantum
theory and hence should be real�
	

Q��
Q�f�� � Q�f� � �	���

But
 of course
 we need more guidelines than that to construct a quantum theory
from a classical theory �even keeping in mind the limitations to this programme
mentioned in the introduction�� It is here where Dirac�s observation enters that

�These are related by the Leibniz rule ff� ghg � ff� ggh� gff� hg and give C�	M��
 the
structure of a Poisson algebra�

�Here and in the following I will gloss over functional analytic complications� This is�
however� not meant to imply that they are not important�
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it is the commutator of two operators which is the quantum counterpart of the
classical Poisson bracket� More precisely
 to the conditions �	�	�	��� one adds

Q�� the quantum condition

�Q�f��Q�g�� � 	i hQ�ff� gg� � �	���

Here  h is Planck�s constant
 a constant of nature �dimension of an action�
characteristic of quantum e�ects� It is a very small number
 and for most
macroscopic considerations the fact that it is not zero can be neglected� This
is also re�ected in the fact that for  h� � �now treating  h just as a parameter�
one recovers from �	��� the commutative structure of classical mechanics� At
the microscopic level
 however
 order  h e�ects can no longer be neglected and
this is where classical mechanics needs to be replaced by quantum mechanics�

It would perhaps be more natural
 if  h appeared as a �free� parameter in the
theory � see ���� One could also contemplate the possibility of adding higher�
order terms in  h to the right hand side of �	���� this leads to what is known as
deformation quantization�

Experience has taught that there is yet one more condition to be imposed for
the assignment �	��� to produce a valid quantization �in those examples where
one �knows� what it should look like�� This last requirement is some kind of
irreducibility condition� A reasonably general and satisfactory way of phrasing
it makes use of the concept of a complete set of observables introduced in section
���� In complete analogy
 we de�ne a complete set of operators to be one such
that the only operators which commute with all the operators from that set are
multiples of the identity� The condition then reads that

Q�� if ff�� � � � � fkg is a complete set of observables
 fQ�f��� � � � �Q�fk�g is a
complete set of operators�

Unfortunately
 it is in general not possible to satisfy both Q� �for all f and g�
and Q�
 and the best one can hope for is some �optimal� compromise
 e�g� de�
manding Q� only for a complete set of observables and perhaps some additional
observables which are of particular interest in the quantum theory� Of course

nothing tells us how to �nd a complete set of observables
 or which one to
choose� Nor is it ruled out that di�erent choices of complete sets will lead to
inequivalent quantum theories �i�e� to inequivalent predictions for the result
of experiments�� It is here
 in what one means by �optimal�
 that extrane�
ous information and requirements enter the construction of a quantum theory

e�g� certain symmetries or geometric properties of the classical system which
may make one complete set more �natural� than another�

Common sense must be used here to avoid embarking on an over�
axiomatised
 and hence misguided
 piece of theoretical physics� We
� � � should not be trapped into axiomatising theoretical ideas out of
existence� ��
 p� �����

This discussion shows that it is very di�cult to address the question of exis�
tence and classi�cation of quantizations satsifying Q��Q� �in some sense� in
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general� By changing slightly the rules of the game
 GQ nevertheless provides
one method for doing precisely this� I will come back to this below�

First
 it will be instructive to see how all this works in the simplest case Q �
Rn
 M � T �Q� In that case we have already encountered a complete set of
observables in section ���
 namely the coordinate functions qk and pl� According
to the rule Q� we demand the corresponding operators to satisfy the canonical
commutation relations

�Q�qk��Q�ql�� � �Q�pk��Q�pl�� � � �

�Q�qk��Q�pl�� � i h�kl � �	���

This is the so�called Heisenberg algebra and
 by the Schur lemma
 rule Q� is
now equivalent to �nding an irreducible representation of the Heisenberg algebra
�this is why I called Q� �some kind of irreducibility condition� above�� By the
Stone � von Neumann theorem any such representation is unitarily equivalent
to L��Q� � L��Rn� with qk and pl represented by

Q�qk���x� � xk��x� � Q�pl���x� � 	 hi ��
�xl

�x� �	���

�more precisely
 for this uniqueness theorem to hold
 one has to require that
the representations exponentiate to representations of the Heisenberg group �
there are inequivalent representations of the Heisenberg algebra�� The spectrum
�range of eigenvalues� of these operators is �	������ This is the standard
Schr
odinger picture of quantum mechanics� It is important to keep in mind
that the fact that in this case �wave functions� can be represented by functions
on the con�guration space is a consequence of our quantization rules Q��Q�
and the Stone � von Neumann theorem
 and not some fundamental dogma of
quantization �as which it is often presented��

Now
 the coordinates and momenta are certainly not the only observables of
interest� Can we quantize any others as well in accordance with the rule Q��
Indeed we can
 albeit not many more� One important observable is the kinetic
energy operator p� 
 pkpl�kl and evidently it should be represented by the
Laplacian


Q�pkpl� � 	 h� ��

�xk�xl
�

Q�p�� � 	 h��kl ��

�xk�xl

 	 h�! � �	���

Likewise
 we have little choice but to represent observables quadratic in the co�
ordinates by multiplication operators� Classically
 the Poisson bracket between
these two quadratic operators is proportional to pkq

l and we thus need to assign
an operator to this third class of quadratic observables as well� Imposing either
the hermiticity condition Q	 or the quantum condition Q� one �nds

Q�pkq
l� � �

�

�
Q�pk�Q�ql� �Q�ql�Q�pk�

�
� �	����
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This can be interpreted as a particular operator ordering ofQ�pkq
l� � Q�pk�Q�ql�

�but note that a priori there is no logical necessity for the assignment Q to sat�
isfy some condition like Q�fg� � Q�f�Q�g� in general��

The quadratic observables form a closed Lie algebra under Poisson brackets


fpipj� pkplg � fqiqj� qkqlg � �

fpiqj� pkplg � 	�jkpipl 	 �jl pipk

fpiqj� pkqlg � �ilq
jpk 	 �jkpiq

l

fpiqj� qkqlg � �ki q
jql � �liq

jqk

fpipj� qkqlg � �kj piq
l � �ljpiq

k � �ki pjq
l � �lipjq

k � �	����

the symplectic Lie algebra sp�n� �in the non�compact form
 sp��� � sl���R���
Thus
 what the above means is that when we quantize a symplectic vector
space we can always obtain a representation of the symplectic Lie algebra on
the quantum Hilbert space which re�ects the classical symplectic invariance
of the theory �and which exponentiates to a projective representation of the
symplectic group��

If we now try to extend this quantization to cubic observables we run into con�
�ict with the quantum condition Q�� That this is not due to some particularly
unfortunate choices we have made but rather an inevitable consequence of the
rules Q��Q� is the content of the Groenewald � van Hove theorem �for a careful
exposition see ������ Thus
 even in the simplest case of a symplectic vector
space no full �in the sense that Q� holds for all observables� quantization ex�
ists� This is not a severe set�back
 however
 since there is no reason to expect
any arbitrarily crazy classical �observable� to be quantizable and to qualify as a
true observable of the quantum system� The choice of classical functions which
are to be promoted to quantum operators depends on the system under con�
sideration and should feed its way back into e�g� the choice of complete set of
observables entering the condition Q��

Let us now look at the case when Q �� Rn
 M �� R�n� Even if M is a cotangent
bundle
 M � T �Q
 canonical coordinates �qk� pl� will in general not exist glob�
ally� It thus makes little sense to choose these as a complete set of observables
and to impose the canonical commutation relations �	��� at the quantum level�
If one does that one is ignoring completely the geometry of the phase space and
is thus performing something that could be regarded as only a tangent space
approximation to the true quantum theory�

Take
 for instance
 the example M � T �S� �a cylinder� with angular coor�
dinate �
 angular momentum p and symplectic form dp�d�� If one required
the canonical commutation relations �Q����Q�p�� � i h
 this would imply that
the spectrum of both operators is �	�����
 but this is wrong" In fact
 it is
known that in quantum mechanics angular momentum is quantized in units of
 h
 specQ�p� �  hZ �while the spectrum of � ought to be ��� �	��� The source of
the problem is
 of course
 the fact that � is not a globally de�ned coordinate
on the circle and that one is really dealing with the real line when one pretends
that it is�
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One way to get around this problem is to replace � by a globally de�ned function
on the circle
 like sin�� If one does that
 one is also forced to include cos� to
obtain a complete set of functions closed under Poisson brackets� One then
arrives at the following globally well de�ned canonical Poisson bracket algebra
of the cylinder


fp� sin�g � cos� � fp� cos�g � 	 sin� � fsin�� cos�g � � � �	����

Quantization of the cylinder then amounts to �nding a representation of �	����
and this yields the expected result�

Is there a more systematic way of arriving at �	����� And what is going to
replace the canonical commutation relations �	��� in general� A clue to this
comes from the following observation� The fact that the canonical coordinates
are globally de�ned for M � T �Rn implies that �via their Hamiltonian vector
�elds� translations act on the phase space
 completeness corresponding to the
fact that these translations act transitively� The canonical Poisson bracket
algebra ������ can thus be regarded as a central extension of the translation
algebra
 and the quantization conditions instruct one to �nd its irreducible
representations�

This suggests a general strategy whenever the phase space is a homogenous
space �i�e� one with a transitive action of some group G�� Assuming that this
action is generated by Hamiltonian vector �elds
 the corresponding functions
form �roughly speaking� a complete set of observables� One then looks for
irreducible representations of their Poisson bracket algebra� Thus the canonical
commutation relations of the Heisenberg algebra are replaced by those of the
�canonical� group G and the problem of quantization is again reduced to one
of representation theory� In general
 there will be no Stone � von Neumann
theorem so that quantization will not be unique� And
 even if M � T �Q
 the
Hilbert space of the quantum theory will not necessarily turn out to be L��Q��

Applied to the above example one �nds that quantization of the cylinder amounts
to �nding representations of the Euclidean group E��� which in turn can be ex�
pressed via the Poisson bracket relations �	����
 as had been anticipated above�
Note that the �rst guess
 that the canonical group could be chosen to be S�
R
itself
 acting on the cylinder by rotations and translations
 fails
 because the
generator ���p of translations is not globally Hamiltonian� This is the same
problem in disguise we encountered above with regard to the �naive� canonical
commutation relations� For a detailed explanation of this programme
 with
many other �nite and in�nite dimensional examples
 see ����

More generally
 one may say that whenever there is a preferred complete set of
observables �in some sense� there is a preferred class of quantizations
 and in
this form Isham�s programme has been applied successfully to gauge theories
and quantum gravity in the Ashtekar variables by the Syracuse group�

In order to avoid these questions �which require more of a case by case analysis�
and to geometrize the question of existence and classi�cation of quantizations

GQ focusses on a slightly di�erent way of looking at quantum mechanics on
Rn� Essentially
 the concept of a complete set of observables �like the qk and
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pl� is replaced by that of a maximally �Poisson� commuting set of observables
�like the qk�� Thus
 wave functions are considered to be functions �or sections of
some complex line bundle� on the classical or quantum spectrum of a maximally
commuting set of observables �which are diagonal in this representation��

Alternatively
 still for Q � Rn
 wave functions can be characterized as functions
on phase space which are annihilated by the Hamiltonian vector �elds of a max�
imally commuting set of observables� It is this way of looking at Schr
odinger
quantization that generalizes most readily to other symplectic manifoldsM � In
section ���
 we had already seen that such a maximally commuting set fFkg
de�nes a Lagrangian submanifold of M � By varying the constants ck in the
equations Fk � ck one then obtains a foliation of M by Lagrangian submani�
folds� This is also called a real polarization of M � The quantum Hilbert space
is then constructed from those functions �sections of a line bundle� on M which
are �covariantly� constant along the leaves of this foliation� It is
 roughly speak�
ing
 this condition that replaces the quantization condition Q� �emphasizing the
role of a complete set of observables��

At �rst
 this approach to quantization appears to be rather restrictive� In the
�nite dimensional case
 however
 there is considerable overlap among the results
arising from this
 Isham�s
 and other quantization schemes� One of the reasons
for this is that the concept of a polarization is more �exible than it perhaps
seems�

First of all
 it is possible to replace real by complex polarizations �integrable La�
grangian subbundles of the complexi�ed tangent bundle of M � see section �����
This is also familiar from ordinary quantum mechanics on Rn in the form of the
Bargmann representation in which wave functions are represented by holomor�
phic functions of zk � qk� ipk� In many cases covered by Isham�s scheme there
are more or less natural polarizations which are compatible with �i�e� invariant
under� the canonical group� GQ can then be used to construct representations
of this canonical group� In this context it can thus be regarded as investigating
the question to which extent representations of the canonical group
 featuring
in Isham�s approach
 can be constructed from symplectic geometry�

Moreover
 it can be seen in examples that
 with due care
 it is also possible to
apply GQ when the fFkg or the real polarization are not globally de�ned but
are singular somewhere� Such singular polarizations are more likely to exist
and thus extend the range of applicability of GQ�

A �nal word of warning� it is possible that GQ is overambitious in attempting
to make quantization �work� for �almost
 see section ���� arbitrary symplectic
manifolds� Since it is really quantum theory that should be regarded as funda�
mental
 there is no a a priori reason to believe that every classical theory has a
quantum counterpart�
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� Geometric Quantization I� Prequantization

As mentioned a couple of times above
 GQ accomplishes the quantization of
a symplectic manifold in a two� �or more�� step procedure� The �rst is the
construction of a faithful representation of the Poisson algebra of functions by
linear operators on a Hilbert space� This is known as prequantization and
satis�es the quantization conditions Q��Q�� In a second step
 a variant of Q�
is imposed in terms of a polarization
 at the inevitable expense of sacri�cing
part of the quantum condition Q��

In section ��� the construction of the prequantum Hilbert space from a complex
line bundle over phase space is explained
 as well as the classi�cation of line
bundles with connections� Examples are discussed in section ����

��� The Prequantum Hilbert Space

In order to geometrize the notion of quantization
 it is natural to attempt to
construct the quantum phase space �� Hilbert space� from the space of func�
tions on the classical phase space M instead of regarding the two as completely
separate entities� An important role is played by the identity ������


�Xf �Xg� � Xff�gg �

which shows that Hamiltonian vector �elds give a representation of the classical
Poisson bracket algebra by �rst order di�erential operators on M � In fact
 the
assignment

f � 	i hXf �����

satis�es the conditions Q� �obviously�
 Q	 �with respect to the Liouville mea�
sure
 because Xf leaves � invariant�
 and Q� �by �������� However
 since the
zero vector �eld is assigned to any constant function
 ����� fails to satisfy Q��
One may try to remedy this by replacing 	i hXf by 	i hXf � f 
 but this is also
not quite right
 now violating Q�� A little further experimenting shows that
if M � T �Q �where the symplectic form � is globally the di�erential of the
canonical one�form ��
 the assignment

P � f � P�f�
P�f� � 	i hXf 	 ��Xf � � f �����

indeed satis�es Q�	Q� and thus gives a faithful representation of the Poisson
algebra by �rst order di�erential operators on L��M���� For Q � Rn one has
�denoting the multiplication operator simply by qk�

P�qk� � i h �
�pk

� qk � P�pl� � 	i h �
�ql

� ���	�

This evidently only reduces to the Schr
odinger representation �	��� when acting
on functions of the coordinates alone� ���	� also shows that P fails to satisfy
the irreducibility condition Q� as e�g� the operator ���pj commutes with all the
P�qk� and P�pl�� Another problem with prequantization is
 that it certainly
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fails to reproduce the second order di�erential operators �	��� associated to
observables quadratic in the momenta� To reobtain these from GQ requires
much more work� The crucial point is
 that the operator P�p�� �being linear in
the momenta� does not even act on the space of functions of the coordinates
alone� It thus changes the representation space or
 in the language of GQ
 the
polarization� Thus
 to associate an operator to p� one has to compensate for
the change in the polarization caused by the �ow of p�� This is an analytically
rather involved procedure based on the so�called Blattner � Kostant � Sternberg

�BKS� kernels which is very incompletely understood in general� We will only
come back to it brie�y in section ����

There is still one minor di�culty with the above construction� Namely
 instead
of � one could have chosen a symplectic potential of the form � � df for some
function f on M � This can be compensated for by multiplying the functions of
L��M��� by the phase factor exp�if� h� �showing that the resulting prequan�
tizations are unitarily equivalent�� f is
 however
 only determined by df up
to a constant
 resulting in an overall phase ambiguity of the prequantum wave
functions�
 This suggests that it is more convenient to regard the operators
P�f� as acting on the space of sections of a trivial complex line bundle L over
M equipped with a connection D which in a particular trivialization takes the
form

D � d	 �i� h�� � �����

As we will need the construction later on when switching from real to complex
polarizations
 I will brie�y explain the reation between trivializations
 sections

and connection forms in the case at hand� The same arguments apply to local
trivializations �whose existence is guaranteed by the de�nition of a �ber bundle�
in the general case of non�trivializable bundles�

If there is a global nowhere vanishing section s of the complex line bundle L
 this
section gives us an identi�cation L �M
C� Conversely
 beginning withM
C
�as we did above before starting to worry about line bundles� we can think of it
as a line bundle L with the natural trivializing section s��m� � �m� ��� Given
a connection �covariant derivative� D on L
 and a trivializing section s
 the
corresponding connection one�form 
s is de�ned by

Ds � 	i
ss � �����

Any other section of L is of the form �s for some complex valued function �

and one has

D��s� � �d��s� ��Ds� � �d� 	 i
s��s � �����

which can be read as
D� � d� 	 i
s� �����

�in local coordinates�� If one chooses a di�erent trivializing section
 say s� �
exp�	if�s then the connection one�form will change according to

Ds� � D�exp�	if�s� � 	i�
s � df�s� 
 	i
s�s� � �����

�The more exotic possibility of replacing � by � � �� where � is a closed but non�exact
one�form on M � will be dealt with below� It leads to a unitarily inequivalent theory�
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With respect to s� the section �s will be represented by exp��if�� and this
recovers the argument given above� The upshot of this is that we should think
of ����� as being valid in the trivializtion s��m� � �m� �� and that we now
know how to relate changes in the symplectic potential �which it is occasion�
ally convenient to perform� to changes of local trivializations� This point of
view actually becomes mandatory when one is dealing with general symplectic
manifolds �M��� where � is not necessarily exact� In that case expressions like
����� and ����� only make sense locally
 with � � ��
 say
 on a coordinate patch
U� while on overlaps U� � U� of a �good� cover one has

�� 	 �� � df�� � �����

where f�� is related to the transition function connecting the local trivializing
sections s� and s� over U� � U��
In terms of D
 the prequantum operator P�f� can be written as

P�f� � 	i hD�Xf � � f � ������

There is another way of looking at P�f� which sheds some light on its de�nition�
Via its Hamiltonian vector �eld Xf the function f generates a �ow

#f
t � m �� #f

t �m� ������

of canonical transformations of M � Up to an overall phase �related to the
ambiguity f � f � c
 c a constant� there is a unique way of lifting this �ow to
an automorphism of L preserving the Hermitian structure and the compatible
connection� This
 in turn
 induces a �pull�back� action

b#f
t � � �� b#f

t � ������

on sections of L and their local representatives �� Introducing the quantity

Lf � ��Xf �	 f ����	�

� pk
�f

�pk
	 f

the Lagrangian of f 
 one �nds that ������ is given explicitly by

�b#f
t �
�
�m� � ��#f

t �m�� exp

�
	 i

�h

Z t

�
Lf �#f

t��m��dt�
�

� ������

Thus �time evolution� is given by the exponential of the classical action
 some�
thing that is highly reminiscent of the path integral� There are numerous other
connections between GQ and path integrals
 see ��	
 ���� Anyway
 as P�f� can
be expressed in terms of Lf as

P�f� � 	i hXf 	Lf � ������

it follows that P�f�� is nothing but the derivative of ������ at t � �


P�f�� � 	i h d
dt

�b#f
t �
�
jt
� � ������
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We can thus interpret P�f� intrinsically as the generator of a connection pre�
serving automorphism of L lifting the action of the Hamiltonian vector �eld Xf

on M �

Let us now retrun to more down�to�earth matters� It follows from ����� that
the curvature � of L
 de�ned by

��X�Y � � i ��D�X�� D�Y ��	D��X�Y ��� � ������

is
� � iD� � ��� h�d� � ��� h�� � ������

The de�nition ������ still makes sense for non�trivial line bundles and

�P�f��P�g�� � 	i hP�ff� gg� ������

is satis�ed for all f and g provided that L is a line bundle with connection D
whose curvature two�form is ��� h��� Moreover
 P�f� can still be understood
as the generator of a connection preserving automorphism of �L�D��

As � is real
 there always exists a compatible Hermitian structure on L and we
thus arrive at the following

De	nition� A prequantization of a symplectic manifold �M��� is a pair �L�D�
where L is a complex Hermitian line bundle overM andD a compatible connec�
tion with curvature ��� h��� The prequantum Hilbert space H is the completion
of the space of smooth sections of L
 square�integrable with respect to the Li�
ouville measure on M �and the Hermitian structure on the �bers��

Topologically
 line bundles are classi�ed by their �rst Chern class c��L� �
H��M� �	Z�� In de Rham cohomology
 c��L� can be represented by the cur�
vature form of any connection on L �the cohomology class of the curvature
form is independent of the choice of connection�� Thus a necessary �and
 in
fact
 su�cient� condition for a prequantization �L�D� of a symplectic manifold
to exist is that ����	 h�� represent an integral cohomology class or
 in other
words
 that the integral of ����	 h�� over every closed
 orientable two�surface
inM be an integer� Such symplectic manifolds are called quantizable �although
prequantizable would be more accurate��

Cotangent bundles T �Q
 equipped with the canonical symplectic structure � �
d�
 are always quantizable as � is exact� Moreover
 as the cohomology class of �
is trivial
 so is any prequantum line bundle L over �T �Q��� �as we had already
noted above�� In certain cases
 however
 the quantizability condition imposes
a quantization condition on parameters appearing in the classical system� For
instance
 Dirac�s famous quantization condition on the electric charge e of a
particle moving in the �eld of a magnetic monopole can be understood in this
way� This is a consequence of the fact that the coupling of particles to an
Abelian gauge �eld �connection� A with �eld strength �curvature� F � dA can
be accomplished by replacing the original symplectic structure � � d� on T �Q
by the �charged� symplectic structure

�F � � � eF
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�which is still non�degenerate and closed�� This is equivalent to using the stan�
dard minimal coupling prescription pl � pl 	 eAl�q

k� with the unmodi�ed
symplectic structure �� Quantizability of �T �Q��F � is now equivalent to inte�
grality of �e��	 h�F � If F represents a non�trivial cohomology class �so that A
is only de�ined locally�
 this gives a restriction on the possible values of e and
the prequantum line bundle L will be non�trivial as well� �As an aside� the cou�
pling constant quantization conditions appearing in certain �eld theories like
the Wess�Zumino�Witten model and topologically massive gauge theory can be
understood in the same way��

Likewise
 if M � S�
r 
 the two�sphere with radius r
 and � is the volume form

� � r sin�d�d�
 then � is only integral for certain discrete values of r
 namely
r � n h��� n � Z� It is
 by the way
 no coincidence that this looks like the
quantization rule for angular momentum or like representation theory of SU����
S� is a homogeneous space for SU���
 S� � SU����U��� �in fact
 a coadjoint
orbit�
 and quantization of S� hence leads to representations of SU���� The
prequantum Hilbert space is
 of course
 in�nite dimensional
 but by considering
only holomorphic sections of the prequantum line bundle �which corresponds
to a particular choice of complex polarization� one obtains �nite dimensional
Hilbert spaces which are irreducible representation modules of SU���� This
relation between transitive group actions �homogeneous symplectic spaces� and
irreducible representations is one of the origins of GQ� It is appropriate to regard
GQ as a generalization of the Borel�Weil�Bott theorem and Kirilov�s method of
orbits ��� to the non�homogeneous case�

As the above examples may have given rise to the impression that all symplectic
manifolds �M��� can be made quantizable by a rescaling of the symplectic form
�
 I will mention a simple counterexample� the product of two two�spheres
M � S�

r 
 S�
s with incommensurate radii r and s� Attempts have been made

to generalize GQ to such spaces but I will have nothing to say about this here�

After having discussed this necessary condition for a prequantization to exist

we now turn to a brief discussion of the classi�cation of prequantizations of a
quantizable symplectic manifold �M���� As a key role is played by the con�
nection D in the de�ntion of prequantization
 the topological classi�cation of
line bundles �by their Chern class� is too coarse to provide a classi�cation of
prequantizations or prequantum line bundles on �M���� What one needs is a
re�nement in which two prequantizations �L�D� and �L��D�� are regarded as
equivalent if there is a bundle isomorphism f � L� L� such that f�D� � D�

To address this problem in a somewhat more pedestrian manner
 we will need
the following terminology� a connection is called 
at if its curvature vanishes� a

at line bundle is a line bundle with a �at connection� Furthermore we will need
the fact that one can form the tensor product E�F of two vector bundlesE and
F �this is simply done �berwise� and that the tensor product of two complex
line bundles L and L� is again a complex line bundle �because C � C � C��
These tensor product bundles inherit naturally a tensor product connection
DL�L� � D � D� from connections on L and L�� In a local trivialization
 if
D � d	 i
 and D� � d	 i
�
 then D�D� � d	 i�
�
��� Thus the curvature
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������ of D�D� is simply the sum of the curvatures of D and D�� Furthermore

the curvature of the complex conjugate line bundle �L��D�� is minus that of
�L�D� as D� � d � i
 and �L � L�� D �D� � d� is the trivial �at line bundle
with trivial connection d�

This implies that
 given a prequantization �L�D� and a �at line bundle �L��D��

the tensor product �L � L��D � D�� is again a prequantization� Conversely

given two prequantizations �L�D� and �L�� D��
 they di�er by a �at line bundle
because

�L�� D�� � �L��D��� ��L�D�� �L��D���
� �L�D�� �

�L��D��� �L��D��
�

������

and the second factor in the second line is �at� Thus the classi�cation of
prequantizations of �M��� amounts to the classi�cation of �at line bundles
on M �and is
 in particular
 independent of ��� This is quite standard and
can be accomplished in a number of di�erent ways� An argument using Cech
cohomology and exact sequences can be found in ��	� and leads to the result
that isomorphism classes of �at line bundles �and prequantizations� are in one�
to�one correspondence with the elements of

H��M�U���� �

the �rst cohomology group of M with coe�cients in U���� Alternatively
 one
can determine directly the �moduli� space of �at U��� connections onM modulo
gauge transformations which is well known to be

Hom�	��M�� U���� �

where 	��M� is the fundamental group of M � This result follows from the fact
that the holonomy of a �at connection along a loop is invariant under deforma�
tions of the loop so that a �at connection is uniquely determined
 modulo gauge
transformations
 by its holonomies along homotopy classes of non�contractible
loops� By the universal coe�cient theorem ���� the above two expressions are
equal�

There are two possible sources of non�equivalent �at line bundles on M 
 and
thus two kinds of contributions to H��M�U����� One is the possibility of having
non�equivalent �at connections on a given line bundle� It is of the form�

H��M�R��H��M�Z� � U���b��M�

with b��M� � dimH��M�R� the �rst Betti number of M � This can be read as
saying that
 given a �at connection D� on the line bundle L�
 so that any other
�at connection on L� is of the form D� � 
 with 
 a closed one�form
 D� � 

is inequivalent to D� provided that 
 is neither integral nor �a fortiori� exact�
We had already seen above that symplectic potentials di�ering by exact one�
forms �in�nitesimal gauge transformations� lead to equivalent prequantizations�

�More precisely� H�	M�Z
 should be replaced by its image i�H
�	M�Z
 in H�	M�R
 in

this expression� where i is the inclusion i � Z �� R�
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Connection forms di�ering by non�trivial integral one�forms
 on the other hand

are related by �large� gauge transformations� We will see an example of this
torus� worth of prequantizations below� It has the interpretation of vacuum
angles or Aharonov�Bohm phases�

The second contribution comes from topologically inequivalent �at line bundles�
As line bundles are topologically classi�ed by their Chern class �c��L���	� �
H��M�Z� and the curvature form represents the image of this class inH��M�R�

these correspond to the kernel

Ker i� � H��M�Z�� H��M�R�

�i� kills the torsion in H��M�Z��� I will not give an example where such a
possibility occurs but want to just mention that the choice of isomorphism class
of �at line bundles can in certain cases be interpreted as a choice of statistics
�Fermi versus Bose
 for instance��

��� Examples

In this section we will take a brief look at some two�dimensional examples
 the
cylinder T �S� and the two�sphere S�� Each has its own characteristic features
which serves to illustrate one or the other of the issues encountered above in a
rather more abstract manner�

Example � M � T �S�

As M is a cotangent bundle
 the symplectic form � � dp�d� is globally exact


� � d� � � � pd� � ������

and the prequantum line bundle L is trivial� A prequantization of M is given
by the connection D � d	 �i� h��� As M is not simply connected


	��M� � Z � H��M�U���� � U��� � ������

we expect
 however
 to �nd not a unique but a U����s worth of prequantiztions�
This expectation is indeed borne out� d� is a non�exact closed one�form
 the
generator of H��M�R�
 and we can thus modify the prequantum connection to

D� �� d	 �i� h�� � i�d� � ����	�

One way of seeing that for � � ��� �� these are all mutually inequivalent is the
following� The prequantum operator P��p� of p with respect to the connection
D� is

P��p� � 	i h �
�� �  h� � ������

As L is trivial
 we can identify the prequantum Hilbert space with the space of
functions on M which are
 in particular
 periodic in �� Likewise
 the Hilbert
space in the Schr
odinger representation
 on which ������ is a well de�ned op�
erator
 is L��S��� Thus the spectrum of �	i����� is the integers and that of
P��p� is also discrete �as expected� and is

spec
�
P��p�

�
� f�n� �� h� n � Zg � ������
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As these are only equal when � is an integer
 this shows that for all � � ��� �� the
quantum theories obtained from the prequantization �L�D�� are inequivalent�

The parameter � leads to an additional contribution to the holonomy picked up
by a state upon parallel transport around the circle� It can thus be regarded as
a simple toy�model of the Aharonov�Bohm e�ect
 �d� representing a magnetic
�eld running through the interior of the circle� Alternatively
 the above example
can be regarded as an embryonic illustration of the �eld theoretic phenomenon
of vacuum angles �or theta vacua�� Such topological quantization ambiguities
�superselection sectors� occur �almost� always when the con�guration space
is not simply connected
 most prominently in four�dimensional gauge theories
where they are related to the strong CP problem�

Example � M � S�

Above
 we have already discussed the conditions for M to be quantizable� Here
we will �x the volume form � by

R
M � � �	 h so that �M�k�� is quantizable

i� k � Z� As H��M�Z� � Z and 	��M� � � there is a unique prequantum
line bundle �Lk�Dk� with i�Dk�

� � �k� h�� in every topological �monopole�
sector� Moreover
 from the arguments of the previous section we can deduce
that Lk is the k�th tensor power of L� and Dk the corresponding tensor product
connection� Thus all we need to determine is the �generator� �L�� D��� I will
give three di�erent descriptions of this bundle�

� The �rst is in terms of the Hopf 	bration� The three�sphere is itself a U���
bundle over S� with monopole �Chern� number �� By letting U��� act on
the complex plane C in the standard fashion
 one can associate to this
U��� bundle over S� a complex line bundle over S� which is just L�� This
description is useful because it shows that element of the prequantum
Hilbert space H
 sections of the non�trivial bundle L�
 can be represented
by complex valued functions on S� transforming equivariantly under the
action of U��� on S��

� The second makes use of the identi�cation of S� with the complex pro�
jective plane CP�
 the space of complex lines in C�� Over CP� there
is a natural complex line bundle obtained by attaching to each point of
CP� the complex line it represents� For obvious reasons this bundle is
called the tautological line bundle and it again represents L�� This de�
scription is useful because it makes it evident that L� can be regarded as
a holomorphic line bundle�

� Finally
 the last description is in terms of local coordinates� Think of
S� as being given by the equation x�� � x�� � x�� � � in R�� Let x� be
the north and south poles of S� determined by x� � ��� Then on the
coordinate neighbourhoods U� � S�nfx�g one can introduce the complex
coordinates

z� �
x� � ix�
�� x�

related by z�z� � � on the overlaps of the two regions� As the U� are
topologically trivial
 any line bundle is trivial when restricted to one of
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these� Thus
 all we have to do is to give a prescription for glueing these
trivial bundles together over
 say
 the equator� If one does this with the
transition function �z��

k � �z���k one obtains the line bundle Lk� The
advantage of this description is that it provides us with explicit expressions
for the symplectic potentials �and hence for the prequantum connection
Dk�� Namely
 on U� the symplectic form � can be written as

� � 	i h d z�dz�
�� � jz�j��� � ������

and the symplectic potentials �� can be chosen to be

�� � 	i h  z�dz�
� � jz�j� � ������

This explicit description will also allow us to read o� immediately the
dimension of the space of holomorphic sections of Lk
 which is k � �
 the
dimension of the spin k�� representation of SU���
 see section ��	�

� Geometric Quantization II� Polarizations

Up to now
 GQ has been quite straightforward and elegant� Unfortunately

prequantization is not the end of the story and some additional structures have
to be introduced to obtain a quantization of a symplectic manifold �in the
sense of section 	� from this� In GQ
 one of these is a polarization
 and this
leads to rather severe technical complications in general� Most of them are
related to the fact that there is no natural measure on the space of quantum
states and that
 even when there is
 GQ is still not completely �correct�� One is
then forced to modify the quantization scheme to what is known as half�form
or metaplectic quantization� And although at this stage GQ becomes quite
successful
 it simultanously becomes rather complicated and unwieldy�

In section ��� I will show that the concept of a polarization arises rather natu�
rally in GQ when one tries to �cut down� the prequantum Hilbert space� The
theory of real and complex polarizations and of Lagrangian submanifolds of
symplectic manifolds is very rich and rewarding but I will not attempt to go
far beyond the formal de�nition of a polarization�

In practice
 there are two classes of symplectic manifolds for which GQ is
fairly well understood and works with comparative ease
 cotangent bundles and
K
ahler manifolds� These have natural and well�behaved polarizations which we
will take a look at in sections ��� and ��	� Although there are compact sym�
plectic manifolds which are not K
ahler and symplectic manifolds which admit
no polarization whatsoever
 an understanding of these two cases is usually suf�
�cient for speci�c applications�

The construction of the quantum Hilbert space and of operators acting on it is
then the subject of section ��
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��� Polarizations

In section 	 we have already seen that a possible generalization of Schr
odinger
quantum mechanics on T �Q � R�n is based not on the concept of a complete set
of observables �as in Q�� but rather on that of a maximal commuting set� We
have also seen that from that point of view it is possible to regard the Hilbert
space L��Q� as the space of functions on the phase space constant along the
leaves of a polarization�

As this may appear to be a rather contrived and unnecessarily complicated
way of arriving at the Hilbert space
 I will now show that the concept of a
polarization arises quite naturally if one attempts to construct the quantum
Hilbert space from the prequantum Hilbert space H� I want to point out

however
 that the physical justi�cation for this procedure

� � � is not based on general mathematical results �such as the Borel�
Weil theorem�
 but on the way in which the construction works in
particular examples� It generalizes and uni�es a number of quan�
tization techniques that
 in the past
 have not appeared to have
any obvious connection with each other and that have sometimes
seemed overspecialized with applications only to particular physical
systems� ��	
 p� ����

Roughly speaking
 the problem with the prequantum Hilbert space H is that it
is too large
 consisting of functions � which depend on all the �n coordinates
of the symplectic manifold �M���� A way of eliminating �half� of these is to
demand that the wave functions are constant along n vector �elds on M � As
ordinary di�erentiation has no invariant meaning for sections of a bundle
 one
must take this to mean that they are covariantly constant� Thus
 one way to
proceed is to choose some n�dimensional subbundle P of the tangent bundle
TM of M and to consider only those wave functions that satisfy

D�X�� � � �X � P �����

�where �X � P � is short
 and sloppy
 for �X is a section of P ��� Now there could
be non�trivial integrability conditions for those equations which would form an
obstruction to �nding any �or a su�cient number of� solutions to ������ From
����� it follows that �D�X��D�Y ��� � � for all X�Y � P � Combined with ������
this leads to the integrability condition

D��X�Y ��� 	 �i� h���X�Y �� � � �X�Y � P � �����

We see that this condition is automatically satis�ed provided that

X � P� Y � P � �X�Y � � P ���	�

and
X � P� Y � P � ��X�Y � � � � �����

The �rst condition means that P is integrable
 so that locally there exist integral
manifolds in M through P � As these are n�dimensional the second condition
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means that these integral manifolds are Lagrangian� We have thus arrived
precisely at the de�nition of a real polarization given in section 	� We see that
there are no local integrability conditions� if we demand the wave functions to
be covariantly constant along the leaves �integral manifolds� of a polarization
P 
 i�e� of a Lagrangian subbundle of TM � This approach
 which is a natural
generalization of that based on a maximal commuting set of observables
 thus
arises quite naturally from prequantization and is the one adopted in GQ�

Life is
 of course
 not as simple as that� The problem with the above de�nition of
a polarization is that it is far too restrictive� For instance
 on a two�dimensional
surface a polarization corresponds to a nowhere vanishing vector �eld� S� has
none and among the closed two�dimensional surfaces the torus is the only one
which has� The way to get around this problem is to complexify the tangent
bundle of M 
 TM � TM c
 and to consider integrable Lagrangian subbundles
of TM c� These are more likely to exist while the integrability condition �����
is still satis�ed� We thus make the following

De	nition� Let �M��� be a symplectic manifold� A polarization P of �M��� is
an integrable maximally isotropic �Lagrangian� subbundle of the complexi�ed
tangent bundle TM c of M �

Naively
 one would now like to construct the quantum Hilbert space from the
space P �L� of polarized sections
 i�e� sections of the prequantum line bundle L
covariantly constant �parallel� along P � This is not as straightforward as one
might have hoped it to be �e�g� because H � P �L� may be empty�� We will
come back to this problem in section �
 after having seen some examples of
polarizations�

For technical reasons one imposes some additional conditions on P � The �rst

usually included in the de�nition of a polarization
 is that the dimension of
Pm �  Pm � TmM be constant� Here Pm denotes the �ber of P at m � M and
 Pm the complex conjugate of Pm� To state the other conditions we note that
any complex subbundle Fc of TM

c satisfying  Fc � Fc is the complexi�cation of
some real subbundle F of TM 
 Fc � F c� Thus the complex subbundles P �  P
and P �  P of TM c are of the form

P �  P � Dc � P �  P � Ec � �����

where
D � P �  P � TM � E � �P �  P � � TM �����

�this notation is standard
 no confusion with the prequantum connection D
should arise�� As P is integrable
 so isD� We assume that the integral manifolds
of D are complete and we denote by M�D the space of all integral manifolds of
D� A polarization is called strongly admissible if E is integrable and the spaces
M�D and M�E are smooth Hausdor� manifolds�

In the following we will deal almost exclusively with polarizations which are
either �real�


P �  P �

�There can still be global integrability conditions related to the holonomy of D along the
leaves of P � We will encounter these later on in the guise of Bohr�Sommerfeld conditions�
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i�e� the complexi�cation of a real polarization
 or K
ahler


P �  P � f�g �

In the former case
 D � E so that P � Dc is strongly admissible if the space
of leaves of the underlying real polarization D is smooth and Hausdor�� In the
latter
 D � f�g and hence E � TM so that any K
ahler polarization is strongly
admissible� Other properties of polarizations will be mentioned below
 in the
context of either real or K
ahler polarizations�

��� Real Polarizations

As noted above
 real polarizations are characterized by the property P �  P
which implies that P � Dc� The prime example of a real polarization is the
vertical polarization of a cotangent bundle M � T �Q� In local coordinates it is
spanned by the vectors ����pk� tangent to the �bers of T �Q� Thus D is the
vertical tangent bundle
 P its complexi�cation
 and the integral manifolds of
D are the �bers T �qQ
 isomorphic to Rn� The space M�D of integral manifolds
is just the con�guration space Q itself and all our regularity conditions are
obviously satis�ed�

As this vertical polarization always exists for cotangent bundles
 so does �once
the question of the measure has been settled
 see section �� the Schr
odinger
representation of quantum mechanics on Q
 based on the Hilbert space L��Q��
Whether this is good or bad may be a matter of debate �after all
 in section
	 we had understood the emergence of L��Q� for Q � Rn as a consequence of
the Stone � von Neumann theorem which is not available for general Q�
 but
this is what GQ predicts�

There are real polarizations that are not vertical polarizations of some cotangent
bundle
 but there are not many more possibilities satisfying our rather stringent
regularity conditions� To see an example of such a polarization
 let us go back
to the cylinder M � T �S� discussed as example � of section ���� Instead of
choosing the vertical polarization
 spanned by ����p�
 we can also choose a
�horizontal� polarization spanned by ������ �as far as being Lagrangian and
integrable is concerned there is nothing to prove when n � ��� This leads to
what is known �for Q � Rn� as the momentum representation� In this case the
integral manifolds of D are circles S� and M�D � R���

However
 in general something like a horizontal polarization �momentum rep�
resentation� will not exist at all� And even when it does
 it will not necessarily
be of the naive form �� is a function of the momenta�� This is something that
is often ignored and therefore good to keep in mind� Again
 see ����� In fact

although Q is a Lagrangian submanifold of T �Q �via the zero section
 say�

it cannot be an integral manifold of some polarization unless Q has the rather
special form Q � T k
Rn�k� This is a consequence of the interesting result that

�There are some interesting subtleties arising in this representation� related to the emer�
gence of vacuum angles and the discreteness of the spectrum of the momentum operator on
the real line M�D of momenta� See section ��� and ����
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�under our regularity conditions� the integral manifold of a real polarization of
any symplectic manifold �M��� is necessarily of this form� This can easily be
proven by showing that the operator r de�ned by

i�rXY �� � i�X�di�Y �� for X�Y � D �����

satis�es all the conditions of a �partial� connection and restricts to a torsion
free and �at a�ne connection on each leaf of D� r is called the Weinstein

connection� For instance


X�Y � D �rXY � D �����

is equivalent to
��rXY�Z� � � �Z � D

�by the maximality of P � and follows from the formulae of section ��

��rXY�Z� � �i�rXY ����Z�

� i�Z�i�X�di�Y ��

� L�X�i�Z�i�Y �� 	 i��X�Z��i�Y �� � � � �����

Likewise the property that r is torsion free


rXY 	rYX � �X�Y � � ������

can be established by calculating

i�rXY 	rYX�� � i�X�di�Y �� 	 i�Y �di�X��

� i�X�L�Y �� 	 L�Y �i�X�� � i��X�Y ��� � ������

etc�� � � Thus the most general possibility is indeed an integral manifold of the
form T k 
 Rn�k� The two above examples are of the type k � � and k � n
respectively� And if the leaves are simply connected �k � �� then essentially
the only possibility is the vertical polarization���

This concludes our discussion of real polarizations� Polarizations with k �� �
have their subtleties and generally force one to consider either distributional or
cohomological wave functions
 see section ����

��� K�ahler Polarizations

K
ahler polarizations are characterized by the condition P �  P � f�g� They
have this name because every K
ahler manifold �complex manifold with a com�
patible symplectic structure� has a natural K
ahler polarization and conversely
the existence of such a polarization implies that �M��� is �pseudo� K
ahler �the
�pseudo� referring to the possible inde�niteness of the K
ahler metric��

�	The precise statement is ���� that if k � 
 and if there is some Lagrangian submanifold
N of 	M��
 intersecting each leaf nicely 	transversally
 in exactly one point� then there is a
natural identi�cation of M with T �N �
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We shall �rst take a look at what this means and how it works in the case of a
�n�dimensional symplectic vector space �V� �� �where
 for concreteness
 we can
think of V � T �Rn�� We begin with some linear algebra� V is a real vector
space� A complex structure on V is a linear transformation J � V � V with
J� � 	�� Such a J gives V the structure of a complex vector space where
multiplication by the complex number a� ib is de�ned by

�a� ib�v �� av � bJv � ������

The complex structure J is called compatible with the symplectic structure �
if

��Jv� Jw� � ��v� w� �v� w � V � ����	�

In that case
 ��v� Jw� is symmetric in v and w and de�nes a non�degenerate
symmetric bilinear form g��� �� and a Hermitian metric h��� �� on V via

g�v� w� �� ��v� Jw� �

h�v� w� �� g�v� w� � i��v� w� � ������

h is antilinear in the �rst entry and linear in the second so that e�g�

h�Jv�w� � 	ih�v� w� � ������

J is called positive if g is positive de�nite� A symplectic structure with a
compatible complex structure is called a pseudo K
ahler structure and a K
ahler
structure if J is positive�

V can be complexi�ed in the obvious �J�independent� way
 V � V c
 and V c is
a complex �n�dimensional vector space� If J is a complex structure on V then
J can be diagonalized in V c� The �i eigenspaces of J are denoted by V ����� and
V ����� and are spanned by vectors of the form v � iJv� Obviously
 V ����� and
V ����� are complex n�dimensional complex conjugates of each other and satisfy

V ����� � V ����� � f�g �

If J is compatible with �
 then V ����� and V ����� are Lagrangian subspaces of
V c� Conversely
 a Lagrangian subspace P of V c satisfying  P � P � f�g de�nes
a compatible complex structure on V such that P is its �i or 	i eigenspace
in V c �we will
 by a slightly misleading usage of terms
 refer to the latter as
a holomorphic polarization because the corresponding polarized states can be
represented by holomorphic functions��

Comparing with our above de�nition of a K
ahler polarization we see that a
K
ahler polarization equips each tangent space of M with a compatible com�
plex structure� A smoothly varying complex structure on the tangent bundle
of a manifold M is called an almost complex structure� If this almost complex
structure is integrable in the sense that the �i eigenbundles are integrable
 J is
called a complex structure on M and gives M the structure of a complex man�
ifold �i�e� there are local holomorphic coordinates with holomorphic transition
functions�� Thus
 because polarizations are integrable
 a K
ahler polarization
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gives �M��� the structure of a complex manifold with a compatible symplectic
structure� Such manifolds are called �pseudo� K
ahler manifolds� And conversely
every K
ahler structure �J� �� on M de�nes a positive holomorphic K
ahler po�
larization of �M��� via P � T �����M 
 the 	i eigenspace subbundle of TM c�

In local holomorphic coordinates zk one has

� � i�jkdz
jd zk �  �jk � �kj ������

�it would be better to introduce barred and unbarred indices at this point
 but
I will refrain from doing so�� Locally
 any K
ahler form can be written as

� � i�  �K ������

for some real valued function K
 the K
ahler potential
 where

� � dzk� �
�zk

�  � � d zk� �
��zk

�

d � � �  � �

�� �  �� � �  � �  �� � � � ������

Thus natural local symplectic potentials on a K
ahler manifold are i �K and
	i�K�

All this is best illustrated in the case of a �at phase space M � T �Rn with
coordinates �qk� pl� and the canonical symplectic form� We will give it the
structure of a ��at� K
ahler manifold
 R�n � Cn
 by introducing the complex
coordinates

zk � �p
�
�pk � iqk� ������

corresponding to the complex structure de�ned by

J����pk� � ����qk� � J����qk� � 	����pk� � ������

The symplectic form can be written as

� � i�kldz
kd zl � i�  �K �

K � �klz
k zl � jzj� � ������

The holomorphic polarization P is spanned by the vectors ��� zk or
 equiva�
lently
 by the Hamiltonian vector �elds of the coordinate functions zk� Later on
we will use the symplectic potential �K � 	i�K which vanishes on P so that
the covariant derivative along directions in P takes the particularly simple form
D���� zk� � ���� zk�� This has the advantage that P �polarized sections can be
identi�ed directly with holomorphic functions in the corresponding trivializa�
tion� Generally
 a connection potential vanishing on a given polarization P 


jP � �
 is called adapted to P � Under our regularity conditions local adapted
potentials always exist�

Another example of a K
ahler manifold is the two�sphere which we investigated
from the point of view of prequantiztion in section ���� For the third description
of its prequantum line bundle we introduced complex coordinates on S� � CP��

	�



We now recognize the symplectic form ������ as a K
ahler form with K
ahler
potential

K �  h log�� � jzj�� ������

The local symplectic potentials given in ������ are also adapted to the holomor�
phic polarization spanned locally by ���� z���

� Geometric Quantization III� Quantization

Now �nally
 after having accumulated all these bits and pieces of information

we come to the quantization of symplectic manifolds� This involves the deter�
mination of the quantum Hilbert space HP corresponding to a polarization P 

and the construction of operators acting on HP �

After some general remarks we will look at the question how to construct op�
erators on the quantum Hilbert space� This turns out to be straightforward
for observables preserving the polarization
 but a rather drastic modi�cation
of that procedure is required to associate operators to observables whose �ow
moves the polarization� This will lead us to the pairing construction of Blattner

Kostant
 and Sternberg and to BKS kernels whose construction I will sketch in
the simplest of cases �a family of positive K
ahler polarizations��

We will then deal seperately with the three examples of polarizations we have
discussed above� vertical polarizatons �section ����
 K
ahler polarizations �sec�
tion ��	�
 and real polarizations with non�simply connected leaves �section �����
They all have their particular complications and pitfalls� Initially one is likely
to expect the example of a vertical polarizations to be the least problematic
of the lot
 coresponding just to the familiar Schr
odinger representation gener�
alized to curved con�guartion spaces� However
 it turns out that there is no
natural measure on the space of polarized states and although certain more or
less ad hoc resolutions of this problem are conceivable one is eventually con�
fronted with the necessity of modifying the entire quantization scheme� I will
present a version of the half�density quantization scheme which is fairly easy
to understand� Eventually this would have to be replaced by the signi�cantly
less transparent half�form quantization scheme
 but this will only make a brief
appearance in the following�

In the case of a general real polarization the situation is even worse because there
may be no polarized sections at all� One is then forced to permit distributional
wave functions to appear whose support is concentrated on the so�called Bohr�
Sommerfeld varieties in M�D� In section ��� we will see how these arise in the
case of the cylinder and the harmonic oscillator in the energy representation�

Given all these di�culties it may thus come as a surprise that in the case of
K
ahler polarizations there is a natural measure on the space of polarized states
and no obstruction to constructing HP � In fact
 a positive K
ahler polarization
just picks out a particular subspace of the prequantum Hilbert space H� Un�
fortunately
 this construction fails to give correct results in even the simplest
of quantum mechanical examples
 the harmonic oscillator� The same �wrong�

		



spectrum of the harmonic oscillator is also predicted if one tries to quantize the
system in a real polarization� The required modi�cation is again that which
works in the case of vertical polarizations
 namely half�form or metaplectic
quantization� This scheme also appears to account correctly for changes in the
polarization and for the quantization of certain operators which do not preserve
a given polarization
 but the general theory is far from completely understood
at the moment�

��� Polarized States and the Construction of Quantum Opera�

tors

We begin with some general remarks� Let us �x a prequantization �L�D� of a
symplectic manifold �M��� and a strongly admissible polarization P � The basic
idea is
 as mentioned repeatedly above
 to construct the quantum Hilbert space
from the linear space P �L� of P �polarized sections of �L�D�
 i�e� of �smooth�
sections � of L satisfying

D�X�� � � �X � P � �����

Ideally
 one would like to go ahead and de�ne the quantum Hilbert space HP as
HP �� H�P �L�
 i�e� as the space of P �polarized sections of L square integrable
with respect to the Liouville measure on �M���� This
 however
 usually does
not work
 either because polarized sections are not square integrable �e�g� the
Schr
odinger wave functions
 which depend only on the coordinates so that the
momentum integral will diverge�
 or because there are no smooth polarized
sections of L at all� These di�culties are best illustrated by concrete examples
and we will do this below� First
 however
 we will come to the issue of quantum
operators acting on polarized states
 which can be stated and addressed in more
generality�

In section �
 to every function on M we were able to associatexd a prequantum
operator P�f�


P�f� � 	i hD�Xf � � f �

acting on the sections of L and satisfying the quantization conditions Q��Q��
in particular


Q� � �P�f��P�g�� � 	i hP�ff� gg� �f� g � C��M� � �����

On the basis of our experience with �at space quantum mechanics and keeping
in mind the Groenewald � van Hove theorem we expect to have to sacri�ce at
least parts of ����� when moving from prequantization to quantization� We
also expect to have to modify the assignment P in general because we don�t
expect nor want all quantum operators to be at most �rst order di�erential
operators� In fact
 we know from quantum mechanics �	��� that the usual
kinetic energy term quadratic in the momenta should come out as proportional
to the Laplacian
 at least if Q � Rn�

The �rst step is to check which of the prequantum operators P�f� can be
promoted directly to operators on P �L� �the necessary modi�cations due to half�
density quantization are irrelevant for our present purposes and will be given in

	�



the next section�� The requirement is obviously that P�f� map polarized states
to polarized states
 i�e�

D�X�� � � �X � P � D�X�P�f�� � � �X � P � ���	�

The obstruction to this comes from the term D��Xf �X��� so that ���	� is equiv�
alent to

���	� � �Xf �X� � P �X � P

� �Xf � P � � P � �����

This is a very intuitive result because it says that a classical observable f de�nes
an operator on the space of P �polarized states via the prequantum assignment
f � P�f� provided that its �ow leaves the polarization P invariant� This

follows also from the argument given in ������������ if #f
t leaves P invariant


one can use ������ directly to de�ne the operator Q�f� on polarized states� Let
us call the space of these functions
 which is not particularly large
 C�

P �M��
It is closed under Poisson brackets and contains
 in particular
 the functions
whose Hamiltonian vector �elds span the polarization� The latter are diagonal
on polarized states in the sense that

Q�f�� � f� � �����

For example
 in the case of the vertical polarization of a cotangent bundle one
�nds

f � C�
P �T �Q� � �Xf �

�
�pk

� � P �k
�

�
��

�pk�ql
f
�

�
�pl
	
�

��

�pk�pl
f
�

�
�ql

� P �k
� ��

�pk�pl
f � � � �����

so that f � C�
P �T �Q� i� it is at most linear in the momenta


f � C�
P �T ��Q��� f�q� p� � f��q� � fk�q�pk � �����

For such f the quantum operator is

�Q�f����q� � f��q���q� 	 i hfk
�

�
�qk

�
�
�q� � �����

This expression will still have to be modi�ed by a correction term coming from
the measure
 see ������ below� By the same reasoning as above one �nds that
the only real valued observables preserving the holomorphic polarization on
T �Rn � Cn �see section ��	� are of the form

f�z�  z� � f� � fkz
k �  fk z

k � fklz
k zl � �����

where f� � R and fk and fkl �  flk are complex constants� This makes the
holomorphic representation particularly suitable for the quantization of the har�
monic oscillator whose Hamiltonian is proportional to jzj�
 see section ��	�
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For the time being
 this is all I have to say about polarization preserving observ�
ables and we are now confronted with the question what to do with functions
which move the given polarization P � Another way of stating this
 in which the
polarization plays a more passive role
 is that via its canonical lift b#f

t ������
to �L�D� the Hamiltonian �ow on M generated by such a function f moves a
P �polarized state � out of P �L�� The evolved state

�t 
 b#f
t � ������

is now polarized with respect to the pulled�back polarization

Pt 

�
#f
t

��
P � ������

� � P �L�� �t � Pt�L� � ������

Thus evidently what we need is a way of relating states to each other which are
polarized with respect to di�erent polarizations� To proceed
 let us make the
simplifying assumption that the quantum Hilbert spaces Ht 
 HPt constructed
from the family of polarizations Pt can all be regarded as subspaces of the
prequantum Hilbert space H� This assumption holds
 for instance
 when Pt is
a family of positive K
ahler polarizations� In that case we have the orthogonal
�wrt the scalar product on H� projections

$t�t � Ht �Ht� �

$�t 
 $t � Ht �H� 
 HP ����	�

available to project the state �t back to HP � Thus
 in analogy with ������ we
can now attempt to de�ne the quantum operator Q�f� on HP by

Q�f�� �� 	i h d
dt �$t�t� jt
�

� 	i h d
dt

�
$t
b#f
t �
�
jt
� � ������

This is the basic idea of the Blattner � Kostant � Sternberg construction� Even
in this situation
 determining when ������ exists
 when it exists as a self�adjoint
operator and when the projections are unitary is a highly non�trivial problem�

In the general case
 when the quantum Hilbert spaces cannot be regarded as
subspaces of H
 the orthogonal projection operators have to be replaced by
some other
 less natural
 linear maps from one Hilbert space HP to the other

HP � 
 and the problem becomes correspondingly more di�cult�

One case which is tractable is the following� Consider a symplectic vector space

regarded as the �at symplectic manifold M � T �Rn
 and let P 
 P � and P �� be
the vertical
 horizontal
 and holomorphic polarization respectively� In all three
cases we have an irreducible representation of the Heisenberg group on the
corresponding quantum Hilbert space� Thus
 by the Stone � von Neumann
theorem �section 	�
 the existence of unitary�"� linear operators from HP to
HP � and HP to HP �� is guaranteed� The former is just the Fourier transform
from the coordinate to the momentum representation
 and the latter is the

	�



Bargmann transform realizing the unitary equivalence of the con�guration and
holomorphic representations�

It can
 moreover
 be shown that in the case of a vertical polarization the quan�
tum operator associated to the kinetic energy function in �at space comes out
correctly to be the Laplacian �plus scalar curvature terms in the case of a
curved con�guration space�� The calculation is
 unfortunately
 too lengthy to
be reproduced here
 see ���
 �	��

By such considerations one is also naturally led to the important and subtle
question to which extent the resulting quantum theory depends on the choice of
polarization and which polarizations give rise to unitarily equivalent theories�
Some interesting progress has been made on this question recently ��� motivated
by topological and conformal �eld theory� Unfortunately
 I will not be able to
go into this here� For an explanation of half�form quantization from this point
of view see ��	��

��� The Vertical Polarization and Half�Densities

We now discuss the construction of the quantum Hilbert space in the most
familiar looking case of the vertical polarization� Recall that this is the polar�
ization P � Dc spanned by the tangents to the �bers of a cotangent bundle
M � T �Q� The prequantum line bundle �L�D� is trivializable and in terms
of the trivializing section s��m� � �m� �� the Hermitian structure on the �bers
and the compatible connection potential are

� s�� s� � �m� � � � 
 � ��� h�� � ��� h�pkdq
k � ������


 is adapted to the vertical polarization so that the covariant derivative along
the �bers of P is simply the ordinary derivative acting on functions on T �Q


D����pk� � ���pk �

Thus polarized sections corespond to functions which are independent of the
momenta pk
 i�e� to functions on Q� We now need to turn this into a Hilbert
space� The �rst guess would be to use the Hilbert space structure on the
prequantum Hilbert space H and to de�ne the quantum Hilbert space HP as
H � P �L�
 i�e� as the space of sqare integrable P �polarized sections of L� Un�
fortunately
 this space is empty as pk�independent wave functions are certainly
not square integrable with respect to the Liouville measure � the integral over
the �bers diverges�

In this particular example a �partial� remedy to the problem immediately comes
to mind� one should integrate polarized sections not over M but over Q �which
is
 more invariantly
 to be regarded as the space M�D of leaves of the polariza�
tion�� However
 there is no natural measure on Q� If a metric on Q is given

perhaps implicitly via a Hamiltonian of the form H � gklpkpl�� � � � �
 then
one can construct the density

p
gdnq �g � det gkl� which can be used to de�ne

a scalar product on P �L�� Alternatively
 and more generally
 one can try to
work from the outset with a bundle whose �polarized� sections are square�roots

	�



of densities �n�forms� on Q so that the scalar product of two such objects is
automatically well de�ned� This leads to the half�density quantization scheme�

Under the assumption that Q is oriented we can
 following ��	�
 proceed as
follows �for the full �edged half�density quantization scheme see ���� or the �rst
edition of ��	��� The material will be presented in such a way that the extension
to other real polarizatons �with simply connected leaves� should be self�evident�
Let us introduce the �determinant� line bundle

Det�Q� �� %n ��T �Q�c� ������

whose sections are complex valued volume forms on Q� As we assumed Q to be
orientable �and oriented� we can form the square root Det����Q�
 e�g� by choos�
ing real and positive transition functions for Det�Q� and using their positive
square roots to de�ne Det����Q�� Via the projection 	 � T �Q� Q we can pull
these line bundles back to T �Q where we denote them by

	��Det�Q�� �� KD

	��Det����Q�� �� �D � �KD�
��� ������

It should be kept in mind that
 as bundles over T �Q
 their spaces of sections are
now C��T �Q��modules �i�e� sections can be multiplied by functions on T �Q��
Thus sections of KD are not necessarily pull�backs of volume forms on Q� We
would now like to replace the prequantum line bundle L by LD � L � �D� In
order to de�ne P �polarized sections we need the notion of a covariant derivative
of sections of �D along P � We de�ne the covariant derivative of a section � of
KD along P by

D�X�� � i�X�d� � ������

This �partial� connection is �at


��D�X��D�Y ��	D��X�Y ��� � � ������

�because d� can have at most one �vertical� direction� and � is the pull�back
of an n�form on Q i� it is covariantly constant along P � ������ gives rise to a
covariant derivative on sections � of �D via the obvious de�nition

D�X��� � ��D�X�� or D�X����� � �
��

����D�X�� � ������

For vector �elds preserving the vertical polarization one can also de�ne the
Lie derivative of sections of KD via the usual formula L��� � di��� � i���d for
di�erential forms� Obviously
 L�X�� � D�X�� if X � P � L��� extends to �D
in the same way as D��� in �������

Sections of LD are of the form s� where s is a section of L and � a section of
�D and we call s� a P wave function if

D�X��s�� 
 �D�X�s�� � sD�X�� � � �X � P � ������

As the product of two sections of �D is a section of KD and the scalar product
on the �bers


� s���� s��� ���� s�� s� �  ���� � ������

	�



is parallel along P by ������
 we can identify it with an n�form on Q� We have
thus arrived at our goal of de�ning a natural scalar product on the space of
polarized sections
 namely

�� s���� s��� ����

Z
Q
� s�� s� �  ���� � ����	�

The quantum Hilbert space HP is now de�ned to be the L��completion of the
space of smooth P wave functions with resepct to this scalar product�

The construction of quantum operators acting on HP now proceeds exactly
as in section ���� For a polarization preserving function f we saw that the
prequantum operator P�f� was well de�ned on the space P �L� of P �polarized
sections of L� It thus remains to de�ne its action on sections of �P � Keeping
in mind that P�f� is nothing but the generator of the canonical �ow of Xf

on sections of L ������ and that its generator on di�erential forms is the Lie
derivative
 we set

Q�f��s�� � �P�f�s�� 	 i hsL�Xf �� � ������

In particular
 if we �x a volume element � on Q then P wave functions are of
the form s���q��

��� with scalar productZ
Q

 �����

and the required modi�cation to ����� is

�Q�f����q� �
�
f��q�	 �

� i h div��f
k��q�

�
��q�	 i hfk

�
�
�qk

�
�
�q� � ������

Here the divergence of a vector �eld Y on Q with respect to � is the function
on Q de�ned by

div��Y �� �� L�Y �� � di�Y �� � ������

This correction term can be regarded as arising from a particular symmetric
�operator ordering� of the classical expression fkpk
 an issue which
 as such
 is
not present in GQ� It vanishes
 e�g�
 when � �

p
gdnq and Y is a Killing vector

of the metric gkl�

The construction of operators corresponding to observables not preserving the
vertical polarization proceeds via BKS kernels whose naive construction I indi�
cated in section ���� Matters are complicated by the fact that one has to take
into account the variation in �Dt

� In order to keep track of relative phase factors
in the corresponding Hilbert spaces one eventually has to modify the de�nition
of �D in such a way that it does not depend on the orientation of M�D� The
resulting quantization is half�form or metaplectic quantization� Virtually the
same correction term as above appears as the metaplectic correction to a po�
larization preserving operator in other polarizations� In that form it will turn
out to be responsible for the ground state energy of the harmonic oscillator �see
the discussion in sections ��	 and �����
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��� K�ahler Quantization and Metaplectic Correction

We now deal with the simpler case of a positive K
ahler polarization� We thus
consider a K
ahler manifold �M��� J�
 a prequantum line bundle �L�D�
 and
choose P � T �����M �see section ��	� to be the polarization spanned by the 	i
eigenspaces of J � Locally
 P is spanned by the vector �elds ���� zk� where the
zk are holomorphic coordinates on M � The space of holomorphic �P �polarized�
sections of �L�D� can be shown to be a closed subspace of the prequantum
Hilbert space H� It is thus a Hilbert space in its own right which we take to be
the quantum Hilbert space HP of the system�

To obtain a more explicit description of HP it is useful to work with local
connection potentials adapted to P � We noted in section ��	 that a convenient
choice is �K � 	i�K where K is the K
ahler potential� Let us see how this
works in the case of a K
ahler vector space� According to ������
 K is given by

K � �klz
k zl �

so that
�K � 	i�kl zldzk � ������

To account for this change from � to �K 
 we have to change the local trivializing
section� Tracing through the formulae of section � one �nds that s� is to be
replaced by

sK � exp
�
	 �

��h��klq
kql � �klpkpl 	 �ipkq

k�
�
s� � ������

Polarized sections of the �trivial� prequantum line bundle are thus of the form

s�z�  z� � sK�z�  z���z� ������

where ��z� is a holomorphic function on Cn� It follows from � s�� s� �� � and
������ that the Hermitian structure in this trivialization is given by

� sK � sK � �z�  z� � exp�	jzj�� h� � exp�	K� h� � ���	��

From this we can also read o� that with respect to the canonical symplectic
potential and the section s� polarized wave functions are of the form

��z�  z� � ��z� exp
�
	jzj��� h

�
�

as could of course also have been deduced directly from solvingD���� zk��s��� �
� in this trivialization� Either way HP can be identi�ed with the space of holo�
morphic functions on Cn with scalar product

�� ��� �� ���

Z
Cn

dnp dnq ���z����z� exp�	K� h� � ���	��

It is clear from this expression that the Hilbert space would have been empty if
we had chosen a non�positive K
ahler polarization �with K corresponding to an

��



inde�nite quadratic form� because there would not have been any normalizable
holomorphic functions�

As we already noted above
 this holomorphic representation with

Q�zk���z� � zk��z� � Q� zk�� �  h �
�zk

��z� � ���	��

is unitarily equivalent to the Schr
odinger representation� It is also known as
the oscillator representation
 with Q�zk� and Q� zk� interpreted as creation and
annihilation operators respectively� As one has a direct particle �occupation
number� interpretation in this representation
 it is the conventional starting
point in canonical quantum �eld theory�

This representation is particularly convenient for quantizing the harmonic os�
cillator as its Hamiltonian �we take n � � for notational convenience�

H�q� p� � �
��p

� � q�� � z z ���		�

preserves the holomorphic polarization
 c�f� ������ Acting on holomorphic func�
tions
 the corresponding �pre�� quantum operator is

�Q�H����z� �  hz �
�z��z� � ���	��

which spells doom because its eigenfunctions are the monomials zn with eigen�
values n h� It is
 of course
 well known from quantum mechanics that this is
incorrect and that the spectrum should be shifted by the ground state energy
�
� h� In the standard treatment this term arises from symmetrizing

H � z z � �
��z z �  zz�

before substituting the operators ���	�� for z and  z so that one obtains the
quantum operator bH �  h�z �

�z �
�
�� � ���	��

This shows that
 in spite of the fact that everything has run so smoothly so
far in the case of positive K
ahler polarizations
 the necessity arises to modify
the quantization procedure for K
ahler manifolds as well� Interestingly
 it turns
out that the half�form quantization scheme which solves a number of problems
arising in the context of real polarizations also takes care of the present short�
coming� Namely
 one of the consequences of the metaplectic correction is that
it gives rise to an additional term in the expression for the quantum operator of
a polarization preserving observable �similar to the one encountered in ��������
A recipe for constructing the corresponding quantum operator will be given
below� For the harmonic oscillator the e�ect of this will be precisely to replace
���	�� by ���	��� This is quite remarkable because a priori it is not at all clear
what half�forms have to do with operator ordering�

A general rule of thumb for including the metaplectic correction to the operator
corresponding to a polarization preserving obervable is the following �see ������
Let the polarization P be spanned by the n complex vector �elds Xk
 k �

��



�� � � � � n� If f preserves the polarization P 
 there is a matrix a�f� 
 �akl�f�� of
functions on M satisfying

�Xf � Xk� � a l
k�f�Xl � ���	��

In terms of this matrix
 the half�form corrected quantum operator is

Q�f� � P�f�	 �
� i h tr�a�f�� � ���	��

In the case of the harmonic oscillator
 P is spanned by �
��z and the Hamiltonian

vector �eld is
XH � i�z �

�z 	  z �
��z � �

Thus

�XH �

�
��z � � i ���z �

leading to the correct�ed� expression

Q�H� �  h�z �
�z �

�
�� ���	��

and the energy spectrum

spec�Q�H�� � f�n� �
�� h� n � �g � ���	��

In the general case of a K
ahler manifold �M��� J� everything works as above� In
particular
 expressions like ������ and ������ are still valid locally and allow one
to represent polarized sections locally by holomorphic functions on M � Certain
interesting and new features arise when M is compact so that the only globally
de�ned holomorphic functions on M are the constants� To explain these
 I will
make use of some algebraic geometry �see e�g� ������

First of all
 we can use local non�vanishing polarized sections of L as trivializing
sections� Then the transition functions will be holomorphic and hence give L
the structure of a holomorphic Hermitian line bundle over M � The space of
holomorphic sections of L can be identi�ed with the zero�th sheaf cohomology
group H��M�L� of M with values in the sheaf L of germs of holomorphic sec�
tions of L� By general theorems
 this is �nite dimensional so that the quantum
Hilbert space will be �nite dimensional as well


dimHP � dimH��M�L� �� � ������

It is for this reason that compact symplectic manifolds are usually used to
introduce internal degrees of freedom� For instance
 if one quantizes T �Rn
M
using the vertical polarization in the �rst and the holomorphic representation
in the second factor
 the resulting Hilbert space is a tensor product of L��Q�
with the �nite dimensional Hilbert space HP �M�� If M is e�g� a coadjoint orbit
of a group G such that HP �M� carries an irreducible representation of G
 then
the resulting tensor product wave functions are usually interpreted as wave
functions taking values in this representation or carrying a representation of G�

I will illustrate this in the case of the two�sphere whose prequantization we had
discussed in Example � of section ���� Recall that we introduced two coordinate

��



patches U� with local complex coordinates z� and that the transition functions
for the line bundle Lk were given by �z��

k � �z���k� Furthermore
 for k � �
the K
ahler potential
 symplectic form and adapted symplectic potential were

K� �  h log�� � jz�j�� �

� � 	i h d z�dz�
�� � jz�j��� �

�K�
� 	i h  z�dz�

� � jz�j�

�see �����
����
������� To determine the global holomorphic sections of Lk in
this trivialization
 we have to check which local holomorphic functions on U�
can be patched together via the transition functions� This is easy� A basis for
holomorphic functions on U� is given by the monomials �z��

l and on U� by
�z��m for l and m non�negative integers� We thus have to �nd the solutions to
the equation

�z��
l � �z��

k�z��m �

This gives
l � k 	m

which has non�negative integer solutions for l � k and m � k� Thus the
dimension of the space of holomorphic sections is k��
 precisely the dimension
of the spin k�� representation of SU���� As the patch U� covers everything
but one point on S� we can de�ne the scalar product by integration over U�

alone� As in ���	�� the Hermitian structure on the �bers of Lk gives an extra
contribution to the measure of the form �we now call z� simply z�

exp�	kK� h� � �� � jzj���k ������

so that overall the scalar product �with the standard normalization� is

�� ��� �� ��� �
�	

Z
i���z����z�dz�d z

�� � jzj��k��
������

�the additional power of two coming from the symplectic form��

There are two other things worth noting about ������� On the one hand
 if the
K
ahler polarization is not positive
 then dimH��M�L� � � and the Hilbert
space is empty �as in the non�compact case�� On the other hand
 if L is
�su�ciently positive� then the dimension of HP can be computed from the
Riemann�Roch theorem� More precisely
 the RR theorem expresses the Euler
characteristic

��M�L� ��
X
i

�	��i dimHi�M�L� ����	�

in terms of characteristic classes


��M�L� �

Z
M

ch�L�T �M� � ������

Here ch�L� is the Chern character of L and can be represented by exp����	 h�
while T �M� is the Todd class of M whose precise form will not interest us� If

�	



one replaces L by Lk �and hence � by k�� for some positive integer k
 then
for some su�ciently large value of k the higher cohomology groups in ����	�
will vanish and the right hand side of ������ calculates directly the dimension
of HP � In particular
 T �M� does not contribute for k �� and one �nds �see
������

dimH��M�Lk�� kn

��	�h�nn�

Z
M
�n � � k

�	�h�
nVol��M� � ������

The limit k �� can be interpreted as the semi�classical limit  h� � and one
thus recovers the folklore wisdom that in the semi�classical limit the number
of quantum states is equal to the number of cells in phase space �measured in
units of  h�� Equation ������ has been used recently by Witten to calculate the
symplectic volume of certain moduli spaces of �at connections from quantum
�eld theory �����

��� Real Polarizations and Bohr�Sommerfeld Varieties

In this �nal section we will
 following ����
 take a brief look at the compli�
cations which can arise when the leaves of a real polarization are not simply
connected� In that case
 there can be global integrability conditions to the equa�
tion ����� de�ning polarized states� These lead to the necessity of permitting
distributional wave �functions� whose support is restricted to lower dimensional
subvarieties of M �

Let P � Dc be a real polarization and �L�D� a prequantization of �M����
We denote by % a leaf �integral manifold� of D and
 more speci�cally
 by %m

the leaf passing through m � M � The operator D
 restricted to covariant
di�erentiation along P 
 induces a �at connection D� on Lj�� If % is not simply
connected
 then it is possible for D� to have non�trivial holonomy along the
non�contractible loops in %� On the other hand
 the condition ����� implies
that �� is a covariantly constant section of L�� It is thus invariant under
parallel transport and
 in particular
 cannot pick up a phase from the non�
trivial holonomy of D�� Therefore either �� � � or the holonomy group of D�

is trivial �i�e� D� is the trivial �at connection�� Call S �M the union of points
in M such that D�m is trivial� S is known as the Bohr � Sommerfeld variety

and S � M if all the %m are simply connected� From the above it follows that
polarized sections of �L�D� vanish in the complement of S


� � P �L�� supp��� � S � ������

Instead of working with such distributional wave functions
 it is possible to
work with so�called cohomological wave functions �i�e� one trades singularities
for cohomology as is familiar from algebraic geometry�
 see �����

The relation with the usual Bohr � Sommerfeld quantization conditions is that

m � S � exp�i� h�

I


� � � ������

for all loops � in %m
 where � is a local symplectic potential� In terms of local
canonical coordinates �qk� pl� one can write � as pkdq

k and thus ������ becomes

��



the quantization conditionI


pkdq

k � �	 hn
 � n
 � Z � ������

Taking into account the contribution exp�	�	id
� to the holonomy from the
�at connection on the bundle of half�forms �d
 de�ned up to an integer�
 one
obtains the modi	ed Bohr � Sommerfeld conditionsI



pkdq

k � �	 h�n
 � d
� � ������

As the above discussion was rather abstract
 let us now take a look at two simple
examples where these distributional wave functions and the corresponding Bohr
� Sommerfeld conditions arise quite naturally �and turn out to be important��
The �rst of these is the cylinder
 whose prequantization and quantization in
the vertical polarization we have already dealt with in Example � of section
���� Here we shall look at the same model in the momentum representation
����� This is the representation de�ned by the horizontal polarization spanned
by ����� Consequently
 polarized sections have to satisfy

D�� �
���� � �

�recall equation ����	�� or

�
������ p� �

i
�h�p	  h������ p� � ������

Polarized sections are thus of the form

���� p� � exp� i�h�p	  h������p� ������

where ��p� is some function of the momentum� The �rst thing to note is that
this is not what one would naively have expected the momentum representation
to look like� The phase factor appears because of the choice of symplectic
potential
 � � pd�� If we had been able to choose 	�dp as a symplectic
potential �adapted to the horizontal polarization�
 polarized states would have
been of the expected form ��p�� However
 this potential is not globally de�ned

and the fact that we are dealing with quantum mechnics on the circle and not
on the real line is re�ected in the peculiar form of the wave functions� It is this
which guarantees that the vacuum angle � is equally visible in the momentum
representation although the space of momenta itself is topologically trivial�

Now we have to remember that the prequantum Hilbert space is the space of
L��functions on the cylinder so that
 in particular
 � has to be periodic in ��
From ������ it follows that this is only possible if the support of ��p� is restricted
to those p which satisfy

p � �n� �� h

for some integer n� This is nothing but the Bohr � Sommerfeld condition ������
and obviously leads inevitably to distributional wave functions with support on

��



S � Z� Along the way we have also recovered the discrete and shifted spectrum
������ of the momentum operator �diagonal in this representation��

As a second example let us take a brief look at the one�dimensional harmonic
oscillator in the real energy representation� This corresponds to the polarization
de�ned by the Hamiltonian vector �eld XH of the Hamiltonian H� In polar
coordinates �r� �� on the plane we have

H�r� �� � �
�r

� �

� � rdr�d� � d�Hd�� �

XH � �
�� � ������

To avoid having to deal with singular polarizations
 we remove the origin from
the plane and thus the phase space is R�nf�g with the above symplectic form�
Polarized wave functions are of the form

D�XH�� � �� ��r� �� � exp� i
��hr

����r� � ����	�

so that single valuedness of � imposes the �Bohr � Sommerfeld� condition

�
�r

� � n h �

Unfortunately
 this is only almost correct as it leads to the same wrong energy
spectrum we initally found in the previous section� As is also apparent from the
form of the wave function
 topologically this example is the same as the cylinder
we discussed above
 so that we could obtain the correct spectrum by �ne�tuning
the value of the vacuum angle to � � �

� � However
 this is rather ad hoc� A more
satisfactory way of obtaining the result is to take into account the contribution
from the bundle of half�forms� In the previous section
 this changed the form
of the energy operator� Here
 it gives rise to the modi�ed Bohr � Sommerfeld
condition ������� The �at connection on the bundle of half�forms is non�trivial

with d
 � �

� � This leads to the same shift in the spectrum as the choice � � �
�

and to the correct result ���	���
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