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1. Introduction

The history of the relationshipbetweenproblemsarising in the study of physicalsystemsand
the subsequentmathematicaldevelopmentsneededfor their analysisis rich and interwoven.Over
the pasttwo decades,someof the mostfruitful connectionshavecenteredaroundproblemsarising
in gaugetheory.Indeed,an understandingof theclassicalYang—Mills and instantonequationswas
called for on physicalgrounds,andthe studyof theseequationshas led to dramaticmathematical
advancesin the topology andgeometryof low dimensionalmanifolds.Whereasthesestudiescan be
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consideredto lie within the realmof classical physics,a numberof deepandexciting connections
haverecentlyemergedwhich link thesedevelopmentsintimately to quantumtheory.The study of
theserelationshasbecomeknownas topologicalquantumfield theory.On the onehand,this subject
hasprovidedaunifying perspectivefor manyof thesemathematicalresults,while at the sametime
it has significantly enhancedour understandingof two-dimensionalconformal field theory and
certain models in statisticalmechanics,and promisesnew insight into string theory. All of these
developmentsunderscorethe true richnessof quantumfield theory.

Topological quantum field theories are characterizedby observables(correlation functions)
which dependonly on the global featuresof the space on which thesetheoriesare defined. In
particular, this meansthat the observablesare independentof any metric which may be used to
define the classicaltheory. It is an amazingresult that one can achievegeneral covariancein the
quantumtheory without necessarilyintegratingover the metric, as one does in quantumgravity.
These geometricaland topological invariants, which are computableby standardtechniquesin
quantumfield theory, are of prime interest in mathematics.It is natural to hope that a deeper
understandingof this special class of field theories, all of which beara formal resemblanceto
many systemsof longstandingphysical interest,will provide new insight into the structureof these
more complicatedphysical systems.Topologicalquantumfield theoriesare quite generallysoluble,
and could provide a testing ground for new approachesto quantum field theory. Perhapsthe
most tantalizing physicalconjectureis that topologicalquantumfield theoriesrepresentdifferent
phasesof their more conventionalcounterparts;in thesetopological phasesgeneralcovarianceis
unbroken.From a purely mathematicalpoint of view, topological quantumfield theoriesprovide
novel representationsof certain global invariants whose propertiesare frequently transparentin
the path integralapproach.Although such derivationscannotbe consideredrigorous, they can be
checkedby otherphysical (Hamiltonian)andmathematicalmethods.

The origin of topological field theoriescanbe tracedto the work of SchwarzandWitten. It was
Schwarzwho showedin 1978 [1.11 that Ray—Singertorsion—aparticular topological invariant—
could be representedas the partition function of a certainquantum field theory. Quite distinct
from this observationwas the work of Witten in 1982 [1.2], where a framework was given for
understandingMorse theory in termsof supersymmetricquantummechanics.Thesetwo construc-
tions representthe prototypesof all known topological field theories.The model usedby Witten
alsofound applicationsin classicalindex theorems[1.3], andmoreover,suggestedgeneralizations
leadingto new mathematicalresultsin the form of the holomorphicMorse inequalities[1.41.

The significanceof Witten’s approachwas realizedby Floer [1.5], who appliedsimilar techniques
in an infinite dimensionalsettingto obtain new resultsconcerningthe topology of three-manifolds.
This work was clearly relatedin someway to the findings of Donaldson[1.6] on the geometryof
four-manifolds. In an influential paper [1.7], Atiyah thenconjecturedthat a quantumfield theory
might provide an understandingof theseresults,and he produceda nonrelativisticHamiltonian
in three dimensionswhose ground states are the Floer groups. A four-dimensionalrelativistic
Lagrangiandescriptionof Donaldson’swork wassuppliedby Witten in 1988 [1.8], which established
the link betweenthesethree-andfour-dimensionalresults.

Quite apart from thesedevelopments,a new polynomial invariant of knots was constructedby
Jonesin 1985 [1.9]. It is noteworthythat this work was strongly influencedby problemsin two-
dimensionalstatisticalmechanics.As in all previouswork on knot theory, the evaluationof these
invariants was basedon two-dimensionalprojections.As knots are objects living intrinsically in
threedimensions,a longstandingpuzzlefor knot theoristshasbeento understandtheseinvariants
from a three-dimensionalpoint of view. In a classic paper [1.10], Witten again provided the
answerby constructingknot polynomials as correlation functions of Wilson line operatorsin a
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three-dimensionalquantumfield theorydefinedby the Chern—Simonsaction. Moreover,this theory
incorporatessignificantgeneralizationsof the previouslyknown invariants.While thesemathemat-
ical advancesare self-evident,Chern—Simonstheory also providesa unifying three-dimensional
viewpoint for two-dimensionalconformal field theory, as well as new resultson quantumgravity
in threedimensions[1.11].

Otherexamplesof topologicalfield theorieswerealsogivenby Witten [1.12,1.13].Thetopological
sigmamodelswereusedto constructinvariantsof complexmanifolds andarerelatedto otherwork
of Floer [1.14]. Also of importanceare the two-dimensionaltopological gravity models [1.15,
1.161.Therearemanytemptingconjecturesrelatingtwo-dimensionaltopologicalgravity with string
theory. Indeed,it is believedthatnoncritical string theorywith certainmattercontentis equivalent
to topologicalgravity coupledto topologicalmatter [1.17—1.19].

Giventhesedevelopments,it was naturalto try to understandwhetherthesemodelswere isolated
examples,or whether they belong to a larger class of theorieswhich enjoy similar topological
properties.Beforean answerto this questionwas provided,it was first necessaryto understandthe
formal field theoreticstructureof Witten’s actions.An explanationof the origin of theseactions
was given by several groups [1.20—1.23],anda generalprescriptionfor the constructionof these
andother modelswas developed[1.24—1.26].

The purposeof this report is to bring together many of thesedevelopments.While the subject
of topological field theoriesis still under active researchin many directions, a certain body of
materialis now well understoodand can be consideredstandardtechnique.It is our aim to explain
thesefield theoreticmethodstogetherwith the rich mathematicalstructureswhich they describe.
We assumethe readeris versedin standardBRST techniquesin quantumfield theory,andhasas
well a basicknowledgeof differential geometry.At each stage,we have endeavoredto review as
much backgroundmaterialas spacepermits,in an attemptto makethis presentationself-contained.
Where this hasnot really been possible,ample referenceshavebeengiven which the readermay
consult.

Our planis as follows. We beginin the next sectionwith a generaldiscussionof topological field
theories,their definingproperties,and classification.A knowledge of this material will allow the
readerto move freely amongthe other sections.The first model we considerin detail (section3)
is supersymmetricquantummechanics.This will serveto illustratemanyof the genericfeaturesof
topologicalfield theoriesin as simpleasetting as possible.Topological sigmamodels,theirobserv-
ables,and the associatedmathematicsof complexgeometryandintersectiontheory are presented
in section4. Following this, topologicalgauge theoriesare discussedin section5, with particular
emphasison Donaldsontheory.The mathematicshereis necessarilymuch more sophisticatedthan
at anyotherpoint in this report, andto bridgethis gap, amathematicalreviewof gaugetheory and
moduli spaceshasbeen included. An analysisof the geometryunderlyingDonaldsontheorygives
a generalrecipefor constructingfield theoriesassociatedto moduli spacesin arbitrary dimensions,
and as an example,we analyzein detail the superBF theoriesassociatedwith flat connections.
Chern—Simonstheory and relatedBF modelsare the subjectof section6. The connectionswith
knot theory arebriefly reviewedand the link with 2D conformal field theory is sketched.We also
consider3D gravity from the Chern—Simonspoint of view. A thoroughdiscussionof Chern—Simons
theory would, however, involve considerableuseof conformal field theory, and this lies beyond
the scopeof this report. This is also the casewith two-dimensionaltopological gravity, but we
have neverthelesspresentedsome of its more elementaryfeaturesin section7. A presentationof
the metric andgaugetheory approachesto topologicalgravity in two dimensionsis given, though
we stop short of detailedcomputationsinvolving conformal field theory.As in all quantumfield
theories,the issue of renormalizationneedsto be addressed,andone is obliged to show that the
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formal topological propertiesof thesetheoriessurvive quantization.This point is consideredin
section 8. We presenta detailedanalysisof the beta function in certainWitten type theories,and
computeone-loopeffects in Chern—Simonstheory.We will have recourseat many points in this
report to apply the Batalin—Vilkovisky quantizationprocedure,andfor convenience,the readercan
find the essentialsreviewedin appendixA.

One aspectof topological field theory that we do not touch upon in this report is the axiomatic
approachinitiated by Atiyah [1.27]. Many of the more recentmathematicalapplicationsof the
ideasof topological field theory rely, to a certainextent,on this formulation,which is similar to that
proposedby Segalfor conformalfield theory [1.28]. Unfortunately,lack of spacehaspreventedus
from including this part of the story.For a detailedaccount,and someinterestingapplications,we
refer to the work of Axelrod [1.29].

It hadbeenourintention in this report to includeacompletelist of referencesto topologicalfield
theory; however,the subject is still under rapid developmentand any list at the time of writing
is necessarilyincomplete.We apologizeto thoseauthorswhosepapershaveescapedour attention,
andto thosewhosework we haveinadvertentlyomitted.

2. Generalaspectsof topological field theory

Before embarkingon a survey of the variousmodelson the market, it is useful to first present
some generaldefinitions and propertiessharedby all topological theories.Among theseare the
simple formal argumentswhich establish,with some exceptions,the topologicalnature of a given
model. In addition,we presentausefulclassificationschemeof the knowntheories:we characterize
modelsas being either of Witten or Schwarztype; the prototype of the former being Donaldson
theory,while Chern—Simonstheory is the bestknownexamplein the Schwarzclass.Finally, we also
introducethe important notion of a moduli space,which containsthe classicaldataupon which
everytopological field theory is built.

2.1. Definitions

Let usbeginby recallingthe essentialingredientswhich arepresentin a conventionalgaugefield
theory, for exampleYang—Mills theory.We shall assumethat the reader is familiar with BRST
quantizationof gauge theories [2.1, 2.2]; useful referencesare [2.3—2.9].In such a formulation,
we denotethe collectivefield contentby Z, which includesthe gaugefield, ghosts,andmultipliers.
Correspondingto the local gaugesymmetryone constructsa BRST operatorQ which is nilpotent,
i.e., Q2 = 0. The variationof any functional 0 of the fields ~ is denotedby öO = {Q, 0}, where
the bracketnotation is usedto representthe gradedcommutatorwith the fermionic chargeQ (see
appendixB for this andrelatedconventions).The completequantumaction, denotedby Sq, which
comprisesthe classicalactionS~together with the necessarygaugefixing andghostterms, is by
constructionQ-invariant.

The physical Hubert spaceis defined by the condition Q~phys)= 0; furthermore,a physical
stateof the form phys)’ = Iphys) + Qix) is regardedas equivalentto phys), for any state Ix). A
statewhich is annihilatedby Q is said to be Q-closed,while astate of the form QIx) is called
Q-exact. This equivalencerelation thus partitionsthe physicalHilbert spaceinto what are called
Q-cohomologyclasses,that is, stateswhich are Q-closedmodulo Q-exactstates[2.3].

Now, from the BRST invarianceof the vacuum,it follows immediatelythat the vacuumexpec-
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tation valueof {Q, 0), for anyfunctional 0, is zero, i.e.,

(0I{Q,0}I0) ({Q,0}) = 0. (2.1)

An operatorof the form {Q, 0} is called a BRST commutator.Let us now assumethat we are
definingour theory on some manifold M, with a metric gap. In this casethe energy—momentum
tensor~ is definedby the changein the actionunderan infinitesimal deformationof the metric

ögSq = ~/jög~’1~Tap. (2.2)

Finally, we assumethat thefunctional measurein the pathintegral is both Q-invariantandmetric
independent.

We are now in a positionto definewhat we meanby a topologicalfield theory [2.10,2.111. Our
working definition will be the following: A topological field theoryconsistsof

(a) a collection of fields 1 (which are Grassmanngraded)definedon aRiemannianmanifold
(M,g),

(b) a nilpotent operatorQ, which is odd with respectto the Grassmanngrading,
(c) physicalstatesdefinedto be Q-cohomologyclasses,
(d) an energy—momentumtensorwhich is Q-exact,i.e.,

Tap = {Q,V~p(4i),g)}, (2.3)

for somefunctional Vap of the fields andthe metric.
It turns out that in all examplesto date, Q has an identification as a BRST charge, and

the Grassmanngrading correspondsto ghost number.However, oneshould remark that such an
identification is by no meansmandatory.Nevertheless,we shall henceforth refer to Q as the
BRST operator.Furthermore,Q is in generalmetric independent,andthis is certainly the simplest
situationto deal with, and the only one we shall consider for the moment.However, thereare
interestingcaseswhere Tap is a BRST commutator,although Q fails to be metric independent
(supersymmetricquantummechanicsand topological sigma models, for example;see sections3
and4). In addition,therearecaseswhere Tap fails to be a BRST commutator,while, nevertheless,
it is still possibleto establishthe topologicalnatureof the models (examplesare providedby the
higherdimensionalnon-AbelianBF theoriesof section6). It is thusclearthat the abovedefinition
may not be completelyadequatein all cases;however,it does,as statedabove, provide uswith a
good working definition, and is generalenoughto covermost cases.

We now considerthe changein thepartition function

z = f[d~] s_Sq (2.4)

underan infinitesimal changein the metric. We have

ôgZ = J[d~] ~Sq (_~fdnx~og~Tap)

= f[d~] ~Sq (_~fdnx ~ogaP{Q,

= f[d~] eSq {Qx} = ({Q~x})= 0, (2.5)
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wherex = — ~ fM d~x~ ogaP V~p.We thussee that giventhe BRST invarianceof the vacuum,we
haveapartition function which is metric independent.That is, the partition function dependsnot
on the local structureof the manifold, but only on global properties:Z is a topological invariant.
At this point, however,we should perhapsclarify the use of the terminology“topological”. In all
cases,our theory is defined with respectto a “base” manifold M. This could be, for example,a
Riemannianmanifold with metric g, or a more generalsituation. What we have shownabove is
that if the conditions (a)—(d) are satisfied,then the partition function takesa constantvalue on
the spaceof all metrics on M. We shallhenceforthusethe term “topological” to specifythis metric
independence.

However, in the mathematicsliteraturethe term “topological” is defined in a weaker sense.
Two manifolds M and M’ are said to be homeomorphicif there exists a homeomorphismf
M —+ M’ (i.e., f and f are continuousmappings).One can thus partition manifolds into
homeomorphismequivalenceclasses.An object which takes a constantvalue on each class is
called a “topological invariant”. However, onecan further subdivideeach homeomorphismclass
by specifyingdiffeomorphisms (i.e. C°°mappings)betweenits members.Eachhomeomorphism
classthen comprisesa collection of diffeomorphismclasses,andan object which takesa constant
value on each of the latter is called a differential invariant for the manifold M. An object which
is invariant undermetric deformations(i.e. topological) is certainlyalso diffeomorphisminvariant
andhencecorrespondsto adifferential invariant.

We can now ask the questionas to whether there exist other metric independentcorrelation
functionsin thetheory; doesa given theoryhavea richer setof topological invariants?

Considerthe vacuumexpectationvalueof an observable

(0) = f[d~] ~Sq 0(~). (2.6)

We wish to determinesufficient conditionsfor this expectationvalue to be a topological invariant,

i.e., for óg(0) to be zero. Proceedingas before,we find [2.10]
ög(0) = f[d~] s_Sq (ógO—ögSq.0). (2.7)

Assumingthat 0 enjoysthe properties

ôgO_{Q,R}, {Q,0}0, (2.8)

for someR, we havethat

ôg(0) = ({Q,R + ~0}) = 0. (2.9)

One should note that the function Vap defined earlier containsexplicit referenceto the metric;
nevertheless,it enters the analysisin the form of a BRST commutatorand one still has metric
independenceof Z.

Now, clearlyif 0 = {Q, 0’), for some0’, weautomaticallyhave(0) = 0. Hence,ourreal interest
is in Q-cohomologyclassesof operators(i.e., BRST invariant operatorswhich are not Q-exact)
which satisfy ög0 = { Q, R}. In deriving the aboverelations,we shouldnotethatwe madeessential
useof the (assumed)metric independenceof the functionalmeasure.To showthat thisassumption
is in fact realized,one needsto checkfor metric anomalies.

Our aim now is to presenta convenientclassification schemefor the known topological field
theories.The theoriesthat we shall describein this report can be classified as being of either of
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two types: Witten type or Schwarztype [2.121.Let us first define the Witten typetheories[2.10,
2.11]. In this casethe completequantumactionSq , which comprisesthe classicalactionplus all
the necessarygaugefixing andghostterms,canbe written as a BRST commutator,i.e.,

Sq = {Q, V}, (2.10)

for somefunctional V(1,g) of the fields, and Q is the nilpotent (andin general,metric indepen-
dent) BRST charge.Thereis also the freedomto addtopological termsto the action (2.10); i.e.,
termsfor which the Lagrangianis locally a totalderivative;suchtermschangeneitherthe equations
of motion nor the energy—momentumtensor.Clearly, as a consequenceof (2.10), we have

Tap = {Q,(2/~/j)ôV/ög~}, (2.11)

which ensuresus of the topologicalnatureof the model. However, the strongercondition (2.10)
allows us to prove that the partition function Z, andthe abovecorrelators,are also exact at the
semiclassicallevel. By introducing a dimensionlessparametert (equivalently, 1 /1k) and rescaling
the actionSq tSq, we can considerthe variation of Z undera changein t:

= _f[d~] e_tS~5q~

= — f[d~] e~t5~{Q,V} öt = 0. (2.12)

This showsthat Z is independentof t, as long as t is non-zero (onecannotset t to zero,sinceone
needsa dampingfactor in the path integral) andthusonecanevaluateZ in the large-t limit. Such
a limit correspondsto the semiclassicalapproximation,in which the pathintegral is dominatedby
fluctuationsaroundthe classicalminima;such anapproximationis exactfor Witten typetheories.A
similarargumentappliedto (2.6) establishesthe semiclassicalexactnessof the correlationfunctions.

For the caseof Schwarztype theories[2.13, 2.14],one beginswith a metric independentclassical
action Sc(~I~)which is not a total derivative. Upon gauge fixing, the total quantumaction (in
certaincases)takesthe form

Sq(tP,g) = S~(cl) + {Q,V(I~,g)} . (2.13)

We should stressthat by Schwarztype, we meana classicalactionwhich is nontrivial. Since the
classicalaction is metric independent,the classicalenergy—momentumtensorvanishes.If (2.13)
holds,the completeenergy—momentumtensoris given by

Tap = {Q, (2/~/~)oV/ogaP}, (2.14)

with the entirecontributioncomingfrom the gaugefixing andghostterms.It follows thatZ is metric
independent.At this point, however,we needto be moreprecisein our definition of Schwarztype
theories.Theorieswhich satisfythe abovepropertiesinclude Chern—Simonstheory,theAbelian BF
models,andalso the two- and three-dimensionalnon-AbelianBF modelsof section6.2. However,
the higher dimensionaln > 3 class of non-AbelianBF theories,discussedin detail there,possess
some“non-standard”properties.In particular,while onebeginswith ametric independentclassical
action, (2.13) and (2.14) do not hold. The sourceof the problemlies in the on-shell reducibility
of the gaugesymmetriesinvolved. More work is then requiredin order to establishthe topological
natureof the quantumtheory,andwerefer to section6.3.4 for detailsof how this canbe achieved.

As regardsthe importanceof loop correctionsin suchatheory,a few remarksarein order.Given
the fact that Schwarztype theoriesdo not enjoy the property that the quantumactionis Q-exact,
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we cannotappealto the generalargumentsfollowing (2.10) to establishthe semiclassicalexactness.
However,amongthe known Schwarztypemodels, it appearsthat Chern—Simonstheory is the only
one in which loop correctionsto the partition function, andthe observables,are non-zero;all other
BF modelshave a partition function (and observables)in which the semiclassicalapproximation
is exact.

We proceedwith a few words about the type of gauge symmetriesthat arise in the two cases.
For the Witten type theories, Q is obtainedby combining a certain topological shift symmetry
(ôck = e for certain fields) with any other local symmetry (e.g. conventionalYang—Mills type
gauge symmetry). However, for the Schwarz type models, Q correspondsto the usual gauge
symmetry,althoughperhapsof a reducibletype.

In addition to our working definition statedabove,anotheressentialpropertyof topologicalfield
theoriesis the absenceof dynamicalexcitations.In otherwords, thereare no propagatingdegrees
of freedom. To see this more explicitly in the different classesrequiresa little more discussion.
In the Witten type theoriesQ is both a supersymmetryand BRST operator.In otherwords, from
the structureof the (topological shift) symmetry,onecan see that each bosonicfield has a Q-
superpartner.In addition, however,we define our theory by the requirementthat physical states
areannihilatedby Q. Hence,the superpartnersareinterpretedas ghosts,leadingto the zerodegrees
of freedomcount.

In Schwarztype theories,Q correspondsto a BRST operatorof a gaugesymmetry.To establish
the absenceof degreesof freedom hereone can, for example, resort to a standardDirac analysis
of the constraints.This leadsto a straightforwarddeterminationof the dimensionof the reduced
physical phasespace.The fact that it turns out to be zero is a result of the specialstructureof the
classicalaction,wherebythe numberof first classconstraintsis sufficient to gaugeawayall degrees
of freedom.A more completediscussionof degreesof freedomcanbe found in section3.6.

In general,when the conditions (a)—(d) are met, we have

(phys’ I H I phys) = (phys’ I f T
00 I phys)

= (phys’ I f~,V00} I phys) = 0 , (2.15)

whereH is the Hamiltonian.We thus see that the energyof any physicalstate is zero, andhence
thereare no physicalexcitations.

It is worth pausingfor a momentto considerthe situationin stringtheory.Here, the world sheet
energy—momentumtensoris alsoaBRSTcommutator.This is alsotrue in anytheory (for example
gravity) whereoneis integratingovermetrics in the path integralwith a diffeomorphisminvariant
action. Indeed,stringtheory is atopologicalfield theorywith respectto the world sheetmanifold in
the senseof the first criterion. However, it is not topologicalwith respectto the target space—time
manifold, anda simple degreesof freedomcount showsthere are 24 propagatingmodesfor the
bosonicstring. This can alsobe seenfrom the fact that the variation of the actionwith respectto
the targetmetric is not aBRST commutator.

We should advise the readerthat the division of topological field theoriesinto the Schwarzand
Witten types,although standard,sometimesgoes under different labels [2.15, 2.16]. The Witten
typetheoriesarealsocalled “cohomological”,while the Schwarztypemodelsaretermed“quantum”.
The term “cohomological” derivesfrom the structureof the observablesoneencountersin those
theories,while “quantum” underscoresthenon-trivial natureof the Schwarztypequantumtheories
(semiclassicalapproximationis not necessarilyexact). Essentially,if a topological quantumfield
theory is not of Witten type (“cohomological”), then it is of Schwarztype (“quantum”).
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2.2. Moduli spaceasfields, equations,andsymmetries

In the previoussection,weoutlinedthe generalfeatureswhich arecommonto all of the topological
field theorieswhich havebeenstudied.One conceptthat lies at the heart of all thesetheoriesis
the notion of moduli space. For any given moduli space,there are many different topological
field theories(i.e. different fields, equations,and/orsymmetries)which describeit. In mostcases,
thosedifferencesmay simply be relatedto the freedom inherent in the quantizationprogram,as
we will see once we begin to look at specific models. But there are moduli spaceswhich have
severaldifferent classicaldescriptions,andthe associatedtopologicalquantumfield theoriesappear
quite unrelated.Nevertheless,it is a single, unique moduli spacethat will relate all of those
descriptions.

Roughly speaking,a moduli spaceis the set of equivalenceclassesof some geometricalobject
underan equivalencerelation. In string theory,for example,the moduli spaceof Riemannsurfaces
plays a central role. Two RiemannsurfacesM and M’ (genusg) are consideredequivalentif
thereexists a diffeomorphismf : M —~ M’ which is holomorphicin both directions.The moduli
spaceof Riemannsurfacesof fixed genus is thenthe set of equivalenceclassesin which any two
distinct pointsrepresentinequivalentRiemannsurfaces.In practice,moduli spacesmaycarry some
additionalgeometricalstructure,the moduli spaceof Riemannsurfacesof genusg canbeconsidered
as a finite dimensionalmanifold (modulo singularpoints) in a naturalway.

The moduli spaceof Riemannsurfacescan, like any othermoduli space,be describedin terms
of fields, equationsandsymmetries[2.16]. Onesuch descriptionis familiar to string theorists;we
considerthe spaceof all metrics (fields) and mod-out under the actionof diffeomorphismsand
Weyl transformations(symmetries).In this case,we do not require any “equations” to further
restrict ourselvesto the spaceof interest. Alternatively, we can trade onesymmetry for a field
equation,by demandingthat the metricshavefixed constantscalarcurvature. This is possible,
sinceeveryconformal classof metricshasa unique such representative.The remainingsymmetry
is thenthat of diffeomorphisms.We canalsochangethe field contentaltogether;we take SL(2,LR)
connectionsas the fields, require that the connectionbe flat, and declarethe symmetriesto be
gaugeandmodularinvariance(for adiscussion,see sections5.4.3 and6.2.7).

This descriptionof a moduli space—intermsof fields, equations,andsymmetries—isessentially
classical.A topologicalquantumfield theory emergeswhen one “quantizes”one of thosepictures.
The interestwill thenbe in studyingcertaincorrelationfunctionsof that quantumtheory.

Conversely,it is possible to define a Witten type topological field theory by specifying the
propertiesof the physicalcorrelationfunctions.For instance,onecandefinea theoryby postulating
the existenceof operators0, correspondingto cohomologyclasses~, of the moduli spaceM. One
then requiresthat

(Q~.•.0~)=Jtji...~n. (2.16)

This leads to the interpretationof the correlation functions as intersectionnumberson moduli
space;thereaderis referredto section4.5.2 for details.Giventhe definition (2.16), the taskis then
to establishthatan actionwith the desiredpropertiescanbe found,and indeedthishasbeenshown
to be possiblein somegenerality [2.17, 2.18]. This descriptionshows,however,that a particular
action is not neededto do computationsin a Witten typetopologicalfield theory.
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3. Supersymmetric quantum mechanics

3.1. Introduction

As ourfirst exampleof a topologicalfield theorywe shall considera relatively simpleandtractable
model, namelysupersymmetricquantummechanics.Although this model is interestingin its own
right [3.1—3.4],the rationalefor studying it in detail, in the presentcontext, is to illustrate the
fundamentalfeaturesof Witten typetopologicalfield theories.Supersymmetricquantummechanics
was identified as a topological field theory in refs. [3.5, 3.6], and as such, the techniquesused
in general topological field theorieshave counterpartsin this model. This exampleallows us to
introducethesetechniquesin a relatively simple setting.

We will usethe actionof supersymmetricquantummechanicsin the form

S = fdr [~(~1+ sgl )~)B
1 + ~g’~(çb)B1B1 +

_1wi(o~~+sg1(~)D~kD~f)w~]. (3.1)

Here, ç5’ arethe coordinatesof the RiemannianmanifoldM with metric andcurvaturedenoted,
respectively,by g1 andRIkI; w’ and ~ arethe Grassmannodd coordinatesof the particle; V is a
functionon M ands is a parameter.The covariantderivative in eq. (3.1),

= + 17~q~Jy/k, (3.2)

is the usualpull-backof the covariantderivativeon M to the one-dimensionalspacewith Euclidean
timecoordinatet. Our conventionsfor the Riemannianconnectionandcurvatureare given by

= ~gl!(~g~ +OkglJOlgJk)

RI a I a I I m I mIjk ~-‘i tk~’k 11+ j~ 1k — km if

Upon integrating out the auxiliary field B, one recoversthe action of refs. [3.1—3.4]with the
spinorsappearingin the latterdecomposedinto their components.We havethe freedomto choose
~ and cu as eithercomplexconjugatesor independentreal fields. This is analogousto the situation
in gaugetheories[3.7]. We choosethem to be real.

The supersymmetryof the action is

{Q~}=w’
{Q,~”}=0

{Q,yi~}=Bu~iii~[~w”

{Q,B1} = Bf1’kw” — ~i.~jR’,ikyI”y/’~ , (3.4)

andit is straightforwardto checkthatthe supersymmetrygeneratorQ is nilpotent: Q
2 = 0.

An important ingredientin understandingthe natureof this model (3.1), is the existenceof a
Nicolai map [3.8—3.10].Not only is this a powerful calculationaltool, but more fundamentallyit
providesuswith a variety of waysof reconstructingthe actionfrom first principles. We will focus
on two of thesein sections3.3 and3.4, which we shall refer to as the LangevinandBaulieu—Singer
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approaches.Our constructionof topological field theoriesin the following sectionswill be based
on theseideas. Since the action (3.1) is alreadyknown in the presentcase,this may seemno
morethanan unnecessaryexercise;however,our motivationfor studyingtheseapproachesis that
theyprovideaunified way of constructingfield theoriesencodingtopological informationwhenthe
actionis not yet known.

From these considerationsit will emerge that the operatorQ, which was previously called
a supersymmetry,is in fact a BRST operator,and that the complete action (3.1) is a BRST
commutator.At that point we can appealto the resultsof section2 to establishthe topological
natureof the model.

Since this interpretationof Q may causesomeconfusion,in particular,in this low dimensional
example,wherethere is no clearcutdistinction betweenspinorsandghosts,we analysein some
detail, in section 3.6, the definition of physical statesin supersymmetric,topological, andBRST
quantizedgaugetheoriesin general.

In recognizingQ as a BRST operator,one gains the flexibility of choosingdifferent gaugefixing
conditions,leading to actionswhich are quantummechanicallyequivalentto, but different from
(3.1). This freedomin the choiceof gauge can be usedto greatly simplify the calculationof the
partition functionof (3.1),andwe illustratethis by explicitly computingthe Witten index [3.1] in
varioussupersymmetrictheories.In addition,we usethis gaugefreedomto derivethe Gauss—Bonnet
and Poincaré—Hopftheorems(relatingthe Euler numberof M to its Riemanncurvature,and the
numberof zerosof a vectorfield on M, respectively)in this setting. It is, perhaps,worth stressing
that we shall use the nomenclature“gauge independence”to refer to independenceof the gauge
fixing condition.

A properunderstandingof topologicalfield theoriesboils down to an understandingof their zero
mode structure,and in section 3.9 we examine the relation betweensymmetrybreakingand the
presenceof zero modes,as well as the issueof metric andgaugedependencein this situation.

Sincethe mathematicaldevelopmentsmotivatingtheconstructionof topologicalsigmamodelsand
Donaldsontheory are basedon Floer’s generalization[3.11] of Witten’s supersymmetricquantum
mechanicsapproachto Morse theory [3.2], we reviewthe latter in section3.10.2.

3.1.1. Tot’ model
In order thatthe readerdoesnot get boggeddownin all the technicalitiesof this particulartheory,

and lose touch with the generalideas,we will deal with a simplified version of this model at the
startof eachof the sections.Thiswill thenbe followed by an analysisof the completetheory. It is
this toy model, wherethe target spaceis one-dimensional,to whosedescriptionwe now turn. The
action (3.1) becomes

I . fdq~ OV\ i 2 - / d O~V\

S = j dr i~— +s-~.-~-)B+~,B—i~~--+s0~,~,)w (3.5)
wherer E 51 or O~bothcasesare illustrative.In this sectionwe take ~eS

1.
We could eliminateB from the action; however,oneadvantageof retaining it is that the super-

symmetryis nilpotentandsoreminiscentof a BRST symmetry.For this model,the transformation
rules (3.4) take the rathersimpleform

{Q,q~}=w, {Q~w}=0~ {Q,~}=B, {Q,B}=0, {Q,Q}=0. (3.6)
We turn now to an analysisof this theory.The bosonicpart of the action is clearly minimized

by the first orderequation

d~/dr+s8V/a~=0, (3.7)
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which meansthatin the“steepestdescent”(one-loop)approximationonly suchpathswill contribute.
Theseclassicalpathsarecalled “instantons”,andthe actionclearlyvanishesfor theseconfigurations.
In fact thesepathsare simply points,for taking the squareand integratinggives

(3.8)

Upon integratingby partsanddroppingtotal derivatives (aswe areallowedto do having chosent
to lie on a circle) this becomes

dr [(d~/dT)2 + s2(0V/8~)2]= 0 . (3.9)

As this is an integral of asumof squaresit implies

dq~/dr= 0 , s0V/0q~= 0 . (3.10)

Fromthe first equationwe learnthat only constantpaths are importantin this approximation,
that is, only an integration over the target manifold R needsto be performed;while the second
equation,if s ~ 0, tells us that only thosepointswhich correspondto the extremaof the potential
contribute.In fact it is possibleto showthat this semi-classicalapproximationis exact.The path
integralbecomeseitherasum over the critical pointsof the potentialof signed l’s (s ~ 0), or an
integralover the whole targetmanifold. As we havealreadystated,this will be shownin a variety
of ways, therebyelucidatingthe differentapproachesto topologicalfield theories.

In the following sections,we will repeatedlyencounterthe sequenceof argumentsleading from
(3.7) to (3.10); henceforth,we will refer to this as the squaringargument,without explicitly
indicating the stepsinvolved.

3.2. Nicolai map

Nicolai hasproven [3.8, 3.9] that for theorieswith a global supersymmetrythereexistsa non-
linear and, in general,non-local mappingof the bosonicfields which trivializes the bosonicpart
of the action, and whose determinantcancelsthe Pfaffian (or Salam—Mathewsdeterminant)of
the fermionic fields present.We recall that the Pfaffian of an even 2n-dimensionalantisymmetric
matrix M

11 is definedas Pf(M) = e,...12~M’1,2.. . M’~’-12~with the propertythat the determinant
of the matrix is the squareof the Pfaffian. The bosonicpartof theactionin termsof the new fields
is Gaussianandhascovarianceone*) This meansthatfor a globally supersymmetrictheorywhose
partition function, after integratingout the fermion fields, takesthe form

z = fe_~Pf(D[~]) , (3.11)

where ~ are the bosonicfields**), and indicatesthe path integral over thesefields, thereexists
a mapq~—~ ~(q5) such that the Jacobianof the transformationcompensatesthe Pfaffian (up to
signs). The partition function is then

z = / e~f~
2x (winding numberof the mapping) , (3.12)

*) By this we meanthatthe propagatorin position spaceis a delta function, or simply 1 in momentumspace.This is
not quite the way Nicolai definedthe map,but it is the naturaldefinition for topologicalfield theories.

**) This is not the genericsituation as canbe deducedfrom (3.1); the curvatureterm meansthat integrationover the

fermionsis not simply a Pfaffian.
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wherethe winding numberis the numberof times~ runsover its rangeas 4 is varied.
Due to thehighly non-localcharacterof the map,it hasbeenmostoftendeterminedperturbatively

and there havebeenfew caseswheresuch amap hasbeengiven explicitly in closed form. Apart
from free theories,completeNicolai mapswere only known for somelow dimensionalmodels.
Indeed,Nicolai was only able to exhibit a map that has thesepropertiesto third order in the
couplingfor N = 1 superYang—Mills theory in four dimensions[3.10]. In section5.2.5 we showin
which sensethatmap is completebut for a slightly differenttheory, in that it trivializes the model
introducedby Witten to describeinstantonmoduli space[3.5, 3.12]! This maphasbeengiven a
mathematicalbasis in the recentwork of Atiyah andJeffrey, which we reviewin section5.2.6.

Fromthe point of view of topological field theory the existenceof Nicolai mapsis fundamental
[3.5]. This leadsto our first categorizationof topological field theories:

Witten typetopologicalfield theoriesadmit Nicolai mapswhich trivialize the action and restrict to
the modulispaceofclassicalsolutions.

3.2.1. Toy model
To show that the “instanton” pathsare the only contributionsto the path integral we change

variables as follows:

q~—+~dcb/dT+s0V/~9çb. (3.13)

The Jacobian that comes from this change of variables is

Idet(c~54/ô~)I = Idet(d/dt+sa2V/a~8~)I’ . (3.14)

However, the integrationover the fermionic fields in thepartition functiongivesriseto essentially
the inverseof this Jacobian.The pathintegralbecomes,after integratingout B,

/exp(_~.~dT~2) det(~/ö~)Idet(ö~/o~)I’ . (3.15)

The ratio of determinants is then ±1, with the result that the path integral itself seemsto be
(when suitably normalized) ±1. However, we need to be more precise as we have not yet specified
the rangeof integrationof the ~-field.This involvesdetermininghow manytimesonecoverst~-space
as q~runsthrough its range.For this we only needto seehow manytimescc goes throughzeroand
in which sense.

To get a feeling for how all of this should work out, considerthe much simpler exampleof a
conventionalintegral (take t to be apoint)

fd~dwdci~exp[-~(OV)2 + . (3.16)

Examples
(i) 0V(~)/0~= q5 + q~2. The Nicolai map is thencc = ~ + q~2and to determine the range of

integration for cc we mustfind its turning pointswith respectto ~. There is one at 41 = — 1/2, so
that the q~integral mustbe split into two piecesas

—1/2 _i/4f d~+ fd~—~fdcc+ fdcc. (3.17)

—oc —1/2 +oc —1/4
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The Jacobianandfermionicdeterminanthavecancelledagainsteachotherwithout the introduction
of a sign. The point to notehere is that a relativesign arisesbetweenthe two contributions in
(3.17) only when one declaresthe limits of integration for cc to be in a positive sense. On doing

this we find that the right handsidebecomes
fdcc(ll)o (3.18)

— 1/4

wherethe first sign reflects the fact that the ratio of determinantsgives — 1 whenonerunsthrough
the cc spacein a “negative” direction. To ascertainif one is integratingover cc in a positive or
negative sensewe only needto find the zerosof cc; the tangentat thosepoints (with q~running
from —cxi~ to +oc) will then give the appropriatesign. Since the tangent is 02V/041041~we see
immediately that the sign is exactlythe ratio of determinantspreviouslyconsidered.Evaluatingthis
ratio at the points cc = OV/Oçb = 0 we recover the result (3.18). The zeros of cc are at —l and 0,
andthe signsat thesepointsare — and +, respectively.

(ii) 0 V(41)/0 ~ = — = cc. Following the sameanalysis as in the previousexample, we
obtain

—i I +oc —2/3 +2/3 —ocf d~+fd~+fd~ fdcc+ fdcc+ fdcc. (3.19)

—oc —i i +oo —2/3 +2/3

We notethat in this case,as q~runsover its range,cc beginsto run overits domain,backtracksand
thenproceedsto the endcoveringits domainonceonly. In termsof the zerosof cc~the analysisis
the same-asbefore.At the threezeros (— ~ 0, v~),the signs of the tangentsare (—, +, —), which
on addition give the result thatwe covercc-spaceonce,andin a negativesense.

Thegeneralresultis that for suchamodelthe integrationmaybeexpressed,up to a normalization,
as

~ sign(V”) , (3.20)
{ P}

whereP are the turning pointsof V, so that for V(41) cx çb” as —+ ±cxcthis sumvanishesfor n
oddandgives 1 for n even.

Returning to our path integral, we see that hadwe kept the path integral form of the action
andsimply droppedthe dq~/drandd~/diterms; this would havebeenthe analogueof the finite
dimensionalintegral (3.20); sucha limit giveswhat is known as the ultra local form of the theory.
In this limit at least,the partition function is the obviousgeneralizationof (3.20),

Z=~signdet(02V/0~0~). (3.21)
{P}

To determinethe rangeof cc in general is also straightforward.We canthink of the path integral
as productsof finite dimensionalintegrals,onefor eachtime instant. Fix a time instant andcheck
the range of cc. In the derivationof the path integral, at each time instant one has a complete
set of position eigenstatesI 41); the questionwe have posedis: may one insert a completeset of
cc eigenstatesat eachof thesetimes? For this to be possible,the overlapof the states (the wave

functionsin the cc representation)must satisfy from (3.13)

~ ±is0~~)(cc41) = cc(ccIc~) (3.22)
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(recall that ~ type termsappearin the actionbecauseof 0/841 derivatives).The solutionis

(cc14) = Ae’~ (3.23)
where A is a constant.It remainsto be checkedwhetherthesestatesare normalizable (square
integrable),

= fd~ e±25~ < ±oc. (3.24)

If V(41) _.~ ~2n as q5 —~ ±00, then thereare stateswhich are normalizable*); on the other hand,
thesestatesare not normalizableif V(41) _~ 41~2n+I[3.13]. This agreeswith our previousresultsin
examples(i) and (ii) above.

Do we also reproducetheseresults if we count the numberof times that cc passesthrough zero?
From (3.13) we see that the zerosof cc are at the classicalconfigurationsand (3.10) implies that
thesecorrespondto the critical pointsof the potentialV(41>). We may indeedthink of the Nicolai
map as leadingto a partition function which gives the “degree” of the map, counting the number
of distinct configurationsof the original fields which are mappedto a given configurationof the
Gaussianfields with their algebraicmultiplicity. The lattermay becalculatedby following the zeros
of cc; oncemorewe find that

Z = ~ sign(8
2V/041 0411) . (3.25)

{P}

The pathintegral (3.15) calculatedaboutcc = 0 becomes

~signdet(d/dr+s02V/041041) . (3.26)

{ P}

This may be given anotherpath integral representationwith the action

I 1.(dq~ OV\ ./d 02V\ 1
S = cit ~i ~— + s_._)B — + so~o~)ctij (3.27)

which is the original actionwithout aB2 term. In section3.4 we will explicitly showwhy thesetwo
actionsyield equivalentquantumtheories.This is one of the importantpropertiesof topological
field theories;namely, that many of the details of the actionare irrelevant.The integral over B
gives a delta function restriction to the instantonpaths,which, as we have seen,correspondsto
the critical pointsof V(41). Expandingaboutthe critical points gives (3.26). To seethat (3.26)
devolvesto (3.25), expandeachfield in a Fourierseries,q5 = ~~_oc41flemfh, with 41~= 41’...,~,etc.
Foreachmoden thereis a contributionto the determinantof the form (in + V,,”) from the bosonic
variables.From the fermions,on the other hand, we get ±(in + Va”). For eachn > 0 thereis an
n <0 so that the ±arising from the fermion integrationis alwayssquared.The sign thencomes
strictly from the n = 0 terms, leavingus with (3.25).

3.2.2. Generalmodel
For the generaltheory,the squaringargumentshowsthat the absoluteminima of the actionare

= 0, sOV/Oçb’= 0 . (3.28)

*) If s is set to zero thereareno normalizablestatesat all.
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Once more, when s ~ 0, the relevantpointsare the critical pointsof V; on the other hand, when
s = 0, all the pointsof the target manifold enter.

Weneed to distinguish between situations where R,JkI may, or may not, be ignored. When R,Jkl
is ignorable, as for example, when the target manifold is R”, the Nicolai map

cc’ = d41~/dr + sg”(çb)OV/041i’ , (3.29)
is, as before,suchthat the Jacobianof themapcancelsthe absolutevalueof the fermionicPfaffian.
The form of the Jacobianmaybe determinedin the following manner.The Jacobianmeasuresthe
deformationof the (canonical)vector field ç5’ + sg”(41)OJV(414)as the path41(r) is deformed.To
comparethe new tangentvectorwith the old, it mustbe paralleltransportedto the original point;
in this way one finds that the Jacobianhaspreciselythe sameform as the Pfaffian. Alternatively,
one may usethe methodof normal coordinatesto prove this result; this is presentedin detail for
the sigma modelsof section4.

The path integralreducesto

~ signdet(HpV) , (3.30)
P}

where H~V = 0
2V/041’ OçbJ is called the Hessian of V at the point P. It is clear that (3.30) is the

natural generalization of the toy model result (3.20). This formula is related to the Poincaré—Hopf
theoremwhen thetarget manifold is takento be compactandclosed,as explainedin section3.8.4.

As we observedin the previoussection thereare no normalizablemodeswhen the potential is
taken to be zero (or s = 0). The limit s —~ 0 needsto be takenwith care [3.6]. However, such a
choice of potential causes no undue difficulties when the curvature tensor does not vanish. On the
other hand, the Nicolai map (3.29) would appear not to trivialize the theory in this case, owing
to the very presenceof the curvatureterm in the action (3.1). Related to this is the fact that
the Nicolai map in this instanceis singular; it is singular as the mapvanisheson all the constant
paths41~,the space of zerosbeingthe target manifold M itself. In section 3.8.5 it is shown that
the curvatureterm is ignorablefor all paths except the constant ones. Bearing this in mind, one
may perform the Nicolai map (3.29) with the instructionnot to includeconstantpaths.The path
integral over the non-constantpathssimply gives one,leaving only the constantpathsto be dealt
with. The final result is speltout in section3.8.5 and is relatedto the Gauss—Bonnettheorem.

3.3. Langevinapproach

Having shown how to trivialize the theory with the use of the Nicolai map, we would now like to
give a methodfor creatingthe theory from the samemap. This relieson the notion of a Langevin
equation,which is connectedto much older ideasin field theory. Parisi and Wu [3.14], Parisi
andSourlas [3.15] andalsoCecotti andGirardello [3.16, 3.17] introduced somesupersymmetric
modelsthat are relatedto classicalstochasticequations.Both groupsgo on to showthe connection
of theseequationsto the Nicolai mapswhich trivialize the respectivemodels.However,the theories
that they introduced are non-trivial in low dimensions (< 4). They were not able to repeatthe
construction in high dimensions and this prompted Parisi and Sourlas to remark, “At this stage we
feel like wizards who succeed in their first sorcery but are unable to do it again “. Topological field
theoriesmaybe consideredto be the extensionto anydimensionthat theseauthorswere searching
for. An equation of the form

cc = d41/dt+sOV/041 (3.31)
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is known as a Langevin equation and the method developedhereis called the Langevinapproach.
The time thatentersin (3.31) is astochastictimevariableandwould be an “extra” variablein the
theory, but in these models it is taken to be real time. In later sections, the Langevin approach will
be furtherelaboratedon, but ratherthanpicking out timeas a specialdirection, that is, choosinga
manifoldof the form M x R, we will be mainly concerned with a covariant version of the equation.

Our presentationof theseideasis slightly different, but equivalentto that of refs. [3.15, 3.16].
The aim is to run through the trivialization of eqs. (3.11) and (3.12) backwards.We now begin
with a trivial Gaussianaction

= i,~’dr(Gcc(41l))2 (3.32)

wherecc (414) is the Nicolai mapthat was usedto trivialize (3.11) andG is an auxiliary field. It is
clear that we could easily shift G and eliminateany dependenceof the action on 4 [i.e., define
G’ = G — cc (414)]. Then we would be left with a Gaussianintegration over the G’ field, but also
an unweighted(infinite) integral over q5. This is analogousto the situationwhich arisesin gauge
theories;the gauge directionsare not weightedand the gaugegroup volume needsto be factored
out to obtain sensibleresults.In that caseone usesthe gauge invarianceto fix the gauge,thereby
factoring out the groupvolume. In theprocessthe Faddeev—Popovghostsareengendered;thesein
turn allow oneto reinstatethe old gaugeinvariancein a new guise,namely as aBRST symmetry.

For us then,the problemis to identify the gaugeinvarianceof the action,obtainthe corresponding
BRST symmetry,and then to choosean appropriategaugecondition. This is surprisinglyeasyto
achieve.First, the gaugeinvarianceis the largestone canpossibly have,namely an arbitraryshift
symmetry in the 414 field. This oughtnot to comeas asurprise,as after all we could arrangethings
in the actionso that the qS field does not makean appearance.The transformationfor G follows
on insistingthat the action is invariant underthis shift. The symmetry reads

ö41 =1, öG= . (3.33)

We would like to arriveat the startingactionthatappearsin (3.11); with thisin mindwe choose
the gaugeG = 0, which canbeachievedwith the abovetransformationsif occ (q5 ) /öcb is non-singular
(by this we meanthat, given an arbitrary G, a gaugetransformationcan be madewhich mapsit
to zero). If we carry out the BRST quantizationof (3.33) in this gauge,the resulting partition
functioncan be formally expressedas

Zo = / e’~~I4FP (3.34)

whereAFP is the associatedFaddeev—Popovghostdeterminantor Pfaffian. Indeed‘JEp is precisely
the Pfaffianappearingin (3.11),sinceit representsthe inverseto theJacobianof themapq5 —~ cc (~).

While this techniqueseemsonly to reproducethosetheoriesthat havefermions entering in the
actionquadratically,that is, without cubicor quarticinteractionsamongthem,this is not the case.
A careful analysisof the gaugefixing procedureestablishesthatthis methodis generic. We will see
how this workswhenwe developthe techniquesrequiredto dealwith the gtheralmodel.Our next
categorizationof topological field theories,essentiallythe inverseof the previousone,is:

Wittentypetopologicalfield theoriesareobtainedfrom the quantizationof’ theLangevinequation.
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3.3.1. Toy model
Let us now fill in the details of the aboveanalysis.How do we turn the symmetry (3.33) into

BRST form? A first attempt is always to eliminatethe transformationparametersin favor of the
correspondingghosts,and for this example the substitutionsuggestedworks well. So the BRST
transformationsread

{Q,~} = cu , {Q,G} = (occ/041)w , {Q,~} = 0 , {Q,Q} = 0 . (3.35)

To this one must addan anti-ghost ~uanda Lagrangemultiplier (or auxiliary) field B, which
transform as

{Q,~} = B , {Q,B} = 0 , (3.36)

while retaining the nilpotency of the BRST operator Q. The gaugefixed action is then

S =~dt[~(G_cc)2+i{Q,~G}]

= ~dt [~(G_cc)2+ iBG- i~ (~_+ s~~’~)cut] . (3.37)

Integratingover B we get a deltafunction forcing G to vanish.Alternatively, let us shift G by cc
so that the bosonicterms in the actionbecome

+iG’B + ~ +s~-~i)B] . (3.38)

which on integrating over the G’ field yields the action in the familiar form (3.5).Having eliminated
the randomfield G, can we expectthe actionto remainBRST invariant?We know the answeris
yes, but the reason is useful later so we pause to explain it. We eliminated G by performing the
Gaussianintegration;equivalentlywe could haveeliminatedit by its equationof motion,

G’ = G—d~/dt—sdV/041 = —iB . (3.39)

Since each term in this equation is invariant underthe actionof the BRST operator,we canuse it
without spoiling the symmetry. Thus starting from the Gaussianintegrationover a randomfield,
we havebeenableto reproducethe original model, completewith its transformationproperties.

3.3.2. Generalmodel
The completeaction (3.1) may alsobe derivedby gaugefixing aLangevinequation [3.6]. The

generalization of (3.32) is the obvious candidate

So = ~ycg12(cb)K’K3 , (3.40)

where

K’ = Gi_~~~_sgu1(çb)OV~= G
1—~1. (3.41)

di OçbJ
Although the symmetryof this action is more complicatedthanthat of the toy model, due to the
necessityof introducing the metric to form the scalarproduct, it is, nevertheless,invariant under
the following transformations:

= , ÔG1 = ~ _I
7~K1).k. (3.42)
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It is not straightforwardto turn this into a nilpotent BRST symmetryas thecommutatorof two
suchinfinitesimal transformationsdoesnot closewhen acting on the G’ field. Insteadonefinds

[r5~L2),ó(Ai)]G’ = )~R’,JkK’~ . (3.43)

As Rjfkt was zero in our previousexamplewe did not run into this difficulty. Onenoticesthat, if
the G’ equationof motion is used,thenthe right handside of (3.43) vanishes,that is, the classical
gaugesymmetryclosesto an Abelianalgebraon-shell. In such asituationone is able to call upon
the Batalin—Vilkovisky algorithm to producea BRST invariant quantumaction, with an on-shell
nilpotent BRST operator.This is spelt out in appendixA; herewe simply quote the results.The
gaugefixed action is

S ~

(3.44)

with thetransformationrules

{Q,qY} = cu” , {Q~w’}= 0 , {Q,c~,}= ~, , {Q,B,) = 0

{Q, G’} = d~’/di + s~J(gik~~v)y,J— F K1yik— ~iRujklciiJy,kwl . (3.45)

By integratingover G’, or equivalentlyusing its equationof motion

= —ig”~~— ighJ~~I~~l+ cc’ , (3.46)

one eliminates G’, while at the sametime retainingthe nilpotencyof Q. The form of the actionone
obtainsin this way is not quite that of (3.1); this is mirrored by the fact that the transformation
rules (3.45) (the first four, as G’ no longer appears)do not matchthoseof (3.4). But on making
the substitution

= B — , (3.47)

onerecoversboth (3.1) and (3.4).
The importantpoint is, of course,that wehavebeenableto recovernot just the quadraticterms

in the fermionic fields but also the quartic couplings,and all of this by simply “quantizing” the
Langevinequation.

3.4. Quantizingzero

Soonafter Witten introducedhis topologicalfield theories[3.18,3.19],BaulieuandSinger [3.20]
andalso Brooks, Montanoand Sonnenschein[3.21] exhibitedthat thesetheorieswere indeedof
BRST type. In conventionalgaugetheoriesoneaddsto the classicalgaugeinvariant actionaQ-exact
piece,which gives the gauge-fixingand Faddeev—Popovterms. In topological field theoriesonehas
the Q-exactpiecesbut no otherterms, leadingto the idea that the classicalactionis zero

Baulieu and Singer [3.22] also appliedtheseideasto supersymmetricquantummechanics.We
will describetheir constructionin this section.In particular,the methodsgi~equick derivationsof
the topological field theory action; however,the idea that one is simply quantizingzero, will be
called into question.

*) Onemay relax this with the addition of a topologicalinvariant to the zero action.
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In anyevent,up to topological terms:
Wittentype topologicalfield theorieshaveactionswhich areQ-exact.

.3.4.1. Toy model
The idea hereis to obtain (3.5) by taking zero as a starting actionand gauge fixing this. Of

course,more information is required.Firstly, the field contentmust be chosen,and this is taken
to be, as above,one bosonicfield 414. The secondinput is the symmetry,which is takento be the
largestpossible,namelya shift in 41. This is then transformedinto a BRST symmetryso the total
field contentandtransformationrulesof (3.6) are adopted.

The next step is to choosea gauge;we pick (none too surprisingly)

dq5/dt+sOV/041=0 , (3.48)

andthis is implementedby addingthe gaugefixing andghostterms

I I /.d41 .OV
y di ~Q’cu y~—+ is-~-~-+ ~B

I . /d41 OV\ 1 2 - / ~ 02V \
= di 1 + sw-) B + ~B — + s

0~0~)cut . (3.49)

Thus we are oncemore back to the actionwe began with. As discussedin section2, an action
thatmay be expressedin this mannerleadsto topological information.

This seemsto be asatisfactorystateof affairs,but let us look a little more closelyat the question
of gaugefixing. In conventionaltheoriesthe situationis that anygaugechoice is allowedprovided
thereis a transformationthat takesan arbitrary field to that condition. Here, with the philosophy
thatone is gaugefixing “zero”, the completeaction is madeup of the gaugefixing andassociated
ghostterms. Different choicesof gauge may well yield quite different theories. As an example,
considerthe choiceof gauge

41=0. (3.50)

Clearly, thereis no way of smoothlydeformingthis to the classicalpathsof an arbitrarypotentialV
that was madein choosingeq. (3.48). The philosophythat one is simply quantizinga zero action
is thenseento be misleading.More correctly,one is really specifyingthe samedata as we have
donein theprevioussections.

The advantagesof this methodshould also be apparent.Providedone is careful in specifying
the correctinformation,the actioncorrespondingto the theory is quite quickly derived.Indeed,as
long as one wishesto arriveat (3.48), thereare otherchoicesof gaugeavailable.We do not wish
to changethe instantonequation,but that doesnot precludeus from tamperingwith the terms
involving the B field. Insteadof the {Q, ~?B} term in (3.49) one may substitute{Q, ~a~B},
wherea is somefree parameter.The action is

I . /dq5 OV\ 1 2 - / ~ 0
2V \dr i~— +s-~—~-)B-I-~aB —iut~--+s

0~0414)~v (3.51)

andonly the B
2 term is altered.Irrespectiveof the value of a, the action is still minimized by the

instanton.Betterthanthat, we seethat for a = 0, we recoverthe action (3.27),which on integrating
over the B field gives a delta function constraintonto the classicaltrajectory. This parametera
alsoappearsin the Langevinapproachif onestartswith an actionof the form ~a~ G’2. The reader
may now like to checkthat following the derivationfrom eq. (3.35) to (3.38),oneobtains(3.51).
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The particular choice of gaugea = 0 will be useful, not only in supersymmetricquantum
mechanics,but alsoin all other Witten typemodels;we will call it the deltafunction gauge.

3.4.2. Generalmodel
The fact that one needs to specify a whole host of informationis broughthomewhen onewishes

to reproducethe generalaction (3.1). Ratherthanadoptingthe transformationrules (3.4), Baulieu
and Singer [3.22] take the equivalentset [cf. eq. (3.45)]

{Q,41’l} = {Q,w’} = 0 , {Q,cii,} = ~, , ~ = 0 , (3.52)

which is obtaineddirectly from (3.4) on the substitutionB —~ ~, + ~jF/~cu,k,cf. eq. (3.47). The

action, generalizedhereby the inclusionof the potential, is takento be

~ di{Q,ci~i(~~/_+ isg’1(~12)
0~~+ ~g1~(çb)~

1+ ~gh1(41)ci.i1F/kl/P~)} . (3.53)

The readermay well see that this is a far from obviouschoice. Nevertheless,if onesimply shifts
backto the original field B, one seesthat (3.53) is the naturalcovariantgeneralizationof (3.49),

,~ cii {Q~ci~~(~~_+ isgu1(~~)O~~)+ ~ghJ(q5)Bj)} , (3.54)

andan applicationof the transformationrules (3.4) yields our starting action (3.1). Had onenot
includedthe affine term in (3.53) thenthe resultingactionwould not havebeencovariant.These
non-covariantpiecesappearnaturally in the Langevinapproach;oneneedonly fix on the classical
equationof motion that is of interestandthe restfollows. However,hereonemusthavesomeidea
of what the outcomeshouldbe like; covarianceis anaturaldemand,but this meansthat one must
searchfor a gaugefixing piecewhich leadsto this requirement.

Why do the non-covarianttransformationrules (3.4) lead to a covariant action, while the
apparentlycovarianttransformations(3.52) do not (directly)? The answer lies in the fact that
we may considerthe actionof Q on 4f as a fermionic diffeomorphism;as such the fields should
transformas tensors;theydo not in either scheme.However, the affine termsin the transformation
rules (3.4) ensurethat covariantsmadefrom contractionwith the metric remaincovariant.For
example,

{Q,g’~(41)B1~J}= g’~(41)B1B~+ , (3.55)

wherethe affine termscombinewith the derivativeof the metric to yield the covariantderivative
of the metric, which vanishes.We havenot includedthe curvatureterm in the discussionas it is
by itself covariant.

A direct advantageof havingthe BRST transformationrules as given in (3.52) is that with the
new set of fields the BRST operatorhas no explicit metric dependence.The standardargument
that the variationof the partition functionwith respectto the metric is the expectationvalueof a
Q-exactcorrelatoris now clear. In termsof the original fields this was not so apparent,as Q for
this setof fields hasan explicit metric dependence.

3.5. Metric independence

So far we have establishedthe coupling constantindependenceof the theory.That is, we have
shownthat under small deformationsof the potential V and the target metric gj the partition
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function remainsfixed. To establishthe topological natureof the theory with respectto the base
manifold (in this caseS’) we introducethe one-dimensionalmetric into the action (3.5). Let the
einbein be given by

e = e(i)di . (3.56)

All the fields that have entered into the theory ~, B, w~~ are taken to be S1 scalars. (d41/di)di
is clearlyaone-formand so a good volume form; to makeotherscalarsthat appearin (3.5) and
(3.1) good volume forms we simply multiply by the einbein. In this way we arriveat the covariant
action

I . /d41 OV\ I 2 - / d a2v \S = ydr 1~—+se(i) ~)B + ~e(i)B —i~ ~,j—+se(i)
0~0412)w . (3.57)

The symmetry transformationrules have not changed,they are still given by (3.6), with the
actionof Q on the einbeinbeingzero.The BRST operatorQ is also a 51 scalarso that, as before,
the actionmay be expressedas a Q-exactform. The analogueof (3.49) is

~ dr{Q~cui~ + ise(i)~-~+ ~eer)B)} , (3.58)

with the metric independenceof the partitionfunction now beingmanifest.Moreover, the squaring
argumentshowsthat (3.10) is reobtainedin the presenceof the metric.

All of the manipulationspreviouslyperformedhold with the one-dimensionalmetric includedin
the theory.We haveshownthat the modeldoesnot dependon this metric andhenceis topological.
For completeness,the readermay like to introducethis metric in the formulae for the general
model; needlessto say this leadsone to the sameconclusionsas in the previoussections.We will
havenothing more to say aboutthe one-dimensionalmetric andhenceforthwill ignore it.

3.6. BRST symmetryandphysicalstates

The degreesof freedomin atopological field theoryof Witten typeandaconventionalsupersym-
metric field theory are quite different. In the former thereare no physicaldegreesof freedomat
all. This mayseema little strangesincethe modelsthat we havebeenusing to describetopological
field theoriesare also supersymmetrictheoriesin their own right. Thinking of them as topologi-
cal requiresthat they have no degreesof freedom,while on the other handthinking of them in
conventionalterms,oneexpectsto havebothbosonicandfermionic states.

Thereis no contradictionhere, and the resolution lies in what Witten calls the “twisting” of
the supersymmetry[3.18]. In theselow dimensionalexamplesthe spin statisticstheoremis not
as restrictive as in four dimensions,so that the distinction betweenfermions and ghosts is not
clearcut.Nevertheless,in the following we will discussthe propertiesof topologicalfield theoriesin
general. Thesegeneralobservationsare thenexaminedin detail for the toy model. To do this we
will needto developthe Hamiltonianframework somewhat.This formalismwill alsobe useful in
later sections.

3.6.1. Physicalstatesin supersymmetrictheories
The countingof degreesof freedomin conventionalsupersymmetrictheoriesis straightforward.

Onesimply countsthe appropriatenumberof bosonicstatesand thendoublessoas to include the
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fermioniccontribution.The supersymmetrychargesthengive invertible mapsbetweenthe statesof
non-zeroenergy

QIb) = If) QIf) = Ib’) , (3.59)

where Ib) is any physicalbosonic stateand If) a fermionic one. The vacuum,which may not be

unique, is defined to be the state annihilated by all the supersymmetry charges.

3.6.2. Physicalstatesin gaugetheories
The presenceof a BRST invariancein a field theory is the statementthat the original model

had somegauge symmetry. For Yang—Mills theoriesthis is the conventionalinvarianceunder
non-Abeliangaugetransformations,for gravity it is diffeomorphisminvariance,while for stringsit
correspondsto a combineddiffeomorphismand Weyl invariance.

Physicalstates phys) in thesecontextsare required to be gauge invariant. This translatesinto
the statementthat thesestatesare annihilatedby the (nilpotent) BRST operator[3.23]

Qlphys) = 0 . (3.60)

Furthermore,stateswhich differ by aQ-exactpiece QIx)~for any Ix) are regardedas equivalent.
A furtherconditionwhich is enforcedon the physicalstatesis that they carry zeroghostnumber;

this is the analogueof fermion number in supersymmetrictheories.The ghosts are meant to be
purelyfictitious, as theirnamesuggests.This is in contradistinctionto conventionalsupersymmetric
theorieswherephysicalstatescanbe bosonicor fermionic.For supersymmetricquantummechanics,
(—1)F actsas both thefermionandghostcharge.This chargecommuteswith the Hamiltonianand
sostatesmaybe chosento be simultaneouseigenstatesof theseoperators.

For Yang—Mills theory,onecountsd degreesof freedomcoming from the vector potential (as
it is a vector in d dimensions)and —1 for each of the two ghosts (as they are scalarsand
Grassmannodd); on addingwe find d — 2 physical degreesof freedom, which is indeed correct
for a gaugeinvariant vector field. For a rank-two antisymmetrictensor field onehasthe count
d(d — 1)/2 — 2d + 3, the secondterm countingthe two vector Grassmannghosts and the third
countingthe threebosonicghost-for-ghosts.The total is correctly (d — 2) (d — 3) /2.

The previouscounting principle holds for secondorder theories. The countingin first order
theoriesis somewhatdifferent and is explainedin the context of BF modelsin alater chapter.For
supersymmetricquantummechanicsthe countingis d/2 for eachof 41 and B, while the fermions
treatedas ghostscount —d/2 each*). The total is zero, implying that only the ground state is a
physicalstate.

3.6.3. Physicalstatesin topologicalfield theories
The countingof degreesof freedomin topological field theoriesis actuallya mixture of the above

two. For everybosonicfield thereis acorrespondingfermionicone.But ratherthanthinking about
the fermions as “physical”, theyshouldbe interpretedas ghosts; their degreesof freedomare then
subtracted ratherthan addedto the total. This leavesprecisely no degreesof freedom.However,
the vacuum—whichis all that is left—neednot havezero fermionnumber,i.e., one doesnot insist
that (_1)F haveeigenvalueI on vacuumstates.This fact, that theremay be manyvacuumstates
eachwith different fermioncontent,leadsto the varioustopologicalpropertiesof thesetheories.

In higher dimensionsthis situationis actually forced on us. We will see,that in all dimensions
the objectsthat naturally appearare differential forms. It is becauseof this that one is able to

*) This counting is heuristicas this is a zero-dimensionalfield theory.
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formulate these theories on arbitrary base manifolds. Consequently in four dimensions and higher,
by the spin statisticstheorem,the anti-commutingfields cannot be physical; they are not spinors
andso mustbe interpretedas ghosts.

The modelswe havebeen consideringthen in this chapterare not generic. This situationarises
becausein one or two dimensionsthe spin statisticstheoremis not so restrictive;and thereforeit
is up to us to declarewhethera fermionic field is deemedphysicalor ghost.The differencethen
lies in the conditionsone imposeson the states.Using the sameQ, oneeither demandsthat this
mapsbosonsto fermions to bosons,giving onea conventionallysupersymmetrictheory,or that it
annihilatesphysical states,as for a gaugetheory, leaving only the vacuum,andhenceyielding a
topological theory.

This facetof the situation,namelythat the sametheorymaywell havetwo distinctinterpretations,
will be elaboratedon in the sequel.It allows for very simpleproofs of variousotherwisemiraculous
propertiesof conventionaltheories.

3.6.4. The toy modelin detail
The detailsof thesedistinctionsare easy to determinefor the toy model. To do this we need

to determinethe Hamiltonian form of the theory. First notice that when one eliminatesB, by
integratingit out of the path integral,the bosonicpart of the actionbecomes

(3.61)

This is unalteredif one exchanges—s for s, as the differenceis 2s~di 41W’ = 0. Furthermore,on
making thissign changeof s, the fermionicpartof the actionkeepsits form if we simply exchange
w and 41~.We thusseethat the actionis invariantunder the discretetransformations

s—~---s, w—÷w~ c~—*w, B—*B+2isOV/0q5, (3.62)

where the B transformationis indicatedfor the form of the action where the B field has not
beeneliminated. There is thena secondaryBRST symmetry,associatedwith this model, which is
obtainedby making the substitutions(3.62) in (3.6). We denotethis new BRST operatorby Q*,
its actionon the fields being

{Q*~}= {Q*41~}= 0 , {Q*w} = B + 2isOV/041

{Q*B} = —2is(82V/0~0~)ci~ {Q*Q*} = 0 . (3.63)

The Poisson brackets for the fields are readily readoff from this first orderaction;the non-zero
ones are

{B,41} = i , {~ui,~}= i . (3.64)

Our generaldefinition for the momenta,Hamiltonian,andPoissonbracketsare

H’ =ö~L/ô~
1, -H=H’~,-L,

1x yi — ~ (_l)~~1~_~i (365)
1 ‘ ~ ô~

1ö17’ ôø1öH
1 ‘

wherethe subscriptsr and£ denoteright andleft derivatives,respectively,andthe peculiarsign for
the Hamiltonianis chosenso that the spectrumof H is boundedbelow. Hence,with eJ~= (41, w)~
the conjugatemomentaare H = (iB,—i~).
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The Hamiltonianassociatedwith the aboveaction is

-H

12 ~ .02V
=-~B

1 /d~\2 1 2 /OV\2 . - ____
= ~~—)— ~S ~ + ‘SWa~O~W (3.66)

wherethe equationof motionfor B was usedto arriveat the last line. Forour purposes,it is more
convenientto usethe form of the Lagrangianin which B is first eliminated (3.61). On neglecting
a total time derivativein the Lagrangian,q5 becomesthe momentumconjugateto 41; the relevant
Poissonbracketis {41, 4} = —1, and the appropriateform of the Hamiltonian is given in the last
line of the aboveequation.

The BRST chargesare obtainedon following the Noetherprescription,and their action is given
on usingthe Poissonbrackets(3.64)

Q = —iWB = —cut (~+ , (3.67)

* 2~ ..(dq5 OV 368Q =-‘w~ + 1S~)=—W~----S~ . ( .

We notethat (3.68)alsofollows directly from (3.67), on making use of the transformations (3.62).
It is alsoworth pointingout the presenceof the instanton (anti-instanton)projectionoperatorsin
the definition of Q and Q*~The Hamiltonian (3.66) may be rewritten as

H = ~j{Q,Q*} (3.69)

Now let us pass to a Schrödinger representation for the quantum mechanical version of the

theory, and for definiteness set V’ = A~5andM = It The Hamiltoniantakesthe form
2H = _02/0412 + s2)~2~2+ s2[i9/0~,cut] . (3.70)

We have used the substitution ~ii~ —~ [w,WI!2 and q~—~0/0~,which is appropriatefor the
Euclideanquantumtheory.Wavefunctionswill take the form W(41, cut) = F

0(çb) + ~/Fi (41). Simply
setting F1 to be zero we find that F0 may chosento be the usual simple harmonic oscillator
eigenfunctions,exceptthat with this Hamiltonian their energy is displacedby sL On the other
hand,keepingF1 andsettingF0 to be zero,we seethat this time F1 maybe chosento be the simple
harmonicoscillatorwave functionswith energyeigenvaluesdisplacedby —s)L.

Let usdeterminethe physicalstateswhentreatingthis theoryas aconventionalsupersymmetric
model. Set F1 = 0, and take F0 to be anyoneof the simple harmonic oscillator eigenfunctions.
This state is clearlybosonic; its supersymmetricpartneris

QF0 = ~OFo/0~ . (3.71)

Providing the eigenvalue is not zero, and as the operator Q commutes with the Hamiltonian, there
is always a supersymmetric partner to F0 which shares the same eigenvalue. By making use of Q*
one may similarly conclude that for all fermionic eigenvectors with non-zero eigenvalue there are
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corresponding bosonic eigenstates. There is then a complete tower of bosonic and fermionic energy
eigenstatesthat forms the Hilbert spaceof this theory.

Taking the attitude that the toy model is really a gaugetheory would lead us to define physical
statesas thosethat satisfythe conditions

Q!P(41~,w)= 0 , [(
1)F l]W(41~w)= 0 . (3.72)

The second of these implies that Wdoes not depend on yi. The first equation, with the simple

harmonic oscillator potential, has a unique solution

= e_~1~
2, (3.73)

which is normalizable if and only if s)L > 0. If this boundis met then the theory is comprisedof
just this state, otherwise the theory is empty. The physicalHilbert spacehasbeentruncatedfrom
the tower of states to only a portion of the zero energy space. We may also see this directly from
the form of the Hamiltonian (3.70); the conditions (3.72) imply that the Hamiltonian annihilates
the physical states.

Finally, let usanalyzethe contentof this theorywhen we treat it as a topological field theory. In
this case we impose the first of the conditions of (3.72) but not the second. This implies that only
F

0 is determined. However, the undetermined part çutF1 is Q-exactin this example,

QF2 = ~F1 , F2 = _e_’ fdaFl(a)est’(a) , (3.74)

andhencecohomologicallytrivial. The only allowed state is thenessentiallythe sameas we found
when treatingthe theory as a gauge model. On the other hand,when M = 5’, it is not possible
to show that F, is necessarilyQ-exact. It is convenientinsteadto fix on a representativeof the
equivalenceclass. To this end, we mayalso imposethe condition that

= 0 . (3.75)

The wavefunction is now completely specified,

W(41) = Aei~~’+B~e~~~
2. (3.76)

If s). > 0 then the bosonic part of the wave function is normalizable while the fermionic part is
not; one must choose B = 0. For sA < 0, the situation is reversed and one must fix A = 0. The
“physical” states are now somewhat different. We have seen that in general the path integral of
interest boils down to looking at how it behavesabouteach critical point of the potential V. Around
eachcritical point the potential is essentiallya constantplus asimpleharmonicoscillatorterm.The
signsof the simpleharmonicpartsareintimately relatedto the topology of the targetmanifold.The
construction of the ground states as in (3.76) plays an important role in Witten’s generalizationof
Morse theory, as described in section 3.10. It is importantto notethat, if we treat thesemodelsas
gauge theories, then at those points where the simple harmonic potential has a “bad” sign there are
no ground states.

The fact that we are dealingwith only the ground statespacefor any potential V is also clear.
The conditionsthat Q andQ* annihilatephysicalstatesobviously imply that the Hamiltonianalso
annihilatesthesestates.The conversewill be demonstratedin the next section.
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3. 7. The Witten index

In this section we will use some of the properties of topological field theories to give easy
evaluationsof the Witten index W.The possibilityof the dynamicalbreakingof supersymmetryis
of considerableimportanceif supersymmetrictheories are to play a role in a descriptionof nature.
A reliablemethodof determiningwhensuchabreakdownoccursin a given supersymmetricmodel,
is then required.Witten hasgiven anecessarycriterion for this breaking;the index Wmust vanish
for the supersymmetryto be broken [3.1]. As our aim is to evaluatethe index, we will content
ourselvesherewith a rapiddescriptionof the ideasleadingto it.

The basic idea is to count the differencein the numberof bosonicandfermionic ground states;
the Witten index is definedto be thatdifference,

W = (# of bosoniczero energystates)— (# of fermioniczero energystates) . (3.77)

To count the zero energystatesit is enough to restrict one’s attentionto the P = 0 statesas
the energyE is equalto or greaterthanthe magnitudeof the momentumIPI. The countingof the
zero energystatesis facilitated by consideringthe theory in a finite spatialvolume with periodic
boundaryconditionson all the fields. On such a (now compact) manifold the eigenstatesof the
Hamiltonian will be discreteandhencemay be countedin a well definedway. Periodicboundary
conditionsareimposedon both the fermionic andbosonicfields to ensurethat the constantmodes
of these fields match, preservingthe supersymmetry.The Hamiltonian may be expressedas the
squareof anyof the Hermitiansupersymmetrycharges,

H=Q~=Q~=...=Q~ , (3.78)

where N depends on the dimension of the space—time,and on whetherthe supersymmetryis an
extended supersymmetry or not. Ground states 10) aredeterminedby the condition

HI0) = 0 , (3.79)

which in turn implies that eachof the Q, annihilate the groundstate,since

0 = (OIHIO) = (0IQ~I0)= IIQ1IO)11
2 . (3.80)

As the Q, are Hermitianoperators,the squaresonly vanishunder the conditionthat

Q~I0)= 0 . (3.81)

If the index doesnot vanish, it implies that thereis at least onezero energystate,which is then
an appropriatesupersymmetricground state. A necessarycriterion for supersymmetrybreaking
is that W should vanish; otherwise,there is a supersymmetricinvariant ground state and the
supersymmetryis preserved.

We now show that all eigenstatesof the Hamiltonian of non-zeroeigenvaluecomein pairs; for
eachbosonicmode Ib) there is acorrespondingfermionic mode If), andvice versa.Considerone
of the supersymmetrycharges,say Q~.On a bosonicstatewith energyeigenvalueE that is not a
groundstate,we havethat

QiIb) = v”EIf) QiIf) = v”~Ib) , (3.82)

so that If) is also an eigenmode with eigenvalue E. We will use this fact in the next section.
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3. 7.1. Path integralrepresentation
Witten [3.1] andCecotti andGirardello [3.13] havegiven a path integral representationof W;

it is straightforward to do this. First, one rewrites (3.77) as

W = Tr[(—l)’~’e~~”], (3.83)

where the trace is over all the eigenmodesof the Hamiltonian and (—1)F is plus or minus 1
dependingon whetherthe eigenstateis bosonic or fermionic, respectively.As the positive energy
modescomein pairs,but with oppositesign for (

1)F, they cancel in the trace;thus (3.83) and
(3.77) agree.

The path integralrepresentationof (3.83) is, usingstandardtechniques,given by

W = fe~~’~ (3.84)

where 1 denotesall the fields, f~is the integral over the function spaceof fields andperiodic
boundaryconditionsare takenfor both the spaceandtime coordinates:‘I~(t + /3) = ~ (t) [3.4].
Thereasonfor this conditionin the time directionfor the fermionic fields is becauseof the presence
of the factor (—1 )F in the trace.

Whatdoesthis meanfor the supersymmetrictheory thatwe havebeenconsidering?To calculate
the Witten index we consider the fields in the path integral to be periodic in time. To introduce
the /3 parameter, one notes that it represents the upper limit of the time integrationrangej cit. If
we scalethe time by /1, we may considerthe time to lie on the unit circle. The action (3.1) in this
way becomes

S =i~j~i [~( ~+sghJ(~)~1)Bi+ ~g’~(cb)BtB1+ ~Rjjk/c~ly/kc~~yJt

./l •D D
2V \

—lWi ~ôj~—+ sg’ (~)D~kD~J)Y’1 . (3.85)

As we knowthat the pathintegraldoesnot dependon the valueof s, following thegeneralarguments

of section 2, we scaleit also by /3 to put the action in the form

S = ~‘di [~(4~.+ sghJ(q~-~)B, + çgiI(cb)BIBJ+ ~RIfklcii’w”l1Fw’

—i~
1(~j~-+ sgik(q5) D

2V) cut’] . (3.86)

This form of the action will also be useful to us when we consider a field theoretic proof of the
Gauss—Bonnettheorem,to be found in section3.8. For now, we considerthe target manifold to be
R so that (3.86) reduces to

I ./d41 OV\ /3 2 .(d 02V \S=ydi ~ —1w~+s
0~0~,)w . (3.87)

This is identical to (3.51) with a = /3. Since the path integral is insensitive to the value of /3, as
we havejust argued,we seethat the theoriesagree!We havethereforealreadycalculated,in various
ways, the Witten index for this theory. It is zero for potentials V(41) ._* q5

2n+I as q5 —f ±ooand
non-zerootherwise,for polynomial V. This is in agreementwith Witten’s calculation [3.24].
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3.8. TheEuler character

As stated in the introduction, the supersymmetric quantum mechanics action may be used to
determine the Euler character of the target manifold (taken to be compact).In this sectionwe
would like to exhibit this in some detail. Along the way one is able to prove the Poincaré—Hopf
theoremthat relatesthe Euler characterto the zeros of vector fields on the manifold, and the
Gauss—Bonnettheoremwhich givesthe Eulernumberas an integraloverthe Eulerclass,that is, in
termsof thecurvaturetensor.We are ableto do this by making variousjudicious choicesof gauge;
sincethe resultsaregaugeindependentthe theoremsfollow.

The definition of the Euler characterx (M) for a n-dimensionalcompactmanifold M without
boundary is

~(M) = ~(-l)’b~(M) , (3.88)

whereb, is the ith Betti numberof the manifold. Thesearedefinedto be the dimensionsof the ith
cohomology (homology) groups H’ (M,EJ~) (H1 (M,ll~)).By Poincaré—Hodge duality b = b~_1,and
the Hodge theorem equates the dimension of H (M, I~)to the numberof independentharmonic
forms of degree i.

3.8.1. A briefreviewof deRhamtheory and Witten‘s generalization

To setnotation,let

d : Q
1(M,IR) —~Q’~1(M,R) (3.89)

be the exterior derivative which maps smoothdifferential forms (with values in Il’) to smooth
differential forms of one degreehigherand d2 = 0. The inner productof two i-forms is defined
with the help of the Hodgestaroperator*,

(a~,/J~)= Ja
1*/31 , a~,/3~EQ’(M,R) , (3.90)

where the Hodge star operator maps i-forms into (n — i ) -forms andrequires the introduction of a
metric on M,

(*a~)11...1~_,= ~ , (*)2 = (1 )(n_1)z , (3.91)

where g = det(g,~)andg1 is the Riemannian metric of the manifold; indices in (3.91) are raised
and lowered with this metric.

The adjoint of d, d* is defined via

(da1,fl1÷,)= (aj,d*uJj+i) . (3.92)

It is thus an operatorwhich mapssmoothdifferential forms to smoothdifferential forms of one
degreeless,

d* : Q’(M,R) —+ Q’
1 (M,R) , (3.93)

andsatisfies (d* )2 = 0.
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The Laplacian is

4 = (d + d*)
2 , (3.94)

and clearly maps i-forms into i-forms. Harmonic forms—by definition—satisfy the zero eigenvalue

Laplaceequation

Ay
1 = 0 . (3.95)

The Hodge theorem asserts that any i-form may be decomposed uniquely as the sum of an exact,

a co-exact and a harmonic form,
a1 = dt1, + d

tfl
1~, + Yi . (3.96)

Note that a harmonic form y satisfies dy = d*y = 0. This may be proved by noting that, if y is
harmonic, then (y, Ay) = 0, which may be expressed as

(y,Ay) = 0 = (dy,dy) + (d*y,d*y) , (3.97)
where we have made use of (3.92). Since the right hand side is a sum of squares, the assertion
follows. One immediate consequence of this fact is that the decomposition (3.96) is orthogonal.

Let Z’ = {a, : da, = 0} be the space of closed i-forms and B’ = {/J,: /3, = d)~~_,}denote the
space of exact i-forms. Then the de Rham cohomology groups are defined by

H’(M,R) = Z’/B’ . (3.98)

By virtue of the Hodge decomposition, on a compact manifold without boundary, these cohomology

groups ai’e isomorphic to the spaces of harmonic forms Harm’ (M, D~)

H’(M,R) ~ Harm’(M,R) . (3.99)

Witten noticed that one may profitably generalize the above constructions [3.2]. Let d~be given
by

= e~~’des~~, (3.100)

where V: M —~ ~ is a Morse function on the manifold, that is, V only has isolated critical points
andthesemustbe non-degenerate,i.e., det(V”) ~ 0 at thesepoints. The adjoint is definedsimilarly

d’ = ed*e~~ . (3.101)

Both d~andd are easily seen to be nilpotent.
The cohomologygroupsdefined by d5 are isomorphic to the de Rham groups and we denote

them by H’(s). The isomorphism follows from the fact that the operators are related by conjugacy.
Let cut ~ H’(O) thend~= 0 and w ~ dx. Set Ws = ~ so that d~cyi~= e”d~ = 0. Also

Ws ~ d~x~for any Xs. Namely, suppose the opposite, that V~s= ~ then e~”~’w= e~~d(e~x5).
But then w is exact,which is acontradiction.This establishesthat V’s eH’ (s). The roles of d and
d5 may be interchanged in the above argument andthis givesus the isomorphism.

In particular, the dimensionsof the cohomologygroupsmatch,and oncemore by the Hodge
theorem, the cohomology groups are isomorphic to the spaceof harmonicforms. The Laplacianin
this general case is

= (d5 + d5’)
2 . (3.102)
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To express this in a compact though explicit form, we introduce creation a*l and annihilation
operators a’ at each point p of M. These satisfy the algebra

{a4,a*~}= g” , (3.103)

and have the following geometricinterpretation. The a’ (p) may be thought of as forming an
orthonormalbasisof tangentvectorsat the pointp. As operators,theyacton the exterioralgebraat
p by interior multiplication. The a*~(p) arethe adjoint operators,actingby exteriormultiplication
by the one-formdual to a’ (p). In this basiswe have

da = a*b0a/0q5~, d~a= —a’Oa/Ocb’ + F,jkala*1a1a . (3.104)

The last of theseis easilycheckedto be of thecorrect form sothat its actionon aj,...j,a*ul . . .

matchesthatof d* on aj,,r dq5” ... d41”, where the qY arelocal chartsaboutp.
With this notation, (3.102) becomes

2 OVOV D2V ~.= 4 + s g”~~~-
1+ sD,~,ID,~,J[a‘,a’] (3.105)

where D represents the covariant derivative with respect to the metric g,j. The reader will recognize
this as the Hamiltonian (3.66), (3.70) when the manifold is takento be one dimensional.

3.8.2. Path integral representationofthe Euler character
Following the analysisof the previoussection,the Euler charactermaynow be expressedas

X(M) = ~(—l )
1b~(s), (3.106)

whereb,(s) arethe Betti numbersof the H’ (s) cohomologygroups,sinceb(s) = b (M). It thus
makessenseto rewrite this oncemore as

X(M) = Trh[(_l)F] , (3.107)

where the trace is restricted to be over the harmonic modes of i~ (—1 )F gives + 1 on even forms
and —l on odd forms,andcommuteswith the Laplacian [4~,(l)F] = 0. It will not have escaped
the reader’s notice that this constructionis almostidentical to that for the Witten index of section
3.7.

To put the trace in a more useful form, one would like to relax the restriction that it be only
overthe harmonicmodes;rather,we would like to extendthe traceto beover all eigenvaluesof the
Laplacian.This is possibleas the non-zeromodesare pairedwith oppositeeigenvaluesof (—1 )“.

To see this, let

K~= d
5 + d; . (3.108)

This operator enjoys the following properties:

= K~ , [45,K5] = 0 , {K5, (l)F} = 0 . (3.109)

As (—1 )F commutes with A~we may define simultaneous eigenvectors Icut),
4sIW) =~Iw) , (_l)FIW) = ±1w). (3.110)
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Now it is an immediate consequence of (3.109) that K~cu’) is also an eigenvector with the same
eigenvalue )~,but with opposite eigenvalue for (—1 )F; the fact that this eigenvector is not trivial
follows from the first equation of (3.109), providing the eigenvalues ,~are non-zero.

The trace in (3.107) may now be extended over the complete spectrum of the Laplacian as the
eigenvectors of positive and negative eigenvalues of (—1 )‘~‘cancel against each other. This, however,
requires some regularization as the eigenvalues of 4~may become arbitrarily large (though on a
compact manifold they are discrete and positive). A term that clearly cuts out the large modes
is afforded by the exponential damping factor e~4’, for any /3 > 0. The final form for the Euler
characteras a traceover differential forms is

x(M) = Tr[(_l)”e~~’~’] . (3.111)

Now thinking of A~as a Hamiltonian, call it H
5, we may give a path integral representation for

this trace in the standard way. This gives us the desired relationship

~(M) =Tr[(_l)Fe~~] = fe_S , (3.112)

where the action is that of the supersymmetric quantum mechanical model (3.1), and because of
the (—1) F in the trace the boundary conditions are periodic for all the fields. /3 is incorporated on
the right hand side as the circumference of the time circle. The trace obviously does not depend
on the parameter /3, which can be seen from the path integral point of view by the argument that
the variation with respect to /3 gives, on the right hand side of (3.112), the expectation value of a
Q-exact term and hence vanishes. We will make use of this property to simplify the calculation of
the Euler character as an integral over powers of the curvature tensor.

3.8.3. Supersymmetryand the Laplacian
On calling the Laplaciana Hamiltonian we are anticipatingthat thereis an underlyingsuper-

symmetry in the theory. Indeed,this is a straightforwardgeneralizationof the one consideredin
the previous section for the Witten index. Wehave already denoted A~by H~now we relabel cl~
by Q andd becomes jQ*~It thenfollows that the properties of the exterior derivative become the
standard supersymmetric quantum mechanical relations, namely

—2iH5 = {Q,Q*} , Q
2 = 0 , Q*2 = 0 . (3.113)

The supersymmetry in the Lagrangianformulationis of coursetied to this generalizedde Rham
supersymmetry.This subsectionis devotedto exhibitingthis fact. The following considerationsare
in fact a generalization of those in section 3.6, and just as in that section,we havehereeliminated
B’ by its algebraic equation of motion.

Let us denote the charge associated with the supersymmetry transformations (3.4) also by Q.
Then following the Noether prescription, just as in section 3.6, we have

Q = ~ = — (gi,(41’~c~”+s~.~)vi’ . (3.114)

Wemay also read off the following Poisson brackets from the action:

{g~t~41i~+sOV/8qY,qY}= —ô,’ , {w’~cu~.~}= iô~. (3.115)
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From (3.114), it appears that Q is metric dependent;however,the Poissonbrackets(3.115) show
us that this is not the case,sincedenotingthe conjugatemomentumto qY by ir, we may express
Q as W’lti, with no referenceto the metric. If we now make the identifications w’ —p a*l and
~k( gki~jj~)~-* ia~,we see,on makinguseof eq. (3.104),that Q is identically d5 = d + sdV. In
particular,Q is nilpotent, Q

2 = 0, eventhoughthe transformations(3.4), with the B field given by
its equationof motion, are nilpotent only on-shell. There is no contradictionhereas the Noether
theoremmakesuseof the equationsof motion.

To determineQ* we needto exhibit the dual BRST invarianceof the action. Up to a surface
term (takento vanish), the actionis invariantunderthe following combinedtransformations*):

(3.116)

The charge associated with thesetransformationsis Q*, and from the Noethertheoremwe have

= —~‘[g
11(çb)41” —saV/aqY] + ~/i’~iFF,jkW” . (3.117)

On comparingthiswith (3.104),andon substitutingthe a’s for the cut’s, we seethat Q* is precisely
d~.A little more work establishesthat the Hamiltonian associatedto the actionof (3.85) is the
Laplacian4~= —2iH5 = {Q, Q*}.

3.8.4. ThePoincaré—Hopftheorem
Having given a field theoreticform for the Euler character,we will in this andthe next section

showhow differentchoicesof gaugemaybe usedto derive variousconcreteexpressions.The gauge
freedomis a consequenceof the supersymmetryof the theory,which we havejust seenis intimately
connectedwith the de Rham cohomologyof the manifold. Here we establishthe Poincaré—Hopf
theorem,which relatesthe Eulercharacterto the zerosof a vectorfield. Our presentationis similar
to thatof ref. [3.25].

We work in the delta functiongauge,so that thereis no B
2 term in the action. That is, we take

/3 = 0 in (3.86), or alternativelywe startwith the action

S

= i~di [BI (~.+ sgu1(cb)~’,
7~~))

-. (,~,D ~ D
2V(41Y\ k

—w1~~k~—+s~(D~iD~k)w (3.118)
An integration over B yields a deltafunctionconstraintonto

dqY/di+sg’~(41)8V(41)/a41~= 0 , (3.119)

andusingthe squaringargumentleadsto

dqY/d’r = 0, saV(41)/841~= 0 . (3.120)

Thereare two distinct possibilities.

“) This symmetryfollows, as we saw, from the Q invarianceby noting that the action is unalteredby w —‘ cii, cii —. w
and s —. —s. Thisholds up to an integrationby parts; if we had an arbitraryvector field V’, this secondsymmetrywould
not be present.
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(i) s = 0. This implies that 41’ = 0 so that only constantloops are important and one ends up
with an integral over the manifold M. But this is not the complete story; we will have more to say
on this in the next section.

(ii) s ~ 0. This also implies that only constant loops are important; however, the condition that
o V(41)/0q5’ should vanish also implies that only the (by assumption isolated) critical points {P}
(with local coordinates41~,)of V enter. Weproceed with this option here.

The path integral does not depend on the metric; therefore we may “deform” the metric so that it
is flat in the region of the critical points of the function V(q~).In this way we see that the curvature
and affine terms in the action may be ignored.

Expandingaboutthe classicalsolutions,the path integral becomes

~ signdet[ô,1d/di + ~ . (3.121)
{ P}

However, the discussion following eq. (3.27) shows that the signof the determinantcomesstrictly
from the n = 0 term. This leaves us with

X(M) = ~signdet[O
2V(41)/O41’d41~] . (3.122)

{P}

This equality is the statement of the Poincaré—Hopf theorem, and the above derivation is a field
theoretic proof of this classicresult.

To exhibit the power of the functional integralrepresentationwe maketwo observations.Firstly,
sincethe potential is a coupling“constant”we know, by the supersymmetry,that the resultswill be
invariant under generic deformations of V; this shows that there is nothing specialaboutthe chosen
potential. Secondly,thereis a very convenientgaugechoice which leadsto a quick derivation of
(3.122),namely the gauge

OV/OqY= 0 . (3.123)

We have repeatedly warned that changing the basic field equation may lead to an inequivalent
theory. But for s ~ 0 (3.123) implies the same conditions as (3.119), that is, only the critical
points of V(q5) are important; as these are isolated only constant paths contribute (namely the
critical points themselves). The appropriate action is then

S =i~di{Q,~’OV(~)/8qY}

= i~di (B1°~~)— WD41IDcbIYJ) (3.124)

the partition function of which leadsdirectly to (3.122).

3.8.5. TheGauss—Bonnettheorem
When we take s = 0 in the action (3.118) the B field integrationdirectly enforcesthe constraint
= 0. A glance at the actionshowsthat, on expandingall of the fields in a Fourierseries,there

are q~, B, vi and cE~ constantmodes that do not enter. The integration over the constant 41 yields
the volume of M. On the other hand, the integration over the constant B givesan infinity, as B
essentially ranges over the tangent space of M. The integrations over the fermion constant modes
are zero. Notice that the constant modesdo not causeany specialproblemsin the calculationof
the previous section as they all enter in the action.
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We proceedby makinguseof the action in the form (3.86) with s = 0, eventhoughtheB field
integrationno longer gives a delta function constraint.In this casewe usethe fi independenceof
the partition function to take the fi —* 0 limit. This calculationhasbeenpreviouslycarriedout by
Alvarez-Gaumé[3.3, 3.4], in a slightly differentform by FriedanandWindey [3.26,3.27] andthe
detailsof the modeexpansionmay be found in ref. [3.28], sowe shallbe briefhere.

First scaleall theB and~ modesby 1/~./jJ.Thenmultiply all the non-constantq~and w modes
by ~ The path integralmeasureis invariantunderthesescalings,the bosonicJacobianmatching
preciselythe inverseof the fermionic one. We keeponly thoseterms in the actionwhich do not
dependon /9 after thesemanipulations.The /9 dependenttermswill decayat least as fast as ~/7L
andtreatingthem as interactionsin aperturbationexpansion,they will vanish in the limit*).

In this way we seethat the actionreducesto

+ ~ — — ~ . (3.125)

The integration over the non-constantmodesgives 1. To put the constantmode integrationin a
more conventionalform we changevariablesto B~= g” (~0)B~,0and çi~= g” (q~o)~j,o.Keeping
in mindthat the pathintegralmeasuredoesnot pick up aJacobianfrom this change,the partition
function becomes

x(M) = (2
1)/

2fd~fdci~dwe~””’~” , (3.126)

wherethe subscript0 hasbeendroppedeverywhereandthe factorof (2m) —n/2 comesfrom the B~
integration.This form for the Euler characterinspiredMathai andQuillen to give a rathermore
mathematicalbasisfor this formula [3.29,3.30].We briefly discussthat constructionin the context
of gaugetheoriesin section 5.2.6.

Onegeneralpropertythat follows from (3.126) is that for odd dimensionalmanifoldsthe Euler
charactervanishessincethe integralswould be over an odd numberof cii, while the exponenthas
only an evennumber.This alsofollows from (3.88)on usingPoincaréduality of the Betti numbers.

We would now like to explainfrom a field theoreticpoint of view why it is that the curvature
tensorsurvivesthe limit that we have taken.The crucial point in the aboveanalysiswas that we
had to be careful with the integral over the zero modes.We could havechosena delta function
gaugefor the non-zeromodesby not takinga term of the form ~{Q,~B} in the action, but rather
one that only involved the zero mode, {Q, ~ii0B~}.In this way we see that the non-zeromodesof
the fermions andbosonsmay be ignored; they give rise to determinantswhose ratio is 1, leaving
only the zero modes.The /9 —~ 0 limit is singular for the B0 integrationand it is this singularity
thatensuresa finite contributionfrom the curvatureterm.

3.8.6. Generalpropertiesofthe Euler character
Therearetwo furthergeneralpropertiesof the Eulercharacterthatmay be deriveddirectly from

the path integral. We sketch the ideashere.
The first propertyis that

~(M1#M2) X(M1) +~(M2)—~(S~).

*) The supersymmetryguaranteesthat thefermionic contributionswill cancelthe bosoniconesin this expansionin any
case.
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The symbol # denotesthe connectedsum for any two manifolds of the samedimension (so that
we havein the aboveformula dim M1 = dimM2 = n). The connectedsum is formed by cutting
out a disk from eachmanifold andgluing backon the boundary(n — 1)-sphere,with an orientation
reversingdiffeomorphism.This is most readily visualized in the caseof Riemannsurfaces.The
Eulercharacterof theconnectedsumof agenusg1 anda genusg2 manifold is 2 [1 — (g1 + g2)], the
two manifoldsarejoined alongan S

2, so that the formulacorrectlygives2(1 — g,) + 2(1 — g
2) — 2;

see ref. [3.31], page305 for an excellentillustration of this decomposition.
We recoverthis result in the path integral in the following manner.Split the domainof the path

integral measureinto two pieces,one coveringM1, the other coveringM2. In this way we have
coveredM = M1#M2,but haveovercountedthe intersectionof the two, which is S’s, once. Each
path integralgives the correspondingEulercharacterandthis is therequiredresult.

The secondpropertythat canbe “derived” is that for productmanifolds

X(MIxM2) ~X(Mi)X(M2).

We haveshownthat the pathintegral doesnot dependon the metric, sowe chooseaproductmetric
on the space.With this metric, the actionsplits into two pieces,one of which carriesthe labelsof
M1, the otherM2 (andtheir tangentspaces).Thepath integralmeasuremaybe factorizedinto two
pieceswith respectto the labelsof the manifolds.Hence,the completepathintegralfactorizesinto
two independentpath integrals,one over M1, the other overM2.

3.9. Symmetrybreakingandzero modes

We havefound in our evaluationof the pathintegralsof the previoussectionsthat they reduceto
the critical pointsof the potentialV that enters,that is, to spacesof zero dimension.On the other
hand,when we determinedthe Euler character,the Gauss—Bonnetform arosewhen the integral
devolvednot to isolatedpoints, but ratherto an integral over the original manifoldM. The space
definedby the instantonequationis called themoduli space,and is denotedby M. Whens ~ 0 in
(3.10) thenM = {P I dV~= 0}, while for s = 0 onefinds M = M.

In our discussionso far of topological field theory, we haveconsideredthe BRST operatoras it
acts on all of the fields. The path integral, however,as we havenoted,boils down to an integral
over the moduli spaceof instantons(or to a sum over isolatedpoints). One would like then to
haveexplicit formulaeon this restrictedspaceas, in the end, it is the only oneof interest.

The aim of this sectionis threefold:
Firstly, we explicitly introducethe moduli spaceparameters(andtheir fermionicpartners) into

the BRST algebrafor the toy model, with time takento lie on the real line D~.This has a one-
dimensionalmoduli spaceparametrizedby the “center” of the instanton. By incorporatingthe
moduli spaceparametersin this way one endsup with ratherexplicit formulaedependingon the
moduli spaceand its (co)tangentbundle.The results so obtainedgeneralizein a straightforward
mannerto the generalmodel.

Secondly,this instantoncalculationis relatedbackto the questionof supersymmetrybreakingand
the Witten index as discussedin section3.7. Oneaspectof the supersymmetrybreakingmechanism
emphasizedby Witten isthe importanceofnon-perturbativeeffects;that is, the symmetrybreakdown
is “mediated” by instantons.Furthermore,the explicit formulaewe obtainprovidea clean method
for checkingwhen the BRST invariance itselfis broken*)• Since oneof the outstandingproblems

*) ~ should be madeclear that we are looking at the (intrinsic) breakdownof the symmetry in the one dimensional
theoryand we arenot usingthis as the measureof symmetrybreakingof somehigherdimensionalmodel.
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in this areais how to “liberate” degreesof freedom,we seethat symmetrybreakingoffersus some
insight into how dynamicsmight be reintroducedinto topologicalmodels.

Our third objective is to establishthat in a certain limit (s —+ oo) regardlessof whetherthe
symmetry is broken or not, the theory remains gauge and coupling constant(target manifold
metric) independent.The first two pointswere addressedin ref. [3.32], andwe follow a similar
presentationhere.

3.9.1. Zero modesofthe toy model
The actionof interestis

+ 00

I I (dq5 DV\ 1d 82V\ 1S = ij dr ~B~— + S~) — ci’ ~,-~-- + 5o~i~a~)~ (3.127)

wherer E R and the targetmanifold is either the real line or the circle, ~ : R —÷ R or 5’. The path
integral in the 1 (r) field is taken to be between~i and /~,two critical pointsof the potential
V (çb). We should emphasizehere that theseboundaryconditionsare appropriatefor “tunneling”
configurationsand so differ from those consideredpreviously. In particular, when considering
vacuumexpectationvalues of operators,it must be borne in mind that the in andout vacuaare
different.The metric on thetargetmanifold g(q~)isthe standardoneon P andS’, andis suppressed.
It should be apparentfrom the following presentationthat everythingcould be straightforwardly
repeatedfor arbitrarytarget manifolds; we will simply quotethe generalresults.

As our aim is to establishthat the supersymmetryis broken, it would appearthat the addition
of a term {Q, çiiB} = B2 could well lead, if we are successful,to an inequivalenttheory.That is,
as the symmetryno longerholds, different choicesof gaugeare not gaugeequivalent.It turns out
that we may addthe B2 term to the actionwith impunity when calculatingthe partition function;
this is possiblesincethe partition functionvanishesdueto the presenceof a fermioniczero mode.
However, only in a certainlimit will observablesbe unaffectedby the changeof gauge.We will
establishthis in duecourse,andproceedwith (3.127).

The advantageof thisform of the actionis that the pathintegralonly takesvalueson the classical
(instanton)paths,sinceintegratingoverB leadsto the constraintd~/dr+soV/Oq~= 0. A solution
to this equationcorrespondsto a “tunneling” process.In this casethe squaringargument,taking
into accountthe boundarycontribution, leadsto

=2s[V(q~1)-V(çbf)] . (3.128)

The left handsideis positivesemi-definite,so we haveacondition for the existenceof instantons
between~j and~ (we takes > 0), namely

V(4j)—V(q5f)�0 . (3.129)

Equality holds only when d4/dr = 0 and 0 V/8q~i= 0 correspondingto the trivial situationof
= ~?f.To avoid confusionwe remindthe readerthat V is relatedto the potential energyW of

the “particle” by V(~)— V(~)= f ~ Thus we are not implying that the potentialenergyat
the two critical points needbe different for an instantonto interpolatebetweenthem. We take a
genericfunction V which satisfiesthe strict bound

V(~j)—V(q5f)>0 . (3.130)
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Thereare zero modesin this theory as the “center” ~ of the instantonis a free parameter;the
classicalsolution is amemberof the oneparameterfamily

q~(r—2) (3.131)

For infinitesimal ,~ the zero modemay be expressedas ~ = AV’(q5~),andsatisfiesthe linearized

equation
d~o/dt+ sO2V/8~8~I~~

0= 0 . (3.132)

Before taking suchmodesinto accountwe needto know if they are squareintegrable.No work is
requiredto establishthis, for a glanceat (3.128) showsthat this mustbe the case,otherwiseV(~)
is unbounded.We restrictour attentionto thoseV which are boundedat the critical points. The
formally similar linearizedequationfor aB zero modeB0

dBo/dr—s0
2V/0~0~~Bo= 0 , (3.133)

has a solution B
0 = c(V’)’. This mode, on the other hand, is not squareintegrable, so we

may neglect it. This fact is easily establishedby making useof the Cauchy-Schwarzinequality,
(f.~

4-:fg)~< (ft f2)(f~ ga), which holds for squareintegrablefunctions f and g. If we
assumethat B

0 is indeed normalizablethen we must have that J’~
4- B

0q50 is finite. But it clearly
diverges,implying that this mode is not normalizable.We canlikewise ignore the zeromodeof the
~ii field as it also satisfies(3.133). Alternatively, we see from the supersymmetrytransformation
{Q, ~} = B, that B and ~ are in one—onecorrespondence;if thereis no zero mode for one of
thesethen thereis none for the other*).

On the otherhand, thereis a ~i zero modewhich maybe obtainedfrom (3.131) by a supersym-
metry transformation.Setting

= a , {Q,a} = 0 , (3.134)

the cii zeromode is given by

WC=ad�C(T—2)/dA. (3.135)

If therewas alsoa ~ classicalsolution thathadto be considered,then,just as for the calculation
of the Witten Index in section3.7, the partition functionwould not necessarilybe zero. However,
here the partition function will vanishbecauseof the unmatchedmode ci’~~Z = 0. Expectation
values will alsonecessarillyvanishunlessthey are of operatorsthathaveghostdegreeone, so that
the fermionzero mode is saturated.

We evaluate(OIO(c
5, w)IO), where0 hasghostnumberone, first in a ratherformal fashionand

thenonceagaintaking more careof the zero modes.The result is

(01010) = f e~0(~,~)

= fDt/~Dwo(~+ s~~~i)ö(~i+ s
0~cii)0(ct~~cii). (3.136)

*) When t ~ S’ thezero modes,theconstantmodesof B and~, arenormalizableandwereincorporatedin thecalculation

following eq. (3.123).
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It hasbeenpossibleto perform the B and ~iiintegrationspreciselyas thesefields do not suffer
from zero modes,and we have chosenthe “observable” 0 not to dependon them. The delta
functions ensurethat only the classicaltrajectorieswill contribute, and so the path integral is
restrictedto themoduli spaceandits tangentspace(at a point). On expandingaboutthe arbitrary
classicalsolution& (‘r — ).), andthe associatedfermioniczero mode ~ the path integralbecomes

(01010) = fd~Cdwc1(~,,~ )~)I0(~c, V/c) . (3.137)

Declaringthe sign of the ratio of determinantsto be onewe find

(01010) = fdc~cdwc0(~c,wc). (3.138)

As thereis only onezero mode, non-zerovalues for this correlatorwill be obtainedfor those
observablesof the form 0 =

This is the final result; however,the above derivation has been somewhatheuristic. We now
remedythis by incorporatingthe zero modesexplicitly into the BRST algebraand then into the
path integral. Let the fields ~ and ~ be decomposedas

q~~q+~c, y/=cf/q+wc, (3.139)

whereç~and çt’~arethe classicalconfigurationsgiven in eqs. (3.131) and (3.135),respectively.As
the classicalfields interpolatebetweenthe critical pointsof the potentialV, the boundaryconditions
on the quantumfields ~q and V/q (as on B and~) are that they vanishat the endpoints x ±oo.
The BRST algebrafor the new fields may be determinedfrom the original transformations(3.6)
and the transformationrules for the moduli parameter,~ andits superpartnera given in (3.134).
The algebrareads

{Q,q~q}= V/q , {Q,Wq} = 0 , {Q,çi~} = B
{Q,B} = 0 , {Q)~}= a , {Q,a} = 0 . (3.140)

Now that we haveexplicitly extractedthe zero modes,we must ensurethat both ~q and ~ have
no such modescontainedin them; otherwisewe shallbe over counting.This is easily achievedby
gaugefixing them to be orthogonalto the zero modedq~~/dA= —dq5~/dr.To implementthe gauge
fixing we needto introducetwo time independentfields a of ghostdegree—1 andi~of ghostdegree
0, which transformas

{Q,a} = ;i , {Q,~}= 0 . (3.141)

Notice that with all the redefinitionsandintroductionof new fields the nilpotencypropertyof the
BRST operator,Q

2 = 0, hasbeenmaintained.
The actionthatwe takeis (3.127),with additionaltermssoas to imposetheconditionsthat the

fields Q~qand V/q haveno zero modecomponents.Specifically the actionchosenis
+ 00

f ]d~ 3V(~)’\ - dq5~
S =i di.~

1Q,~~—±s~

=‘l ~

(3.142)
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The observableis takento be afunction of the original variables,0(~,ci’). The integrationover B
implies oncemore that 4~satisfiesthe instantonequation.The boundaryconditions~q (±~o)= 0
then show that this field is purely a zero mode. However, the integral over i~ forces q5q to be
orthogonalto the zero modes;thus ~q = 0. The determinantthat arisesfrom the delta function
constraintsis then

~ (dq~, V”( “\~ (f dqSc\ — ô(q~q) 3 143+S ~c)~q,j ~ — det’(d/th+sV”(~
0))l ( . )

wherethe prime on the determinantindicatesthat the zero eigenvalueis excluded.It follows by
supersymmetrythat V/q = 0; explicitly, the ci? integral enforcesthat cuq be a pure zero mode,
while the integral over a (now that the term proportionalto ãa in the action maybe neglected)
establishesthat Wq is zero.The determinantthatonegetsin this way, up to the usualsign ambiguity
which is declaredto be one, cancelspreciselythat in (3.143).

The vacuumexpectationvalue of 0 becomes

(01010) = fcUda0(&~ciic) , (3.144)

which agreeswith (3.138).

3.9.2. Symmetrybreakingand zeromodes
We will now show that thereare observableswith non-zeroexpectationvalue, and that this fact

is intimately relatedto the questionof supersymmetrybreakingthat we addressedin section 3.7.
Let 0 = ~V’(~); when this is substitutedinto (3.144) its expectationvalue is given by

(01010) = fdAdaa~EV’(&) fd2~~ = V(~f)— V(~5~)~ 0 . (3.145)

This expectationvalue doesnot vanish, becauseof the constraint (3.130); indeed,the right hand
sideof (3.145) is known as the winding numberof the instanton.

Let uspauseto askourselveswhat propertiesanobservableshouldhave.Firstly it musthave,as we
discussed,fermionnumber1. The secondrequirementthatwe imposeis that it beBRST invariant,
{Q, 0} = 0. This is anatural requirement;in a gaugetheory we would take expectationvaluesof
gaugeinvariant operators.Clearly we have {Q, V/V’(4~)}= 0, so that it is a good observable.The
surpriseis that we havecalculatedaBRST exact correlator

(0IwaV(~)/,9~40)= (0I{Q,V(~)}I0) ~ 0 , (3.146)

andobtaineda non-zeroresult; thus the BRSTsymmetryis broken. In a gauge theory,when we
evaluatethe expectationvalue of an operatorthat is pure gauge, we should get zero since the
operatoris gaugeequivalentto the zero operator.This translatesinto the usual Ward identities in
BRST form, namely that the expectationvalueof the BRST variation of an operatoris zero.From
(3.146) we seethat the Ward identity fails andsowe concludethat the symmetry is broken.

In one dimensionall the Q-closed observableswill in fact be Q-exact. The reason for this
is that the moduli spaceis the real line, ,~ � P. On the zero mode space Q acts like exterior
differentiation.Thus our demandthat observablesbe Q-closedandof fermion degree1 translates
into the requirementthat they be closedone-forms on the real line. But H’ (R) = 0, so that all
the closedone forms are exact.Letting 0 = ag we may thenexpressthis as 0 = {Q,f}, where
f = f

2dsg(s).
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Fig. 3.1. A potential V’ (~)that tendsto plus infinity as Fig. 3.2. Theheight function V is displayedfor thecircle.
—+ ±00 is displayed.This potentialallows for instantons The north and south poles are indicated; there are two

to interpolatebetweenits zeros. instantonpathsbetweenthesepoints.

The reasonthat Q-exacttermsmay pick up non-zeroexpectationvalues is that, just as in de
Rhamtheory,endpoint contributionsmay beimportant.Thereis an analoguein gaugetheorieson
non-compactmanifolds when there are Higgs fields present(section5.4.2). From this discussion
we see that all observablesmay be expressedas 0 = ~f’(~) and their expectationvaluefollows
from (3.145),(01010) = f(q~)— f(4~),which we maywrite more suggestivelyas

fQf__fdf(c5c)

It is perhapsworth pausingfor a secondto admire the above equation.In fact, it capturesthe
essenceof topological field theories:apath integral over a functional spacecJ of a BRST exact
observableQf has beenreducedto an integral over a finite-dimensionalmoduli spaceP of a
d-exactvolume form df.

Whatdo theseconsiderationshaveto do with the questionof supersymmetrybreakingasposed
in section3.7?There,the Witten index was introducedto measurethe possibilityof supersymmetry
breaking.However, it should be apparentthat, if we find a statewith zero energywhich is stable
underperturbations,thensupersymmetrycannotbe broken,exceptby somenon-perturbativeeffect.
Considerthe form of the potential V’ (~)in fig. 3.1. Thereareclearlytwo critical points;eitherone
would serveasaground statefor the theory.However, the Witten index is zero for this potential
allowing for the possibility that the symmetryis broken.The instantoncalculationestablishesthat
this is indeedthe case,for it showsthat the energydegeneracyis lifted and that thereis no state
with zeroenergyeigenvalue.Whenthereis only onecritical point, thereis no instantoncalculation
to performand that stateremainsthe groundstate.Whenthereare many turningpoints, we may,
by perturbingthe potential if needbe, deform the problem into either of thesetwo examples;
otherwise,proceedingalong the lines of this section,one must take into accountall the critical
pointsand the instantonsthat interpolatebetweenthem.

3.9.3. Gaugeandmetric independence
We have exhibitedthat the BRST symmetry is broken in this theory,althoughthis may not be

the caseoverthe completemanifold*)~ In derivingthis resultwe haveworkedin thedelta function
gauge.Sincethe symmetryis broken,different gaugechoicesareno longer equivalent.However, it
is sufficient to establishthat the symmetry is broken in anygiven gauge;the fact that the results
may vary from gaugeto gauge is itself an indication that the symmetry is broken. We would,
nevertheless,like to determinehow the resultschangeas we changegauge.

*4 Taking into accountall of thecritical pointsandinstantonsthat interpolatebetweenthemcould restorethesymmetry.
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We will takethe action to be

s = ~71dT {Q~~ :°~:.2- : ~�iq~}

tfd~[B(~+s~)_~iaB ~

(3.147)

and determinethe correctionsto (01010) as s —~ oc. We begin by scaling ~q and V/q by s (the
Jacobianis I). Likewise, multiply a and i~by s. Let us now keeponly thoseterms in the action
thatares independent;all correctionswill be of the order 1/s or smaller,

+00

S =f dr(iBVh’(~~c)~5q+ ~aB2—

1?1i75q~— iaV/q~ — iaq~q~~a+...) . (3.148)

In this limit 0(~,‘ii’) —* 0(q~c,ad~c/dA).A straightforwardcalculationleadsto the result

(01010) = f(~)— f(~)+ O(ct/s) . (3.149)

The gaugedependenceis thensuppressedby a factorof 1 /s, with the delta functiongauge,a = 0,
picking out the leading term. All possible metric dependenceis thereforealso suppressedby this
factor. Calculationshave beenperformedin the a = 1 gauge in refs. [3.33—3.35],where detailed
discussionsof supersymmetrybreakingareto be found.

3.9.4. Thegeneralmodel
For an n-dimensionaltarget manifold the resultsare basically unchanged.As the zero mode is

associatedwith the shift invarianceof the centerof the instantonthereremainsonly onesuchzero
mode. The moduli spaceis still one-dimensionalanddiffeomorphicto the realline. An appropriate
observableis 0 = {Q,f(~’)}=

A correction to formula (3.144) comes about in general when there is more than just one
instantonpath.For the circle, whenthe function V is takento be the heightfunction, therearetwo
instantonpathsfrom the north pole to the south,fig. 3.2, while for the spherethereare an infinite
numberof suchpathsassociatedto the heightfunction. So genericallywe have

(01010) = ~ , (3.150)

wheren(~‘,~/~)countsthe numberof instantonswith signs. One methodfor stipulatingthesewill

be presentedin the nextsection; for now we leave it in this symbolic form.

3.10. Morse theory andsupersymmetry

We saw in section 3.8 that Witten’s generalizationof de Rhamcohomologyprovidesus with
a ready proof of the Gauss—Bonnettheorem.The significance of his work extendsbeyond this
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simpleapplication; rather,he was able to show how Morse theory [3.36] can actually be usedto
obtain the homologyof a manifold [3.2]. Indeedthis representsthe beginningof topological field
theory,for it was thoseideaswhich promptedFloer’s work on homologythree-spheres,andin turn
led Atiyah to establisha Hamiltonian formalism connectingthis three-dimensionalconstructwith
Donaldson’sfour-dimensionalstudy. In view of the centralrole playedby theseideas,we include
a brief discussionof them here.

Let M be a smoothcompactmanifold, andconsidera smoothfunction V : M —~ P whosecritical
pointsarenon-degenerate.By this is meant,thatat the necessarilyisolatedpoints {P} where

dV~= 0 , (3.151)

the determinantof the Hessianof V at P,

detHpV = 1102V/0~’0i/’II , (3.152)

doesnot vanish.The non-degeneracyof the determinantof the Hessianwas requiredso that the
Euler number in section 3.8 was well defined, so this condition arises naturally from the path
integral point of view.

The Morse index ip of the function V at the critical point P is definedto be the numberof
negativeeigenvaluesof HpV at P. Both the non-degeneracycondition and the Morse index are
independentof the chartschosenfor the local neighborhoodof the critical points.

Therearetwo Morse inequalitiesof interest.The first statesthatM~,the numberof critical points
with the sameMorse index i, is greaterthanor equalto b~,the Betti numberof degreei,

M1 > b . (3.153)

The second,strongerinequality,statesthatthe polynomialM, = ~ M,t’ is greaterthanor equal

to the Poincarépolynomial P1(M) = ~ b1t
1. Preciselyformulated,this conditiontakesthe form

>(Mj—bj)t’= (1 +t)~Q
1t’, Q~>0. (3.154)

The “error” term, ~~0Q~t’, is not known in general.If we set t = —1, however,then the error
term dropsout of (3.154),andwe obtain

x(M) = ~b~(—l)t= ~M~(—l)1 . (3.155)

But we havealreadyestablishedthis resultby using the Witten complex.In section3.8 we saw that

x(M) = ~ signdetHpV , (3.156)
{ P}

anda moment’s thoughtshowsthat this sumis identically ~ M
1 (—1)~. For the exampleof the

height function of the circle, fig. 3.3, the numbersdisplayedat the turning points are the Morse
indices. There are two points with i = 0 and two with i = 1, so that M0 = M, = 2, giving
x (5’) = 0. For the circle of fig. 3.2 there is onepoint with i = 0, the south pole, and one with

= 1, the north pole, again giving a vanishingEuler character.Likewise for the torus of fig. 3.4,
M0 = 1, M, = 2 and M2 = 1, so that X(T

2) = 1—2 + 1 = 0.
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r~--~:::~:~ V

Fig. 3.3. A heightfunction V is displayedfor S1.TheMorse Fig. 3.4. The height function for the torusT2, as well as
index I is indicatedat the turning pointsof V. the Morse indicesof its turning points, areexhibited.

On using the Witten complexwe have been able to verify the strongMorse inequalitiesfor a
specialchoiceof parametert. The questionthat naturallyarisesis: canonedo better?Is it possible
to deriveboth inequalitiesin generality?

3.10.1. TheweakMorse inequalities
The Hamiltonian (or Laplacian) for the Witten complexis

2H
5 = dd* + d*d + s

2(dV)2+ [a*i,ai] . (3.157)

Having in mind Morse theory, we see that this is a rather apt operatorto consider, for it ties
togetherall the relevantingredients:the first term is the usual Laplaciandd* + d*d = A, whose
zero eigenfunctionsdefine b(M), the secondterm vanishespreciselyat the critical pointsof V,
while the last is proportionalto the Hessianof the function.

In the s —+ oc limit the low lying eigenvaluesof IJ~are centeredabout the critical points {P}.
Aroundeachsuchpoint, the coordinatesq5’ arechosenso thatq~(P) = 0, and the metric tensor gjj is
takento be the standardEuclideanmetric ô~,up to termsof orderq~2.Furthermore,the coordinates
may be chosenso that in the vicinity of the critical points, V(4) = V(0) + ~ +
for some A~.Note that this implies that we have the Hessian in diagonal form as, V(q~)=
V(0) + ~HpV~ +

Nearthe critical point P, H
5 maybe well approximatedby [cf. eq. (3.70)]

2H5 = ~(_O2/U~ + s
2~çb~+ s2

1[ai*,al]) . (3.158)

The term [al*, a
1] is 2n, — 1 where n is the ith occupationnumberfor the fermions. As thereis

either0 or 1 fermion in eachstate,this term is given by n7 = 2n, — 1 = ±1. The first two terms
in (3.158) correspondto the n-dimensionalsimpleharmonicoscillator.The spectrumis thus

E
5 = s~{I~~I(l+ 2N1) + )Ln7}, N1 E ~ . (3.159)

The zeroenergylevel is obtainedonly whenthe N1 = 0 andeachn7 is chosento be — sign2~.The
fermionnumbern,~in this casemeasuresthe presence(+ 1) or absence(—1) of the ith differential
dx’, so that, if the Hamiltonian is actingon ap-form, then the sumof the positive n7 mustbe p
(+ 1 for eachdx

1). Since the numberof negative~j is fixed and is defined to be the Morse index
ip ( equal to p, say), then the sum of positiven~must also be this number. Thus thereis one
ground stateat eachcritical point F, and it must be a p-form.
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For the circle [3.37], theheightfunctionaboutamaximummaybe expressedas V(~)= c,— ~

andthe Hamiltonian aboutthis point takesthe form

2H5 = _8
2/8cb2+s2~2_s[a*,a] . (3.160)

The two possible statesare proportionalto either 10), which correspondsto functions, or to
Ii) = a*l0), which is a basisfor one-forms.n* = —1 and n* = + 1, respectively,on thesestates.
The spectrumof the Hamiltonian is that of the simple harmonic oscillator (recall that this is
s,3s,...) ±sas it actson scalarsor on one-forms,

Spec(H
5

0)= 2s,4s,... , Spec(H~’)= 0, 2s (3.161)

At a minimum, the height function takes the form V(q~)= c
2 + ~2, which only changesthe

above analysisby flipping the signs of n*. The spectraof the Hamiltonian on the functions and
formsare thereforeexchanged,

Spec(H~)= 0,2s,... , Spec(H~)= 2s,4s (3.162)

For this example,we see that the one-formis a ground stateat the critical point wherethe Morse
index is 1, while at critical pointsof Morse index 0, the ground statesarefunctions.

On ageneralmanifold, taking into considerationall of the critical pointsleadsto the weakMorse
inequalities.The approximategroundstatesthatwehaveconstructedarenot necessarilyannihilated
by H5, but it is clearthat thereare no more ground statesavailable as all the other stateshave
energiesthat go like s for larges. Hence,the numberof approximateharmonicp-forms is at most
givenby the numberof critical pointswith Morse index p. The numberof true harmonicp-forms
beingb~,we haveestablishedthat MA!, � b~.

3.10.2. The Witten complexand Morse theory
The information that hasbeenderived so far hasbeen quite local, being centeredabouteach

critical point. As we saw previously for the calculation of the Euler character, this was quite
adequate.In fact, as long as we considerpathsin the pathintegral thatareloops, thenthe seriesof
stepsin section3.8 establishesthatonly informationabouteachindividual critical point is relevant.
However, in the last section,pathsthat connectedthe critical points, that is to say the instantons,
wereconsideredandthesecan be usedto give“relative” information.In thisway, Witten establishes
that the Betti numbersmaybe determinedfrom Morse theory.

Supposewe havetwo critical pointsF, and P2 thatarejoined by an instanton,

d~’/dr+sg”(/)OV/OqY= 0 . (3.163)

Thenwe know thatthereis exactlyone fermioniczeromode,andthis forcesthe partition function
to vanish.How do we interpretsuchamode?The ~ii areequatedwith fermioniccreationoperators
andthen in turn identified with a basisof differential forms. An unmatchedmode (thereis no ~i?
zeromode) may be interpretedas sayingthat the ket I ) hasform degreeone lessthanthe bra ( I.
The innerproductof thesetwo thennaturallyvanishes.

This meansthat if we wish to calculatethe transitionbetweenone of the approximateground
statesIF,) at P~with Morse index ~p= Pi (so it mustbe ap, -form), andone of the approximate
ground states P2) atF2, thenthe Morse index at P2 mustequalPi + 1. A pc~tentiallynon-vanishing
expectationvalue of interestto calculateis (P2 Id5 I P,) (recall that c1~i—* Q). This we have already
done in section3.9, eq. (3.150),

(P2Id~IP,)= n(P,,P2) , (3.164)
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where n (P,, P2) is an integer counting the number of instantonswith appropriatesigns between
the two critical points. Determining the sign is somewhatmore difficult, and we will only sketch
the methodhere.Let ~ be an instantoninterpolatingbetweenP, andF2, andlet Vi andV~be the
(p + 1)-andp-dimensionalvectorspacesof negativeeigenvectorsof Hp V and Hp, V, respectively.
The orientationof thesevector spacesis naturally given by the statesJP,) and P2), as they are
forms of the appropriatedegree.The tangentvector to ç~at F, is denotedby v, and ~ is the
subspaceof V, orthogonalto v. By interior multiplication of v with the (p + 1)-form state F,),
the orientationof V, is fixed.

The vector spaceV, is p-dimensionaland so its orientationmay be comparedwith that of V~.
The comparisonmaybe madeby paralleltransportingthe vectorspaceV, alongç~.~ for the path
is definedto be + 1 if the orientationsagree,and —1 otherwise.

Now as n(P,,P,) = ~ n~,the transition (3.164) is determinedandthis allows us to define a
new “twisted” cohomology.Let X~be a vector spaceof dimensionM~which is generatedby the
critical pointsanddefine the coboundaryoperatorô : X~—~ X,1,÷,by

ÔIR) = ~n(R,P)lP) , (3.165)

wherethe sum is over all the basis elementsIP) of X,,.,,. From eqs. (3.164) and (3.165) we see
that the matrix elementsof ô are given by the actionof d5 or the BRST operatorQ. Now as Q is
nilpotent, then so is ö on thesespaces,so thatwith ô

2 = 0, it is a coboundaryoperatorandhence
definesa cohomology.

Denoting by Y,,, the Betti numbersassociatedwith this cohomology,Witten conjecturedthat
= br,. The instanton calculation establishesthat, if (ôó* + ö*ö)IW) = )LIV~’) with non-zero

eigenvalueA, then ‘F) hasnon-zeroenergy.Theproblemis to showthatwhenA = 0 the approximate
eigenstateI ¶1’) really haszero energyso that it is a true eigenstate.Intuitively, this is the caseas
instanton calculations frequently eliminate approximatedegeneraciesthat exist in perturbation
theory.

Further reading
The Langevinapproachto topologicalfield theories,as consideredin the text, was introducedby

LabastidaandPernici [3.38] in the contextof Donaldsontheory,andis reviewedin section5. The
generalapplicationof this approach,as well as its connectionto Nicolai maps,was establishedin
refs. [3.5, 3.6]. The stochasticapproachto quantizingtopological theories,with a stochastictime,
was developedin ref. [3.39].

A variant of the model consideredhere was used to determinethe index of the Dirac and
Dolbeault operatorscoupledto gaugefields [3.3, 3.4, 3.26, 3.27]. The methodswe have usedto
prove metric andcoupling constantindependenceof the Euler characterextendto thesecasesas
well. In ref. [3.40] the Euler characterfor manifolds with boundarywas determinedusing the
supersymmetrymodelwith a specialchoiceof potential.

The questionof BRST symmetrybreakingwas consideredby Fujikawa [3.41]. He gavecriteria
analogousto thoseof Witten for the breakingof conventionalsupersymmetry,which coincidein
onedimension.The modelshe consideredwe wouldnow identify as beingtopologicalfield theories,
thoughtheyare topologically trivial. This work also hasrelevanceto the questionof the triviality
of observablesin Donaldsontheory, which we discussin section5. A discussionpertainingto the
presentmodel can be found in ref. [3.42].

A treatmentof zero modesin theorieswith instantonsandsolitonsmaybe found in refs. [3.43—
3.46]. A systematicBRST treatmentfor topological field theorieswas given in refs. [3.47, 3.32].
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The questionof the value of the Witten index for potentialswhich are not Morse functions has
been addressed in refs. [3.48, 3.49].

Other works on supersymmetricquantummechanicsas a topological field theory include refs.
[3.50—3.52].

4. Topological sigma models

4.1. Introduction

Topological sigma models can be studied in a manneranalogousto the approachwe took in
discussingsupersymmetricquantum mechanics. These models are related to some mathematical
results of Floer [4.11 on the numberof fixed points of certain symplectic diffeomorphisms,as
well as to related work of Gromov [4.2]. In one of Floer’s constructions,a chain complex,
analogousto the Witten complex, is definedwhere the boundary operatoris associatedwith a
certaintype of instanton.The Morse theoreticinformation in this casedealswith fixed pointsof
exactdiffeomorphismsof asymplecticmanifold. Fromthefield theorypointof view, onceonehas
the appropriateinstantonequationin hand, it is a straightforwardprocedureto “quantize” that
classicalequation,as we did in supersymmetricquantummechanics,andsoconstructatopological
quantumfield theory. In this case,the instantonsthatenterFloer’s work are certaintypesof maps
from a two-dimensionaldomain into a target spacewhich hasa symplecticstructure. It is quite
natural then to reformulatethesedatain termsof a sigma modelwherewe considermapsfrom a
Riemannsurfaceinto sometargetspace.Thisapproachallows for certainextensionsin theoriginal
scenario,andonecanconstructmodelswherethe targetspacehasonly analmostcomplexstructure.
Thesemodelswill, however,simplify greatlyin the Kählercase.

In section4.2, we undertakeabrief reviewof somemathematicalconceptswhich areunavoidable
in anypresentationof the topological sigma models.With this machineryin hand, we will then
proceedin section4.3 to review someof the key resultsof refs. [4.1, 4.2], which servedas the
motivating factorsin Witten’s construction[4.3]. Following this, we constructthesemodelsfrom
variouspointsof view in section4.4, anddescribethe topologicaldataencodedin their observables
in section4.5.

4.2. Reviewofcomplexmanifolds

It is our goal hereto review someof the mathematicsassociatedwith complex manifolds.Our
presentationwill be spartan;we will review only thoseaspectsof the subjectwhich enterin the
succeedingdiscussions.As usual, we assumethat the readeris familiar with the basics of real
manifold geometryandtopology.

Let us begin with the definition of a complex manifold. A complexmanifold of (complex)
dimension m is a paracompact Hausdorff space, together with a covering by open sets each
homeomorphic to cm. In addition,we require that the coordinatetransformations(or transition
functions) which are defined in the overlaps of two of these open sets (called coordinate patches) are
given by holomorphicfunctions.The collection of local neighborhoodstogetherwith the transition
functions is called the atlas.

The definition of a complex manifold differs from that of a real 2m-dimeitsionalmanifold only in
the requirementthat the transitionfunctionsareholomorphic,andnot merelyC°°smooth.Clearly,
everycomplexmanifold canbe consideredas a realmanifold. It is a naturalandimportantproblem
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to determine which real evendimensionalmanifolds containasubatlasconsistingof holomorphic
transition functions.Two complexmanifoldsM andN will be consideredequivalentif thereexists
a diffeomorphismf : M —+ N which is alsoholomorphicin both directions.

We will of coursebe interestedin tensors on complex manifolds, and their definitions are
analogousto thoseencounteredon real manifolds. At each point p of the complex manifold M
of dimension m, there are the tangent and cotangentspaces,denotedby T~(M) and T~(M)
respectively,which are complexvector spacesof dimension in. If we let (z’,. . . , zm) denote the
complexcoordinatesin somecoordinatepatch,then the tangentspaceis spannedby the collection
of vectors

a a
Oz’’~”’ 0z~~ (4.1)

while the cotangentspaceis spannedby the one-forms

dzi,...,dzm . (4.2)

We said before that any complex manifold can be consideredas a smoothreal manifold in a

naturalway; we simply map the complexcoordinatescm into p2m,

(z’ z”) —+ (x’,y’ x”,y’~) , (4.3)

where za = Xa + iy
0. In contrastto the tangentspacedefined above, the tangentspaceto the

underlyingreal manifold has2m real dimensions,and is spannedby the collection of all partial
derivativeswith respectto both the x” and ya If we introduce the complex conjugatesof the
coordinates,~ = — iy”, thenwe can exchangethex, y descriptionwith the z,±notation. It is

thennatural to define
O 1(0 .0~ 0 1(0 .0 44

(.)

Equivalently,we canwrite the derivativesin the x andy directionsas linear combinationsof the z
and±derivatives.It is conventionalto denotethe tangentspaceT~(M)to the complexmanifold
M at point p by T,~”°~(M) and the analogouscomplexvector spacespannedby the ±derivatives
by T~,°”~(M). We should emphasizethatT~(M), as we havedefinedit for acomplexmanifold, is
quite different from the tangentspaceto the underlyingreal manifold, which is given by the real
linearcombinationsof the vectors8/Ox°and O/OycS.

A key observationis that the barredandunbarredvectorsdo not transforminto eachotherunder
a holomorphicchangeof coordinates.The tensoralgebra thenhasa finer decompositionthan in
the caseof a real manifold. It is now meaningful—inthe global sense—todiscusstensorswith some
definitenumberof holomorphicandanti-holomorphicindices of eithercovariantor contravariant
type. For example,a two-form w of type (1,1) is definedto be a tensorwhich in eachcoordinate
patchtakesthe form

WahdzaAdz/? . (4.5)

Notice that we place a bar over an index on a tensorcomponentif it is to be contractedwith an
anti-holomorphicvectoror covector.It is alsosometimescustomaryto place a bar overthe index
on the conjugate of a holomorphic coordinate vector or covector, e.g. d±”, or equivalently dz’~.
Sincethereis really no possibilityof confusion,we will omit the extrabars.
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If MR denotes the underlying real manifold of acomplex manifold M, thenwe know that the
exterioroperatord : Q~(MR) -. Q~+l(M,~)is defined and it playsan importantrole, whereQ’ (MR)
is the spaceof r-forms on M~.In termsof the real x and y coordinates,this operatortakesthe
form

d=dx°O/Ox0+dy0O/Oy° . (4.6)

Rewriting this in complex coordinates, we have the equivalentexpression

d=dzaO/Oza+d±a8/O2a . (4.7)

Our observation that holomorphic coordinatetransformationsdo not mix the holomorphicvectors
O/Oz°with the anti-holomorphicvectors0/0±0meansthat the exterior operatord decomposes
into the sumof two globally definedoperators,

d=O+~i, (4.8)

where 0 = dz’~0/Oza : Q(P~~)(M)—i Q(P4-t~~~(M),and similarly for ~. The nilpotency of d

translatesinto the setof conditions
~ (4.9)

The operator~ is called the Dolbeaultoperator.
An importantpropertyof the exterioroperatoris expressedin the Poincarélemma,which states

that, if a form a E Q~(U),p > 1, satisfiesda = 0 (a is closed),then thereexists a /9 E QPI (V)
for someopensetV C U suchthata = dfi (a is locally exact). It is no surprisethatthis lemmahas
arefinementon a complexmanifold. The Dolbeault—Grothendiecklemmastatesthat, if a E Q ~

q � 1 andOct = 0, then locally thereexists /3 ~Q(p,q~suchthata = 8/3.
We have already seenthat the structureof a complexmanifold allows one to define intrinsic

objectssuch as 8 and ~, which are not commonto every real manifold. Another such structure
is a globally definedtensorfield J with one covariantandone contravariantindex (i.e., J is an
endomorphism of the spaceT~”°~~ T~°”))whosesquareis —1. Sucha tensorcan be definedby

Jab = 1ôab , ~‘2b= —iö”b , (4.10)

andwherethe othercomponentsvanish, in eachcoordinateneighborhood.Thesepiece togetherto
define a global tensor field sinceholomorphicchangesof coordinatespreservethis structure.We
will return to a further discussionof J in duecourse;here we merelycite this constructionas an
observation.

With theseremarksin hand, we will now addressthe issue of whether a given real manifold
can be viewed as acomplexmanifold by restrictingthe atlasin sucha way as to selecta subatlas
whose transitionfunctions are holomorphic.It might well be the casethat thereare many such
subatlaseswhich arenot holomorphicallyequivalent.In anycase,we nowseethat the real manifold
in questionmust at least admit an almost complexstructure, i.e., a globally definedtensor field
with onecovariantandonecontravanantindex whosesquareis —1. It is a trivial exercisein linear
algebrato showthat the existenceof suchamatrix requiresthat the tangentspacebeof even(real)
dimension.Moreover,onecan alsoshowthat the existenceof an almostcomplexstructureimplies
that the manifold is orientable(a global, nowherevanishingform of maximaldegreeis defined),so
in particular, all complex manifolds are orientable. It is convenient to call a real manifold almost
complexif it admits an almost complexstructure.Our problemcan now be refined: which almost
complexmanifoldscontainaholomorphicsubatlas?



180 D. Birminghamet a!., Topological.fie!dtheory

The answerto this questionis the content of a theoremof Newlanderand Nirenberg,which
statesthata given almostcomplexstructurearisesfrom a complexmanifold if the Nijenhuistensor,
definedby

= JI(
0Jk 8Jk) Jl(3Jk 0Jk) , (4.11)

is zero. One can show that N is a tensorby first defining an analogousquantity with covariant
derivatives (choosesomemetric and the associatedChristoffel connection)and thennoting that
the termsproportionalto the connectiondrop out; this follows from the fact that the connection
coefficients aresymmetricin the two lower indices.In otherwords,an almost complexmanifold
hasa holomorphicsubatlaswhich gives rise to the given almostcomplexstructureif the Nijenhuis
tensorvanishes.That this is a necessarycondition is obvious;one needonly look to see that our
constructionof J from aholomorphicatlaswas in termsof constanttensorcomponents.The proof
that this condition is in fact sufficient is difficult, andwe will sayno more aboutthathere.

A convenientconditionthatguaranteesthe vanishingof the Nijenhuistensor—aswe havealready
noted—iswhenthe almostcomplexstructureis covariantlyconstantwith respectto someChristoffel
connection,

DkJ’J = 0 . (4.12)

It is important to emphasize that we have a torsion-free connection; we cannot conclude that JV~
vanishesif we merely have covariantconstancywith respectto some connectionwith non-zero
torsion.

A metric h (positivedefinite as always) on an almost complexmanifold is called Hermitian if
it is compatiblewith the almost complexstructureJ in the sensethat h(JX,JY) = h(X, Y). In
coordinates,this condition takesthe form

h1 = J
m

1J~1h,~~. (4.13)

When the manifold is actually complex,whereit is possible to put the complex structurein the
canonicalform definedabove,thenthis condition simply meansthat hab = hab = 0. The existence
of Hermitian metrics is not really an issue,sincewe can constructa Hermitian metric from any
given Riemannianmetric g by defining

h(X,Y) = ~(g(X,Y) +g(JX,JY)) , (4.14)

wherepositive definitenessis clearly preserved.Now, if we are given a Hermitianmetric h, there
is anaturalway to constructa two-form K; just define

K(X,Y)=h(X,JY) . (4.15)

Sinceh is symmetric,andJ
2 = —1, it is trivial to checkthatK (X, Y) = —K (Y,X). In components,

we havethat K,~= hlkJ”~j,sowe seethat K is also non-degenerate(invertible) sinceboth h and
J arenon-degenerate.

The constructionswe havejust consideredare set within the framework of an almost complex
manifold, which is by definition real. If the Nijenhuis tensorvanishes,thenit is possibleto find a
subatlasin which the transitionfunctionsareholomorphic.It this case,we would like to extendthe
tensorswe havedefinedto act on complexvectorspaces.The complexificationof areal vectorspace
V (for example,V could be the tangentspaceto the real manifold) is definedto be VC = V & C,
the tensorproductof V with the complexnumbers.This vector spacedecomposesinto the + i and
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--i eigenvaluesubspacesof the operatorJ, VC = V~”0~~ V10”’. It is straightforwardto verify that
h extendsuniquely to acomplexsymmetricbilinear form which satisfies

(1) h(X,Y)=h(X,Y)

(2) h(X,X)>0 , forX~0

(3) h(X,Y) = 0 , for Xe TU.°)(M) , Ye T(o.Vl(M) . (4.16)

Similarly, the two-form K extends to a two-form of type (1,1), K E
A complexmanifold with a Hermitianmetric h is said to be Kähler, if the associatedtwo-form

K—which we defined above—is closed,dK = 0. The metric in this caseis called the Kähler
metric. Since OK = ~K = 0, the Dolbeaultlemma,which we quotedearlier, implies that—atleast
locally—thereexists a function ~ suchthat

K = iOa~, (4.17)

and this function t75 is called the Kdhler potential. This Kähler situationwill arise if we have an
almost complexstructurewhich is covariantlyconstantwith respectto the Christoffel connection
of some Riemannianmetric, i.e., DkJ’J = 0. If the Riemannianmetric is denotedby g, thenwe
first form the Hermitian metric h andthe associatedtwo-form K,

K,
1 = hlkJkj , (4.18)

whereh~= ~(g,j + Jmj.Jnjg~~)asbefore.Since bothg andJ are covariantlyconstant,so are h
andK. Hence,DkKjJ = 0 implies D[kKjJ] = 8[kKiJI = 0, andwe seethat K is a closed two-form
which is, moreover,non-degenerate.Any realmanifold which hasaclosed,non-degeneratetwo-form
is called a symplecticmanifold,and this particular two-form is called the symplecticstructure; all
Kählermanifolds are thereforesymplectic.

4.3. Mathematicalmotivation

In this section,we will highlight some of the mathematicalresults that predatedWitten’s field
theoreticformulation.Someresultsof Floer [4.1] on the numberof fixed poii~tsof certainsymplectic
diffeomorphismsare noteworthyin this regard.In his Morse theoreticapproach,Hoerconstructsa
chain complex,analogousto the Witten complex (which we reviewedin section3.8.1),wherethe
boundaryoperatoris definedin termsof an instanton-likeequation.Given suchan equation,it is
straightforwardto constructa suitablequantumfield theorybasedon the spaceof its solutions.Let
usbeginby settingthe stagefor Floer’s fixed point theorems.

Let P denotea symplecticmanifold with symplecticstructurew (w is a closed,nondegenerate
two-form), and considerthe vector field X~generatedby a Hamiltonian H1, where t labelsany
explicit time dependencethat may be present.That is, to eachsmoothfunction H : P x P —*

H(x, t) = H1(x), we naturally have a one-parameterfamily of vector fields X, definedby the
condition

w(.,X1) = d111 . (4.19)

The uniqueness of this vector field is simply a consequence of the nondegeneracy of w. The integral

curvesof this vectorfield satisfy (by definition)

~H,t(X) = Xf(~H,,(x)), ~,o(x) = x, (4.20)
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andarea one-parameterfamily of diffeomorphismswhen P is compact,which we assume.Com-
pactnessof P guaranteesthat the integralcurvesare complete[4.4]. Moreover, this one-parameter
family of diffeomorphisms,which is clearlyhomotopicto the identity, alsopreservesthe symplectic
structurein the sensethat 4~’w= w, for all t eP. To see this, it is clearly sufficient to show that
~w is independentof I,

(d/dt)l~w= —Lx1w= 0 . (4.21)

The last equality is easily establishedby writing the Lie derivative in coordinates,andusing the
defining propertyof the vectorfield X1. We are interestedin the set V of diffeomorphismswhich
arisein this way,

V = {c~H.tI He C
00(Px R) and te P} , (4.22)

and theseare called the exactdiffeomorphisms.
The theoremwe wish to discussinvolves nondegeneratefixed points of exact diffeomorphisms.

If x is a fixed point of somediffeomorphismqS, i.e., q5(x) = x, thenonesaysthat the fixed point
is nondegenerate[4.5] if the Jacobian4(x) satisfies

det[J
01X1 — id] ~ 0 . (4.23)

The theoremof Floer [4.1] cannow be easilystated:

Let P be a compact, closedsymplecticmanifold with ir2 (P) = 0. Consideran exactdiffeomorphism
~: P —~ P all of whosefixedpointsare non-degenerate.Then the numberoffixedpointsis greater
than or equalto the sumofthe Betti numbersofF with respectto Z2 coefficients.

The key to this theoremis the constructionof a chain complexbasedon the set of all fixed
pointsof ~. The boundaryoperatoris definedin termsof an instanton-likeequation,analogousto
the onewe encounteredin supersymmetricquantummechanics.For q~eV, let

= {zeC°°([0,1],P)Iz(l) =q5(z(0))} . (4.24)

If we choosean almost complex structureJ on P such that g = w(J., .) is a metric, then an

instantonu is a one-parameterfamily in .Q(~),u : P x [0, 1] —+ P which satisfies

Ou(T,t)/OT+ J(u)Ou(r,t)/Ot = 0 , (4.25)

and convergesto fixed points of ~ as ~ —~ ±oo.Given this equation, and our experiencein
supersymmetricquantummechanics,it is mostnatural to considera quantumfield theory,defined
more generally on an arbitrary Riemann surface, whose classicalaction is given by the squareof
the Langevinequation.We will carry out this constructionin the next section.

4.4. Constructionandpropertiesof the model

4.4.1. TheLangevinapproach
We shall now demonstratethat the topological sigma model action of Witten [4.3] can be

obtained upon BRST quantization of the following classical action [4.6, 4.7]:

S~= f d
2ah

0pgjjK00KuJ1 , (4.26)
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where

K0’ = G0’ — ~(O0ul + c0pJ!
1OPuJ) , (4.27)

and G
0’ is the randomGaussianfield; as usualwe shall suppress~/kfactors.

The aboveactiondescribesa theory of mapsu’(a) from aRiemannsurfaceX to (in our case)
an almostcomplexmanifold M. The coordinateson X are denotedby a0 (a = 1,2), while those
on the target manifold M are denotedby u’ (i = l,...,dimM). h

0p and f
0p are the metric and

complexstructureof X, respectively.They obey the relations�“p11~,= —ö~andc~,p= ~ gjj
andJ,~arethe metric tensorandalmost complexstructureof M andobey analogousrelationsto
the above.At presentwe will be completelygeneral,treatingthe caseof almostcomplexmanifolds.
Following this we thenspecializeto various complexandKählermanifolds.

Our first problemis to establishthe local symmetriesof the action (4.26).As before,wepostulate
the shift symmetry

ôu’ = e’ . (4.28)

The invarianceof the actionthendeterminesthe transformationfor G01. As therearesomesubtleties
involvedhere, we presenta few stepsin the derivation. It is first useful to define the following
self-dualandanti-self-dualprojectionoperators

pal = !(oo~ol.±e~J’
1). (4.29)

The fields G
0’ and KOi bothsatisfy the self-duality constraint

G0’ = P~’~
1G~’, K

0’ = F~’flJK~’. (4.30)

Now in deriving the transformationfor G andK, it is importantto ensurethat this constraintis
maintained; in otherwords we have

K’0’ = ~ , (4.31)

and similarly for G. Rewriting (4.31) as

P~’~
15K~~= ~f0pôJ1~Kfl1 , (4.32)

we see that the variation of K must contain an anti-self-dual part, in order to maintain the
self-duality of the original field K. The total variation of K can now be expressedas

= Pf~’~1A~~+ ~E0pt~J11K
1hJ , (4.33)

andsimilarly for G,

ÔG0’ = P~’~JB~’+ ~e~öJ’~G’~’ , (4.34)

where A0’ and B0’ are arbitrary tensors.The idea now is to use (4.27) to establisha relation
betweenA andB. Invarianceof the action fixes A, andfrom this we canobtainthe transformation
of G. From (4.27) we have

ôK0’ = ÔG0’ — F~’p~O~e~— ~E~pöJ’~&8u~ . (4.35)

The third term on the right handsideof (4.35) canbe decomposedinto self-dualandanti-self-dual
components as follows:

�OPöJI.OIJUJ = PQlpi�fl t5JJkOYuk+ p0l~~PöJJkOYuk . (4.36)
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This leadsto the relation

~ B’s’ _OPEJ — ~cPyôJ1k8Yuk . (4.37)

If we now examinethe variation of the actionunderthe transformation(4.28) we find that Sc is

invariant if
A0’ = _P

11,~K01�A~~ , (4.38)

leadingto

ôG
0’ = P.~L°pJ(D~�~+ ~f~yE1 (D

1J~.)O)~uA’~)+ ~�~pe
1(D~J’j)G~’~— j~~kGO/ . (4.39)

Having determinedthe classicalsymmetriesof the model, we cannow proceedwith the quanti-
zation, the detailsof which canbe found in appendixA. The result is that the completequantum
actioncan be written as a BRST commutator,

Sq = _fd2a{Q,~oj(O0u1 — ~c,B01)} , (4.40)

wherea is a gaugefixing parameter,and Q is the off-shell nilpotent BRST operatordefinedby
= —e{Q, },

ott’ =—�C’ ,

= e(B
01+ ~Eofl(DkJ~)CpjCk + 1~C0kC’)

oBOi = ~fC”C’(Rk/’l + RklrsJTlJ5l)~0I— Iff0p(DkJli)CkBPJ

+ L~e(CkDkJlS)(C1DlJj5)~°t+ eF],~C1B0k , (4.41)

where

B0, = ~ — P+Oj~’Cp/FJkC’ , (4.42)

and B~1is the original multiplier field in the theory. We have,of course,the freedomto choose
the valueof a, anddifferentvaluesexposedifferentfacetsof the theory. In the sequel,we shallbe
mainly concernedwith the valuesa = 0 and 1.

For example,when a = 1, the action upon integrationover B is [4.3, 4.7]

Sq = fd2a [~h0flgjjoaubOpuJ+ leoPJOulOuJ+ C01[~C’ + ~�0p(DjJlk)OPukCu]

+~~om~0kRmkjrCJCT+ ~Caj (D1J11)(DrJlk)CJCI’} . (4.43)

As explained for the caseof supersymmetricquantummechanics,the presenceof the quartic
ghostcouplingtermshavetheir origin in the fact thatthe classicalgaugealgebraonly closeson-shell.
This in turn is reflectedby the cubic terms in the BRST transformations(4.41). Obviously, here
we must also confront the issue of the metric andcomplex structureindependenceof the BRST
chargedefinedin (4.41). This leadsus naturally to discuss the derivationof Witten’s action as
presentedby Baulieu andSinger [4.8].
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4.4.2. TheBaulieu—Singerapproach
An alternative derivation of Witten’s topological sigma model action, for the Kähler case,was

presentedby the aboveauthors.This involvestaking the classicalactionto be

Sc = d2 0flJjjOoutO~gu~= ~JJ , (4.44)

where J is a two-form on the target manifold M. Now for the caseof a symplectic target space,
thistwo-form J is closed,dJ = 0. It thenfollows that the action (4.44) is a topologicalinvariant,
depending only on the particular homology class of I~.The classicalinvarianceof this actionis an
arbitraryshift symmetry~ u’ =

As for the caseof quantummechanics,the basic aim of the Baulieu—Singerconstruction is
to write down a simple geometricalset of transformationrules, and then to choosewhat would
conventionallybe regardedas an unusualgauge fixing condition. In this way one can recover
Witten’s action (not only for the Kählercase,but also when the target spaceis almost complex).
In the presentcasethe BRSTtransformationstakethe form

Ott’ = —EC’ , OC’ = 0 , O~’= eT~” , O~’= 0 , (4.45)

andthe quantumaction is expressedas

Sq = d2a{Q,~S’P÷oi,pj(819u5P— ~ — ~fl~)} . (4.46)

Again, the points which need to be stressed here are the following. The BRST rules (4.45) are
conventionalin the sensethat the anti-ghosttransformsinto the multiplier, while the multiplier
transformsinto zero. In order to be able to generatequarticghostcoupling terms,one mustthen
chooseagaugefixing conditionwhich dependsquadraticallyon the ghosts.The exactform of this
condition is determinedby the requirementthat the final actionbe covariant.As before, (4.45)
and (4.46) follow immediatelyfrom (4.40) and (4.41) by asimpleshift in the fields

= B0’ + l~0 (DJ~)CfhCk— pi~QJ~k

We notethat the term proportionalto DkJ’J doesnot contribute in (4.46) because of the self-duality
constraint.

The secondpoint is that theBRST chargeQ definedby (4.45) is independentof the metric and
complexstructureof both the baseandtargetspace.It thusfollows trivially that the variationsof
the actionwith respectto theseparametersare also BRST commutators,therebyensuringsimilar
invariances for the partition function. However, the crucial differencein the presentsigma model
case is the self-duality constrainton the anti-ghostandmultiplier field. It is important to realize
that the transformationsgiven in (4.45) are defined for unconstrainedfields. For self-dual fields
one requiresthe following modification:

=
0(pc~i~~PJ)= (OP~’p1)C”

3’ + Jjüi
0~I

3J= l~~0(OkJ’f)~’C” + �T.~”, (4.47)

andsimilarly for p”. In otherwords,althoughonenoticesthe presenceof thecomplexstructureon
the right handsideof thesetransformationrules,this arisessolely throughthe variation of theself-
dual projection operator with respect to the original—metric and complex structure independent—
Q. It is also worth noting that the offending term on the right hand side of (4.47) vanishes
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when the target space is Kähler. In presentingthe Baulieu—Singerconstruction,we have used
the transformationsfor unconstrainedfields (4.45), and insertedby handthe self-dual projection
operatorsin the action (4.46).

4.4.3. TheNicolai map
Here, we shall show explicitly that acompleteNicolai mapexists for this theory, as expected.

The simplestway to see this is to work in the deltafunctiongauge,by choosinga = 0. The action
in this caseis given by

= fd2a{Q,~oio0u1}

= fd2a (B0100uI + C01[D
00’

1 + ~e0p(DjJ1k)Ofiuk]CJ) . (4.48)

We first notethat

~ O~‘ — B pai ~fl joi U — o,i+/jJL~ u

The Nicolai map is thendefinedby

~ = P~’~JO~u. (4.50)

Such a transformationobviously trivializes the bosonicpart of the above action. Our task now is
to determine the Jacobianof sucha changeof variables.

This is achievedas follows: We first write

U’ + ~‘ , (4.51)

where ü’ is a small fluctuation. Expanding~“ to first order in the fluctuation then allows us
to readoff the Jacobiandeterminant.The problem, however, is that, sincea’ is the difference
betweentwo coordinatevalues (u’ and u’ + z~’),it does not transform simply under target space
reparametrizations (exceptwhen M is flat). The generalmethod for dealingwith this situationis
well known [4.9], and involves choosinga geodesicA’(t) with A’(O) = u’ andA’(l) = u’ + iTt’,
anddefining ~‘ = A’(O). c~’ is then a contravariantvector on M, and all fields can be expanded
covariantlyin powersof c~’.

A general covariant tensor field Tk, . ./~,,(u’) hasan expansionof the form

Tkt..km(U’ + a’~= ~ ~ ~ , (4.52)

where the coefficients are tensors which can be expressed in terms of covariant derivatives of T
and the Riemanntensorof M. To obtain the manifestlycovariantform of thesecoefficients, it
is simplestto usea normal coordinatesystem.For our purposes,it suffices to statethe following
results:

g,1(u + iTt) = g,~(u)+ O(~
2) , (4.53)

T
1~(u + ~) = T1~(u) + (DkTjf(u))~ + O(~

2) , (4.54)

O
0(u’+a’) =O0u’+D0~’+O(c~

2), (4.55)
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wherethe linear term in (4.53) is absentsincethe metric is covariantlyconstant.Using (4.53) and
(4.54) we find

J’~(u + ~) = J’1(u) + (DkJ’J(U))c~ + O(,~
2) . (4.56)

The expansionof ~“ now follows,

~0i(u + ~) = ~01(u)+ ~ + ~e0p(DjJlk(u))8~~uI~! + O(~2). (4.57)

We cannow readoff the Jacobianoperator,andwe noticethat it is precisely the ghostoperator
definedin the action (4.48).Hence,thepartition function (for the caseof zero-dimensionalmoduli
space)reducesto a signedratio of determinants,

— det[P~’p~(DPO/+ ~ (458)
— Idet[P~1pj(DflO/ + ~ffly(DlJ3k)8Yuk)]I

wherewe havenot includedthe trivialized actionB
01~

0.

4.4.4.A moregeneralmodel
Having discussedsomefeaturesof the model due to Witten, it is interestingto ask whether

this model canbe generalized.In analogywith supersymmetricquantummechanics,one wonders
whether thereis the freedomto add a potential term to the action. As we will now see, this is
indeedpossible,andthe implicationsarein fact quite interesting.

Firstly, it allows us to identify a simpleflat spacemodel due to Cecotti andGirardello [4.10]
as a topological field theory. Secondly,the addition of a potential term allows for the possibility
of studyingsupersymmetrybreaking,alongthe linesdiscussedfor the caseof quantummechanics;
and finally, it gives us another interpretation of the Nicolai map,namely~that it correspondsto
a Bäcklund transformationfor the system [4.11], as we shall describein the following section.
Without furtherado, let us presentthe classicalaction,

S, = f d2a ~ , (4.59)

where

K0’ = G0’ — ~(80ul + �15 J’8~u~)+ ~(O’V~ + ~ . (4.60)

Here, V (u) is the potentialdependingon the targetspacecoordinates.
There is no obstruction to quantizing this general model; however, for ou~purposes we wish only

to considera specificexample.Let us take the basemanifold to be flat, andthe targetspaceto be
a two-dimensionalflat Kähler manifold, namely the complexline C. In this casethe action (4.59)
takesthe simple form

Sc = 2fd2ax1J~h+_gj
7K+1K_J = 2fd2aK+UK_ü , (4.61)

where the non-zero components of K0’ are

K+~A= G~”— O÷u+ 8~V , K_
15 = G_15 — 8_u + 8

15V~. (4.62)

Our conventions here are the following: The target space coordinates are

= u = u
4 + itt2 , u’ = ü = ut — itt2 , (4.63)
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while the basemanifold coordinatesaredenotedby

= ~(a’~ia2) (4.64)

with

= 0, ±iO~, (4.65)

andthepotential is an analyticfunction of one variablewith

V~ = V’ + iV2 = V(u) , O~V~= 0

V = V’ —iV2 = V*(ü) , O~V = 0 . (4.66)

The classicalsymmetriesof this actionare

OU = A , = 2 , OG+U = O~A—(8~V~)A, OG_0 = 0_A— (O,~V~)A, (4.67)

whereA’ = A and2’ = 2. To quantizethis system,it is sufficient to invoke the standardFaddeev—

Popovprescription,which yields the following quantumaction:

Sq =Sc + Jd2a{Q,P_UG+15 + p+0G15_}

= Sc + fd2a [B_UG+U + B~0G_Ü

+ p_0(O~c—(8~V)ë)+ pu(OC (O~V~)c)] (4.68)

whereB arethe multipliersenforcing the gauge constraintsG = 0, and we are using the notation
p for the anti-ghosts.

Our aim now is to establishcontactwith a well known N = 2 supersymmetricmodel in two
dimensions.The action, given by Cecotti andGirardello [4.10], is

S = fd~a [ooc~o~*oos+

+~~ - ~(l + ~ - ~(l - Y3)
8~*O~~)~i] , (4.69)

wherethe gammamatricesaredefinedby

(0 l\ (0 —i\ /1 0\
= ~l o) ‘ Y2 = ~i o) ‘ ~3 = ~o —1) (4.70)

and

w = (~), (4.71)

is a Dirac spinor.
Now the fermionic determinantarising from an integrationover w and W is

det[y
00

0 — ~(l + y3)V” — ~.(l — y3)V*/F] . (4.72)
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Using the definition of the gammamatrices,it is easyto verify that this fermionicdeterminantis
precisely the Faddeev—Popov ghost determinant in (4.68), with the identification

w = (~), = (p~U p_U) . (4.73)

Togetherwith the identificationsu = ~, f~= ~, V = V+ and V* = V, we thus seethatwe can
interpret the abovesupersymmetricmodelas arisingfrom the BRST quantizationof the topological
field theory (4.61).

There is onepiece of evidence,alreadyprovidedby Cecotti andGirardello, which suggeststhat
this shouldbe the case,namely, the existenceof a Nicolai map for the model. This is definedin
ref. [4.10] to be

= O÷q~_0V*(~*)/84* = 0_cb*_8V(q~)/Ocb. (4.74)

GivensuchaNicolai map,it is by now clear how to reconstructthe actionof CecottiandGirardello
by BRST quantizing the squareof the correspondingLangevinequation.While we have treated
only the casewherebothmetricsareflat, it is clear from the startingaction (4.59) that indeedthis
model is topological.Theability to “twist” an N = 2 supersymmetricmodel in two dimensionsinto
a topologicalmodelhasbeenshownquite generallyin ref. [4.12]. The differencebetweenthetwo
theoriesthen lies in the interpretationof the physicalstates,as discussedin section3.6. We also
remarkhereon the interpretationof topologicalfield theories(in general) as representingphasesof
unbrokengeneralcovariance.This interpretationarisesdueto the absenceof physicallypropagating
degreesof freedom.The questionremainsas to how one may effect asatisfactorybreakingof this
topological symmetry,andso liberatedegreesof freedom.Oneof the main problemsin this regard
is to decideon a suitable order parameterwhich could distinguishthe different phasesof such
a model. In the caseunder study in this section, i.e. the topological sigma model, we have the
possibility of describinga phaseof string theory in which generalcovarianceis unbroken.

4.4.5. Nicolai mapsandBäcklundtransformations
Havingstudiedthe simpleflat spaceexampleabove,wecannow useour knowledgeof this model

to establisha connectionbetweenNicolai mapsandBäcklund transformations[4.11]. In fact we
shallshow that,whenthe potentialis either the Liouville or sine-Gordonpotential,thenthe Nicolai
mapof the abovesystemis preciselythe Bäcklundtransformationfor the correspondingequation.
Let us first define what is meantby a Bäcklundtransformation,and illustrate it by way of a few
examples.

Supposewe havetwo uncoupledpartial differential equations,in two independentvariablesx
and t, for the two functions f and g. The two equationsareexpressedas

P(f) = 0 , Q(g) = 0 , (4.75)

whereP and Q are, in general,non-linearoperators.Let R, (i = 1,2) be a pair of first order
relations,

R1(f,g;f~,g~f1,g,;x,t)= 0 . (4.76)

Then R, = 0 is called a Bäcklund transformation for the system(4.75) if, given a solution f with
P(f) = 0, it is integrablefor g, andvice versa.If P = Q, the transformation is called an auto
Bäcklundtransformation.
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Examples
(i) Laplace’s equation.An autoBäcklundtransformationfor Laplace’sequation,

f~~+f,t=0, g~~+g,1=0, (4.77)

is providedby the Cauchy—Riemannequations

f~—g=0, .f1-i-g~=O. (4.78)

Thus,given the solution g(x, t) = xi’, we can use(4.78) to generateanothersolution via f~= x
and J = —t, namely f(x,t) = ~(x

2 —t2).
(ii) Liouville’s equation.The Liouville equationis

f~.
t= e~. (4.79)

To this, we appendthe equation

= 0 . (4.80)

The Bäcklundtransformationfor this systemis given by

(f + g),~= ~ ~(f—g)/2 , (f — g)1 = ~ ~(f+g)/2 (4.81)

(iii) Sine-Gordonequation. The sine-Gordonequationis

= sinf , g~1= sing , (4.82)

with Bäcklundtransformation

~(f+g)~=asin((f-g)/2) , ~(f-g), !sin((f+g)/2) . (4.83)

Recall now the Nicolai map of eq. (4.74). This is simply a rewriting of the above Bäcklund
transformations,as can be seenfrom the following changeof variables:If we identify

q~=f+g , q~*=f_g , (4.84)

then the result follows.

4.4.6. The0(3) supersymmetricsigma model
As our final example, let us considerthe well-known 0(3) supersymmetricsigma model [4.13—

4.16], with action

S = -~ fd2a~~~(OOc~O0c~t— ~j[c,,tyooow— (oowt)yow]

~ + ~(ww)t(ww)) . (4.85)

Here y
0 = aa (a = 1,2) are the Pauli matricesdefinedin (4.70); p = (1 + ~ ~ = c~/1+

and
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is a Dirac spinor.
We wish to identify this model as a topological model with a two-dimensionalKähler target

space,andfor particularchoicesof baseandtargetmetric.To do this let usrecall from (4.43) the
generalactionin the Feynmana = 1 gauge,

Sq = f d2a\/J~(~h0hlg~j8
0ubOpuJ+ ~f0fl J~~O0u’opu~

+C01D
0C’ + 1~m~RkCJCr.) , (4.86)

wherewe haveintegratedover the multiplier field, therebyenforcing thegaugeconstraintG = 0.
In Kähler form this becomes

Sq =2fd2a~[h+_g,j0+UbO_uJ+~C+1(D_CJ)h+_g,
7

+ ~_‘(D~ C~)h~~g7~+ ~h ~ . (4.87)

We want to considerthis actionwhenthe target spaceis the two-sphere.The baseline elementis

ds
2 = 4da~da~, h~_= 2 , h~= . (4.88)

The metric on the targetspaceis takento be the usualS2 metric written in complexcoordinates,

ds2 = -~-dudü : =(l + uu), guu=~ , g~ = 2p2 (4.89)

The action now simplifies to

Sq = ~ fd2a [~O+u8_ü + ~~+u (0_Cu— ~(O_ü)C0)

~ (o+Cu — ~J±(8+U)C’~) — ~ . (4.90)

In orderto makethe identificationmanifest,acertainamountof reshufflingneedsto beperformed
on the original action (4.85). However, integrationby partsyields the result

fd2ap~(_~i(wty0o
0y/— (00wt)y0y1) + ~wty0w(~tO0~ — cbOocbt))

= fd~a_4[~* (a+w~—
2(~/~+oc~?)w1)+ W2 (8_~~—~(q~O_q~t)w,*)] . (4.91)

If we makethe identifications

çb=u, cbt=u, ~,=C15, y,,*=Cu, ~v
2=~iC+u, ~ (4.92)

we see that the two actionsare identical, up to the overall scale 2/g
2 of the action. We canthus

recognize the 0(3) supersymmetric model as being topological in nature. The spinors of this model
are simply the BRST ghosts,the identification in this casebeing explicitly given by (4.92). We
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should notethat the supersymmetricaction (4.85) differs from the topologicalaction (4.87) only
in the addition of the topologicalterm f J, which does not affect any of the above considerations.

Having identified this 0(3) model as being topological, we can now usethis freedomto express
the action in different forms. In the abovewe have establishedthis connectionexplicitly in the
Feynmangauge. However, as we know, we are free to write the action in different gauges,and
as we shall show in section 8.3 the Landaua = 0 gauge is particularly useful for studyingthe
renormalizationpropertiesof the theory; the resultbeingthat the /3-functionvanishesin thisgauge.
Indeed,it hadalreadybeenestablishedthat the beta function for this model, in the form (4.85),
was exact at one loop order [4.16]. It cannow be seenthat such apropertyarisesbecauseof the
underlying topological nature of the model. However, it should be stressedthat the presenceof
a non-zero/3-function, in the first instance,is a gauge artifact. A discussionof this point can be
found in section8.3.

4.4. 7. Generalizations
There are variousgeneralizationsof the abovemodelswhich are interestingto consider [4.3],

the principal onesbeingthosewhich incorporateN = 1 or N = ~ world sheetsupersymmetry;in
addition it is possibleto incorporategaugefields into the theory.We shallnow briefly describetwo
of thesemodels.

N = 1 sUpersymmetricmodel. In addition to the bosoniccoordinatesof I, we introducetwo
fermionic partners0’~,A = 1,2, which are spinorsof the Lorentz group. We also have the anti-
symmetric invariant CAB, as well as the gammamatrices Y

0AB, with the superspace covariant
derivativebeingdefinedas

O/0O’~— i(Y00)A O/Oa0 . (4.93)

Onecan thenconstruct,in the usual way, superfields1 (a0,
0A) and actionswhich are manifestly

invariant with respectto this supersymmetry.However, the aim here is to constructan action
which is alsoinvariant undera topologicalsymmetry.This is quite straightforwardto achieve,and
involves replacingthe formulae (4.40)—(4.42)with the correspondingsuperfieldversions.

Specifically, a’ and E’ are, respectively,commutingandanti-commutingsuperfields.Onereplaces
~‘ and it

0’ with spinor superfields ~A, and ftAI, which satisfy the self-duality constraintCAl =

CABJ’JC8~.The quantumactioncanthenbe constructed,togetherwith the BRSTtransformations,
by simply making the abovesuperfield replacements.In the Langevinapproach,for example,we
begin with the classicalaction

S~= f ~ , (4.94)

where GAl is the random Gaussianfield which is now a self-dual superfield. The rest of the
analysisproceedsin direct analogywith the main model discussedin this section.To achievethe
N = ~ generalization,one can impose a further chirality condition on the superfields,namely

= ±i�AB~B1.

Incorporation ofgaugefields. The possibility of including gaugefields in the theory arisesfrom
the fact that the a0 derivativesdo not appearanywherein the BRST transformations(4.41). As
a result, we can allow the target spacemetric andcomplexstructureto dependexplicitly on the
world sheetcoordinates.The generalizationwhich ensuesis the following.
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Consider a family of almost complex manifolds fibered over the RiemannsurfaceE. By this
is meant a manifold X fibered over E, with an almost complex structure on X that reduces
for each fiber to an almost complex structure on the fiber. However, it is now necessaryto
regard the coordinatesu’ (a0) as a sectionof the bundle X, and replacethe derivatives0

0u’ by
suitablecovariantderivatives; this involves the introduction of a gauge field. Let Diff M be the
diffeomorphismgroup of M, and diffM its associatedLie algebrawith generatorsVa’, wherethe
index a runsover the infinite dimensionalbasisof the algebra, andthe index i indicatesthateach
generatorcorrespondsto a vectorfield on M. The appropriatecovariantderivativesare

D,~u’ = O0u’ + A~V0’

D0C’ = O15C’ + I~~~~,00uJCk+ A~0~V0’C’, (4.95)

whereA~is the gaugefield. Again, the analysisfrom this point is straightforward.

4.5. Constructionofobservables

In section2, we reviewedthe constructionof a generictopologicalfield theoryandfound that the
interestingobservables—atleast from the topologicalpoint of view—representBRST cohomology
classes. An observable 0, in the BRSTsense, is one that is invariant under the BRST symmetry,

{Q,0} = 0 . (4.96)

If the infinitesimalchangein the operator0 undera perturbationin the basemetric h is also BRST

exact,so that

= {Q,R} (4.97)

for someR, then the vacuum expectation value (0) is independentof thebasemetric. Furthermore,
in the caseat hand, one can prove that thepartition function andits observablesare independent
of the metric andcomplex structureassociatedwith both the baseand target manifolds; one can
establishthis by following the sameline of argumentas presentedin section2. The readermay
wish to review thatdiscussionat this time. Sincewe are assumingthat the vacuumis Q-invariant,
we can addanythingof the form {Q, 0’} to 0 without affecting this matrix element,andwe are
thus led to the BRST cohomologyclassesof operators.

In the caseof topological sigma models, an interestingclassof observableshasbeendescribed
by Witten [4.3]. In this construction,we first associatean operator to eachp-form A =

A,,...,~du” A ... A du’~ on the target space M, given by

= A...1~C”. . . C’~ , (4.98)

whereC’ is the ghostfield we encounteredin section4.4. As afield on X, C’(u(a)) is a sectionof
the pull-backu’~(T* (M)) of the cotangentbundleof M, where it : E —+ M is anysmoothmap (we
alsouseu’ to denotethe coordinateson M). If wedefinethe evaluationmapfa : Map(E,M) M
by f0(u) = u(a), then C’ = f,(du’). Under a Q transformation,we see that

{Q,Q,~O)} = —8~0A1,...1~C’°...C’P= ~ , (4.99)

sincetheseghostsare BRST invariant.Hence,~~0) is BRST invariant if andonly if A is a closed
p-form. Similarly, if A is an exact p-form, thenthe correspondingoperatoris Q-exact.Hence,the



194 D. Birmingham et a!., Topologicalfield theory

BRST cohomologyclassesof theseoperatorsare in one-onecorrespondencewith the de Rham
cohomology classes on M. The reason for assigning the peculiar superscriptto the operator~(0)
will becomeclearat the endof this construction.

Notice that operatorsof the form ~ can be used as building blocks for constructingnew
observables.If we considera set of closed forms A,, . . . , A~,then the product of the associated
operators . . . 0 is clearly Q-invariantas well.

Now, when we considerthe vacuumexpectationvaluesof operatorswhich arepolynomialsin the
fields, there is someimplicit dependenceon the pointswherethe operatorsare located.In the case
at hand,however,the operator~~0) (a) at the point a hasa vacuumexpectationvalue which is a
topological invariant, andso the VEV cannotdependon the chosenpoint. To see this explicitly,
we considerall fields defined over X, anddifferentiate the operatorwith respectto some local
coordinates a15,

0 0u’°
~ A,...,,,C” . . ‘C” = (0

10A1...1~)~—~.C”... C”’

Oubo
+p A’,...,~(81~C’’ )~—~.C”. . C’~ . (4.100)

In termsof exteriorderivatives,this takesthe form,

do~°~= 010A1...1~dub C” .. . C”’ + pA1...1~dC’ C” .. . C”’

={Q,0~’~} , (4.101)

where 0~ = —pA1,...,~du” C” . .. C”’, and we haveused the fact that A is a closed p-form. If we
let y represent any pathbetweentwo arbitrarypointsP and F’, thenthisexpressionhasthe integral
form,

0~(P) _Q~O)(p1)= {Q,fy0~l)} , (4.102)

andweseethat the VEV of ~ is point independentby the BRST invarianceof the vacuum.The
sameremark appliesto anyproductof operatorsof the form we areconsidering.

To continueourconstruction,considera one-dimensionalhomologycycle y (Oy = 0), and define

= fo~ . (4.103)

This new operatorw~’~(y) is then BRST invariant by inspection,

{Q,W~’~(y)}= f{Q Q(1)} = / d0~°~= 0 . (4.104)

Moreover, if y happensto be the boundaryof a two-dimensionalsurface(y = 0/3), so that y is

trivial in homology, then this new operatoris likewise trivial in Q cohomology,

= fo~ =Jdo~= {Q,f~0~~
2)}, (4.105)
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where~ = — ~ AdU’2 C” ...C”’.
As before,let usnow associateto eachhomologytwo-cycle /3 (0/3 = 0), anotherBRST invariant

operatorW~definedby

w~2~(p)= fo~2) . (4.106)

The BRST invariancefollows trivially as in (4.105).
In summary,we haveproducedthreeoperators~ O~,and 0~ from any given closedform

A, which satisfy the relations

0 = {Q,0~,°~}, do~°~= {Q,O,~} , d0,~= {Q,Q~2)}, d0~ = 0 . (4.107)

The BRST observables are thengivenby arbitraryproductsof the integratedoperatorsW~’~(y)=

f~o~,wherey is any i-cycle in homology.

4.5.1. Moduli spaceand the ghostnumberanomaly
The quantum field theory of topological sigma models that we have been discussing deals

fundamentallywith mapsfrom a RiemannsurfaceI into an almost complextarget spaceM. In
the functional integral, we integrateover all maps1 —p M in a fixed homotopy class.The crucial
featureof thesemodels,as wehaverepeatedlyemphasized,lies in themetric independenceof certain
correlationfunctions,including the partition function. If we replaceany cho’sen metric gjj on the
target spacewith tg

1~,thenaquick checkof the quantumactionshowsthat Sq[tg,1] = tSq[g,j];
henceany of thesecorrelation functions

(0) = f e_tSqO (4.108)

are independentof t, andwe can evaluatethosefunctional integralsin the large-t limit wherethe
contributionsare dominatedby thoseconfigurationsin which the action

5q vanishes(seesection
2.1). The classicalaction is minimized by the instantonconfigurationswhich satisfy

0 = 0
0u’ + e0pJ’~0’~u’, (4.109)

andit is thesefield configurationsthatwe expandaboutin asemi-classicalapproximation.We will
have more to say about the spaceof thesesolutionsshortly.

Thereare, in addition,a variety of ghostfields in the quantumaction, andwhetheror not they
possesszero modesis an important issuerelatedto a ghostnumberanomaly.All of the pointswe
wish to makehere are most transparentin a one-loopbackgroundfield analysis (which is exact
anyway). To compute, say, the partition function at this order,we expandabouta background
instanton field and consider the part of the quantumaction which is quadraticin the quantum
fields. We expandthe quantumfields into eigenfunctionsof the operatorsthat appearthere,and
do a functional integral over the modes.If thereare fermionzero modes,then thosemodesmight
not enterin the action, and the fermionic integrals (f d~= 0) over thosemodeswill causea
correlationfunction to vanishunlessthat function hasthe right fermion content; the zero modes
must be absorbed.In our case,a look at the quantumaction indicates that we should concern
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ourselveswith C’ and C15, zero modes. A C’ zero mode is clearly in the kernel of the operator
D:F(u*T*(M))__SP+[F(u*T*(M))&QI(X)],where

= D(,O’J + CIS~JJDP+ I(Sfl (DJJ’k)0~u~, (4.110)

and a Ce,., zero mode is azero eigenfunctionof its adjoint

P~[F(u*T(M)) &Q’ (I)] _* f~(u*T*(M)).

Recalling that C’ andC~,,have ghostnumber+ 1 and — 1, respectively,it is thereforeapparent
that the VEV of any observablewill vanishunlessthatobservablehasa ghostnumberequalto the
numberof D zero modesminus the numberof D* zero modes.This differenceis called the index
of the operator,

Index[~] = dimKer(~)_dimKer(~*) , (4.111)

andappearsin manyapplications.
Let usnow returnto our discussionof the moduli spaceof instantons.That is, weareconsidering

the space of maps I —~ M in a specified homotopyclass, which satisfy eq. (4.109). A natural
questionthat ariseshere is whethertheseinstantonsareisolated or form a continuousfamily. We
can examinethe constraintthatarisesin this latter case,by consideringan instantonu, andanother
neighboring solution u + a, where iTt is some infinitesimal deformation.Looking to first order in
a, or equivalently the tangentvector ~‘, as in section4.4.3,we see that ~‘ must be a zero mode
of the operatorD. This is no coincidence, and we can interpret the ghost fields C’ as cotangent
vectorsto instantonmoduli space.Clearly then, the dimensionof moduli spaceis at mostgiven by
the dimensionof Ker(D) . Although we might naively expectthat the numberof thesezero modes
will give the actualdimensionof the instantonspace,thereis an obstructionof a global nature,and
this is relatedto the zero modesof D*. The problemis thatnot all of theseinfinitesimal solutions
can be integrated.One can prove that the index of Zi actually gives the virtual dimensionof the
moduli space (see section 4.1.4) since the dimension may not be well definedat all points, though
we will not be ableto showthat here.

4.5.2. Observablesand intersectiontheory
It is possibleto interpretsomeof the observablesthat wehavedescribedin termsof intersection

theory applied to the moduli spaceof instantons.In particular,one can show that all correlation
functionsof the form

~ (4.112)

are intersectionnumbersof certainsubmanifoldsof moduli space.We do not assumethe readeris
fluent in intersectiontheorysowe will first reviewthe key ideasandtheoremsthatare relevantto
this application.We beginby discussingPoincaréduality andthe relationshipbetweencohomology
andhomology.Conceptsassociatedto transversalintersectionarethenreviewed,andfinally related
to the observables.In this section,all manifolds (and submanifolds)will be takento be compact
andorientedwithout specialmention.

We havealreadyseenthat de Rham cohomologyand Hodge theory are important ideaswhich
underlieeven the simplesttopologicalfield theories.The de Rham cohomologygroupsH’ (M) of
a manifold M (seesection 3.8.1) was defined as the quotient

H’(M) = Z’/B’ , (4.113)
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whereZ’ is the spaceof d-closed i-forms on M, and B’ denotesthe spaceof i-forms which are
d-exact,B’ = dQ’~’(M). One versionof Poincaréduality, which can be statedentirely in terms
of cohomology,is simply that the pairing

H1(M) &H0~’(M) P , ([~], [p]) A ~ , (4.114)

is nondegenerate.It is trivial to check that this map is actually well definedon cohomology.The
non-trivial contentis in the assertionthat the innerproduct is non-degenerate;a good sourcefor a
proofis ref. [4.17].

There is anotherformulation of Poincaréduality which is expressedas a relationshipbetween
de Rhamcohomology (as we havedefined in terms of closed differential forms), and homology
(which canbe definedin termsof subspacesof M [4.181). Our aimshereare modest,and it will
not be necessaryto launchinto a completediscussionof thissubject.The restatementof this duality
principle can, however,be appreciatedwith the machineryat hand. In one direction, the assertion
of the theoremis that we can associateto eachboundarylesssubmanifold N of codimensionk, a
cohomology class [q~]eH”~(M), suchthat

(4.115)

for all [wI e H0—k(M). By w on the right hand side of this equation,we meanthe pull-back
i~yi under the inclusion i: N —p M. Conversely,to each closedk-form ~ on M, we can associate
an (n — k )-cycle N (it is in generala chain of subspaces),unique up to homology, such that
the previousrelation is satisfied.One can also show [4.17] that the Poincarédual to N can be
chosenin sucha way that its supportis localizedwithin any given open neighborhoodof N in M
(essentiallydelta functionsupporton N).

Let us leave this discussionof duality for the moment,and move on to intersectionsof sub-
manifolds. For simplicity, we will first considerthe intersectionof two submanifoldsM

1 and M2
containedin M. We will saythat thesetwo submanifoldshavetransversalintersectionif the tangent
spacessatisfy

T~(M,)+T~(M2) =T~(M) (4.116)

for all x e M1 n M2. It is a theoremthat a submanifoldof codimensionk can be locally “cut-out”
by k smooth functions,i.e., the submanifoldis locally specifiedby the zerosof this setof functions.
It is a worthwhile exercise to convince oneselfthat the definition of transversalintersectionis
equivalentto the statementthat the functionswhich cut out M, are independentof thosewhich
cut out M2 [4.19]; in symbolswe have

codim(M, flM2) = codim(M,) + codim(M2) . (4.117)

More generally, we can consider the transversal intersectionof any collection of submanifolds,
and we will saythat the intersectionM, fl. . . n M, ofs submanifoldsis transversalif the intersection
of every pair of them is transversal.It then follows trivially by the previousargument, that the
codimensionsmustsatisfy

codim(M, fl... nM,) = >codim(Mj) . (4.118)
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A special case which will be important for us occurswhen the intersectionof submanifoldsis a
collectionof points, i.e., when the codimensionof the intersectionis equalto the dimensionof M.
Since these points are isolated,the compactnessof M guaranteesthat theyarefinite in number.

Now, we would like to assign “intersection numbers” to those points in M, n M~when the
dimensionof this intersectionis zero. Let x be oneof thosepoints, andconsiderthe orderedbasis
for T~(M,) and T~(M2) given, respectively, by (v,,. . . , v~) and (w,,. . . , w0~),which define the
orientations of those submanifolds. Now, (vi,. . . , v~,w1 Wnk) is a basisfor the tangentspace
to M at x. Wedefine the intersectionnumberof M, and M2 at this point to be + I if this ordered
basis gives the orientation of T~(M) and —1 otherwise;we write #.~(M, fl M2) = ±1.Notice that
the orderof M, and M2 can be important. The intersection number of M, and M2 is now simply
definedby summingthesenumbersover all pointsin the intersection,

~ #~(M,nM2) . (4.119)
xEM,nM2

The idea of assigning intersectionnumbersto two submanifoldsextendsnaturally to the general
casewhere ~ codim(M1) = dim(M), and we write the sum over all intersectionnumbersas
#(M,n...nM,).

Wewould now like to describe in what sense correlation functionsof the form (0.~. . . QW))
determine intersection numbersin the moduli spaceM of instantons [4.12]. By definition, this
moduli space is the set of maps from I to M which satisfy (4.109). For convenience, let us
begin by choosing the forms A which representde Rham cohomologyclasseson M, together
with their Poincaré duals M,, such that the forms haveessentiallydelta function supporton their
respectivesubmanifolds.Since eachof the operators in the correlationfunction dependson some
fixed point a, it is meaningfulto define the submanifoldsL {u e M I u(a1) C M1} C M. Now,
the correlationfunction representsa functional integral over the spaceof mapsMap(X, M), and
we have arguedthat this integral only receivescontributions from the instanton configurations.
Since the operatorsA (u(a,)) vanishunlessu e L, by our choiceof the Poincaréduals, we see
that the only contribution to the functional integral can be from those maps which lie in the
intersection L, fl ... n L,. By ghost number considerations, this correlation function mustvanish
unless dim(M) = ~_, codim(L,), meaningthat this intersectionis simply a finite numberof
points. In the sigma model casethat we are consideringhere,the intersectionnumberassignedto
eachpoint in the intersectionis always + 1, since the ratio of determinantsthat arisesis always
+ 1 dueto the natureof thecomplexgeometry.Thissimplification will not hold whenwe interpret
correlation functions in Donaldsontheory, in the next section.

Further reading
Our review of topological sigma modelshas certainly not beenexhaustive.We havenot dealt

with the equivariant/superspaceapproachesto this theory,andwe refer the readerto the original
papers[4.20, 4.21]. Otherwork thatwe havenot discussedmaybe found in refs. [4.22—4.28].

5. Topological gaugetheories of Witten type

In this sectionwe are going to give a detailedaccountof perhapsthe richest branch of topo-
logical field theories, namely topological gaugetheories.In section 5.1 we presentthe necessary
mathematical background, including a description of a numberof more advancedresults. This



D. Birminghamet a!., Topologicalfie!d theory 199

includes the instanton deformation complex, the relation between gauge theory and the topology of
four-manifolds,andthe constructionof the Donaldsonpolynomials.

This is indispensablefor an appreciationof the subsequentsections,and in particularsection5.2.
Therewe describeat lengthWitten’s original topologicalfield theory [5.1] (which we shall refer to
as Donaldsontheory) as the prototypeof a topologicalgaugetheory of Witten type, and its most
important representative.In that sectionwe follow closely Witten’s paper, and we have chosen
this historical routebecauseit makesit clearthat onecan derive the most importantpropertiesof
Donaldsontheoryby very elementaryphysicalmanipulations.However,in orderto understandwhy
the actionhastheseremarkableproperties,a deeperunderstandingof the geometryof topological
gaugetheories,and the principles behindthe constructionof this action, is required. Moreover,
to appreciatethe significance of thesepropertiesand their consequences,it is necessaryto know
somethingabout the mathematicsunderlying this theory. Our treatment in this sectionwill be
guidedby the attemptto illuminate thesedifferentfacetsand levelsof Donaldsontheory.

In order to gain abetter understandingof this theory we thenexplorethe geometryunderlying
topologicalgaugetheoriesin general (section5.3), and—basedon that—clarify anumberof issues
which hadarisenin section5.2. The main resultsof that sectionwill be the completionof the proof
that the observablesof Donaldsontheoryconstructedin section5.2 arethe Donaldsonpolynomials,
as well as the emergenceof a geometricalframework for constructingtopologicalgauge theories
associatedwith arbitrary moduli spacesof connections.To show how that works in practicewe
explicitly constructthe quantumactionsfor topologicalgaugetheoriesbasedon the moduli spaces
of flat and Yang—Mills connectionsin any dimensionin section5.4. Therewe alsodiscussmoduli
spacesof flat connectionsandtheirdeformationcomplexin general,as well as the Cassoninvariant
and its relation to the partition function of a three-dimensionalgaugetheory. A more detailed
summaryof the contentscanbe foundat the beginningof eachsection.

5.1. Mathematicalbackground

5.1.1. Introduction
While the mathematicsunderlyingthe theorieswe havediscussedso far (quantummechanics,

sigmamodels)is, roughly speaking,thatof spacesof maps(thusfalling into the realmsof differential
topology and algebraicgeometry),gaugetheoriesare deeply rooted in the differentialgeometryof
fiber bundles and spaces of connections. We feel that we can safelyassumea basicunderstanding
of the dictionary (P is aprincipal G-bundle)

gaugepotentialA~ s—s connectionA on P
field strength~ s—s curvatureFA of A
gaugegroup G s—s structuregroup of P
gaugetransformations +-s verticalautomorphismsof P

betweenphysicalandmathematicalterminology.We will neverthelessgive a short expositionof the
geometryof principal bundlesin section5.1.2,mainly to establishour notation and terminology.
The readerdesiringamore detailedtreatmentof thesemattersandtheir relationto gaugetheories
may wish to consult refs. [5.2, 5.3]. In order to give a flavor of the more advancedmathematical
developments which were the original motivation behind the construction of topological field
theories(we arethinking herein particular of Donaldson’s[5.4, 5.5] andHoer’s [5.6, 5.7] work)
we will thenhaveto briefly recall the most importantfeaturesof (moduli) spacesof connections
(section5.1.3), in particular thoserelatedto the existenceof reducibleConnections.Turning to
instantons we will need a rough understanding of the so-called deformation complex of instanton
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moduli space (section5.1.4), since that is directly related to the appearanceof fermionic zero
modes and the constructionof observablesin Donaldsontheory (section5.2.7). A good deal is
known (in the case of SU(2) at least) about the structureof the singularities of instanton moduli
space, but since the field theoretic point of view has so far not advancedour understandingof
these singularities (and since the validity of formal field theoreticmanipulationsbecomesdoubtful
in the presence of these singularities) we will explain that part of the theoryonly to the extentthat
we know which conditionsare sufficient to ensuresmoothnessof the moduli space.The standard
referencesfor these resultsare ref. [5.8] and the monograph[5.9]. Our presentationhas been
influenced by the lectures of Freed [5.10].

After having discussed spaces of connectionsin generalandinstantonmoduli spacein particular,
we shall then attempt to explain what the latter hasto do with the topology of four-manifolds
(section5.1.5). We begin with a brief overview of the subject, recalling why—from the point of
view of smoothingtheory—fourdimensionsarespecialfor topology,and summarizing some of the
most important“classical” andnew results.Following refs. [5.4, 5.9] we thenoutline the proofof
Donaldson’stheoremestablishingthe existenceof a large number of non-smoothabletopological
four-manifolds.The remainderof the section is devotedto Donaldson’srecentwork on polynomial
invariants [5.5]. We explain Donaldson’s eu-map, which expresses the cohomology of the moduli
space of connections in terms of the homology of the underlying four-manifold and show how
this map —which has a perfectcounterpartin Witten’s constructionof observablesin Donaldson
theory—canbe usedto define polynomial rational cohomologyclasseswhich—when evaluatedon
the moduli space—leadto the Donaldsoninvariants.

In the following section we explain Hoer’s idea of applying an infinite dimensionalversion of
Morse theory to the Chern—Simonsfunctionalon the spaceof connections.We will beguidedby the
beautiful and influential paperof Atiyah [5.11], whoseHamiltonianversion of Donaldsontheory
we describeat the endof section5.1.6.

Our presentationin sections5.1.5 and 5.1.6 is necessarily incomplete and cannot possibly do
justice to the importanceanddepthof the mathematicalresults. We haveneverthelessattempted
to sketch at least the main ideas, in the hope that this may make the original literature somewhat
more accessible.

In order to makemathematicallyprecisestatementswe will haveto be fairly specific in section
5.1 about the topological conditions under which the quoted results hold. As a rule, however, these
conditions (like the simple connectivity of four-manifolds in section 5.1.4 or the restriction to
homology three-spheres in section 5.1.6) will not enter directly into our subsequent discussion of
topological gauge theories. The reader who feels uneasy about this is invited to add these conditions
explicitly in the appropriatesections.Throughoutwe havealso avoidedto work with the Sobolev
completionsof the infinite dimensionalspacesandgroupsappearing,and refer to the literature
[5.9] for the confirmationof the fact that this canalwaysbe done in a satisfactoryandessentially
routine manner.

5.1.2. Geometryofgauge theories

The arena for gauge theories in general and topological field theories in particular is the space
A = Ap of connectionson a principal G-bundleP -~sM, and the associated quotient space C =

of gaugeequivalenceclassesof connections,as well as various subspacesthereof. Let us start by
making precisewhat we meanby A and G.

Givenaprincipal bundlethereis anaturalnotionof verticality for tangentvectorsto P: a vector
X~,e T~Pis vertical if it is in the kernel of the projection ir~, : T~P—s T,,(~)M.However, in
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order to connectneighboringfibers (i.e., to havea notion of paralleltransport)one also needsto
know what “horizontal” means.This is a conceptnot canonicallyassociatedwith P and requires
additional structure for its definition—aconnection.From this point of view a connectionis then
a decompositionof the tangentspaceat everypoint p e P into a verticalpart V~= Ker(it~ ),~,and
a horizontalpart H~,

T~P=V~H~

which should moreoverbe compatiblewith the right action Rg of G on P in the sensethat the

family of subspaces{Hpg, g e G} is G-invariant,i.e.,
Rg*Hp = Hpg

Such a G-invariant decompositioncan, for instance,be performedwith the help of a G-invariant
metric on P by declaringH~to be the orthogonalcomplementto V~with respectto that metric.
For an exampleof this cf. section5.3.1.

While this point of view on connectionsis extremelyusefulfor certainpurposes,thereis a dual
descriptionin termsof differential forms on P which is more commonly usedandwhich makes
obviousthe relationto the formalism of gaugetheories.Oneequivalently definesa connectionto
be aone-formA on P with values in the Lie algebrag of G with the propertiesthat

A(~p)~ , (5.1)

A(Rg*X) =ad(g~)A(X) , (5.2)

wherec~pis the (vertical) fundamentalvectorfield on P generatingthe right actionof exp~ e G,
and X is an arbitrary vectorfield on P. Horizontal vectors are now defined to be those annihilated
by A. By the second condition (5.2) above, this definition is indeed G-invariant, as required.

Note that the difference between any two connections A and A’ can be identified with a Lie
algebravalued form on the basemanifold M, sinceA’ — A is horizontal andG-equivariant.The
space Ap of all connectionsis thus an affine spacemodeledon Q’ (M, g) [more precisely,anytwo
connectionsdiffer by a one-formtaking values in the bundle adP of Lie algebras,which we will
define below; let us agree to denote the space of such forms by Q’ (M, g)]. Two connections(or
families of horizontalsubspaces)should,however,be regardedas equivalentif theyarerelatedby
a diffeomorphism ~ : F —s P (via pull-back), which is compatible with the structure of P in the
sense that it preserves the base points of the fibers and commutes with the right action of G, i.e.,

= ir(p) and ~(pg) = ~(p)g . (5.3)

The set of all such 9~’s forms a group called the (vertical) automorphismgroup, more commonly
known as the group ~ of gauge transformations.

Since this is not the way physicists tend to think about gaugetransformations,let us pause to
explain the relation to the more commonpoint of view in which gaugetransformationsare—atleast
locally—regarded as maps from the base manifold M to the structure group G. Since ç~preserves
base points of fibers we can write it as ç(p) = p~(p),where ~ is a map from P to G. The
compatibility condition with the right action of G thenrequires ~ (pg) = g’ ~ (p)g. Thus we can
alternatively think of gauge transformations as Ad-equivariant functions oiii P. In turn, everysuch
function defines a section ~3of the group bundle AdP = P xAd G associated to P via the adjoint
actionof G on itself, given by

93(m) = [(p,93(p))] , (5.4)
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where m = it (p). [ , ] denotes the equivalence class in F xG under the projection P x G -~ Px AdG,
and equivariance of 93 ensures that the right hand side of (5.4) does not depend on the choice of
p C it — ‘(m). Thus locally, a gauge transformation can now indeed be regarded as a map from M
to G. From this point of view it is also almost evident that the Lie algebra of ~ (locally given by
maps from M to g) is the space of sections of the bundle of Lie algebras ad P = P Xad g. When
talking of Lie algebravalued functionsor forms on M, one usually means (recall our discussion
above of the affine structure of A) ad-equivariant horizontal forms on F, or, equivalently, forms
taking values in ad F, and in keepingwith that terminologywe will in the following refer to these
as elements of Q*(Mg)

In whatever way we choose to look at gauge transformations, they act on connections via pull-back,

(5.5)

Writing ~, = expt~with ~ C Q°(M,g) one derives the infinitesimal version of (5.5) to be the

familiar
A -~ A + dA~

HeredA~: Q°(M,g) —+ Q’ (M, g) is the covariant exterior derivativedefined by

= d~+ [A,,~] . (5.6)

One easily checks that with this definition dA~is indeedhorizontalandad-equivariantif ~ is, and
that dA extendsto an operatorQ’~(M,g)...+Qk+l(M,g) on all of Q*(M,g).

In contrastto the ordinary exterior derivative on M or P, dA no longer squaresto zero,and
the failure to do so is measuredby multiplication by an elementFA of Q2 (M, g). Indeed for any
~ C Qk(Mg) one finds

(dA)2~= [F.
4,~]

where

F.4:=dA+~[A,A] (5.7)

is the curvatureof the connection A. It transformshomogeneouslyundergaugetransformations,

Fgp*A = cO’FA9

and can locally be regarded as a g-valuedtwo-form on M. Note that FA satisfiesthe Bianchi identity

dAFA = 0 . (5.8)

The covariant derivative and the curvatureallow us to write down gaugeinvariant equationsfor

A C A like the Yang—Mills equation
dA*FA=0 . (5.9)

Here * is the Hodge duality operatorwith respectto some metric on M, extendedto g-valued
forms. Of interestto us in the following sections(in particularsections5.3, 5.4 and 6) will be the
condition FA = 0 defining the moduli spaceof flat connections.In section5.4.3 we havecollected
someof the mathematicalresultswe needconcerning(moduli) spacesof flat connections.

Specialto (Euclidean)four dimensionsis the instanton equation

*F4 =
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(this makessensein four dimensions,as * is thena map from the spaceof two-forms to itself
and satisfies *2 = 1 thereif aEuclideanmetric is used).Among other things the interest in these
equations lies in the fact that by virtue of the Bianchi identity (5.8) solutions to the (first order)
instanton equations are automatically solutions of the (second order) Yang—Mills equations (5.9),
andthat, moreover,these solutions are the absolute minima of the Yang-~Mills action functional.
We will discusstheseequationsand the rich topological structureassociatedwith the instanton
moduli space in sections 5.1.4 and 5.1.5.

What makes a connectionan interestingadditional structureon P is the fact that not all
connections are gauge equivalent. The moduli space C : = A/~of gaugeequivalenceclassesof
connections is on the contrary infinite dimensionaland (as opposedto the contractible space
A) topologically quite complicated. By gauge invariance the equations mentioned above determine
(moduli) subspacesof C, whichare, however,(if M is compact)finite dimensional,dueto ellipticity
of the corresponding operators (this will become clear from the deformationcomplexapproachwe
will discussin sections5.1.4 and5.4.3 for the case of instantons and flat connections, respectively).
We will now first take a closer look at C itself.

5.1.3. Spacesofconnections

In this section we will study the action

A —s q*A = ço~’Aip+ ç~’d~ (5.10)

of g on A, and in particular the solutions to the equation

çD’Aço + ~‘d~ = A (5.11)

defining the isotropy subgroup ‘A of g. Infinitesimally (5.11) readsdA~= 0. The centerZ (G) of

G is contained in ‘A for every A, sincethe (global) gauge transformation
‘°zp~c0z(p) =pz , zCZ(G)

evidently satisfies (5.11) (note that, in general, the right action of G on P is not a gauge trans-
formation). ConnectionsA with ‘A = Z(G) are called irreducible, and this is the generic case.
The quotient of the spaceA* of irreducible connectionsby the group ç/Z (G) is then a smooth
manifold C’, the moduli space of gauge equivalence classes of irreducibleconnections.Of interest
to us later will be the fact that at an irreducibleconnectionthe Green’sfunctionGA = (dA * dA )
of the scalar Laplacian4A = * dA exists,sincethereare no non-trivial solutionsto the equation
dA~= 0.

To obtain informationaboutthe non-genericpointsof A we proceedas follows (cf. ref. [5.9]).
In the subgroup ç’ of g consisting of gauge transformations which are the identity q (p) = p for
some (and thus all) points on the fiber ir~1(m) above an arbitrary but fixed base point m C M,
the only solutionto (5.11) is the identity ~, = id, since (5.11) is a first otder differential equation
for ~ (herewe have tacitly assumedthat M is connectedand we shall continueto do so in the
following). Thus g’ actsfreely on A andC’ = A/a’ turns out to be a smooth manifold. Since Q is an
extension of g’ by G the above remark allows us to conclude that ‘A is isomorphic to a subgroup of
G. Equation(5.11) showsthat elements of ‘A arepreciselythosecommutingwith paralleltransport
by A, whence we can alternatively view ‘A as the centralizerof the holon~mygroupin G. The last
piece of information we can obtain in this generality is the fact that the isotropy groupsof gauge
equivalent connections are conjugateto eachother,

‘yiA = W 1’AYJ
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This follows from the fact that if co*A = A, then (W 9~,)*W*A = yi
5.4.

Let us now specializeto G = SU(2). This is a tractable example since the only possibilities for 14
are now [apart from Z(SU(2)) = 12] U(1) and SU(2). The latter occurs for flat connections and
since we are —in the following sections on instantons—mainly interested in non-trivial bundles,
connections with 14 = SU(2) will not appear. In the sections 5.3, 5.4, and 6 dealing with topological
field theories of flat connections, however, the problems with reducibility will haunt us in various
guises. It fortunately turns out that, although from the point of view of C, flat connections can be
quite singular objects, the moduli spaces of flat connections themselves are nevertheless reasonably
nice spaces. This leaves us with the case 14 = U (1). In that casethe connectionA can be thought
of as coming from a U(1) bundle on M, and it is fairly easyto see (usingthe fact that thereis a
covariantly constant section of ad F) that this definesa splitting of the covariantderivativedA and
the complextwo-planebundle

E=Pxsu(
2)C

2

into a sum of line bundles with connections, i.e., E = E
1 + E2, dA = d, + d2. We will be more

precise about this splitting and how to count the number of possible splittings in the next section.
The inclusion of the space of gauge equivalence classes of these U(1) connections into C leads to
the singular nature of C at thesepoints. The tangent space to C at an irreducible connection A (near
which C is smooth) is simply the infinite dimensional Hubert space

T4C =

Splitting the Lie algebra g of SU(2) into the U(1) part t and the rest k, g = t + k, the tangent

space at a reducible connection on the other hand has the form
Q’(M,t) ( Q’(M,k) ‘\ /T,4C = dfl°(M,t)~ ~d4Q0(M,k)) / U(l) . (5.12)

where the first summand in the above corresponds to directions in the space of reducible [i.e.
U(1)] connections, and the second is a cone on CP~.

In summary,we have seenthat nearan irreducibleconnectionC is smooth, whereas reducible
connectionsleadto cone-likesingularitiesin C. Similar resultsare known to hold for G = SO(3).
For higher dimensional gauge groups, however, the singularity structure of C and its associated
moduli spaces will be much more intricate (due to the larger number of possibilities for IA), and
so far not much is known about this case.

5.1.4. Instanton moduli space
SU (2) bundles P over a closed four-manifold M are classified by the second Chern class

C2 (E) C H
4 (M, 1) of the associated complex two-plane bundle E = P xSU(2) C2, or alternatively

by the first Pontrjaginclassp,(E) = (c? — 2c
2)(E) = —2c2(E),which canbe representedby the

four-form —(2itiy
2trF~.The topological charge (or quantumnumber) associatedwith P is the

integer

k = C
2 (E) [MJ = ~-L~.ftrF~ , (5.13)

which can take positive or negative values. Note that k is independentof the connectionA on P.
Note also that these sign conventions may look unfamiliar: we have chosen tr to be positive definite
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and thus minus the Killing—Cartan form on g = su(2), andwe havearrangedfor k to be positive
for bundlessupportingconnectionswith anti-self-dualcurvature.

The Yang—Mills functional (action) is

S(A) = f tr(FA * F4) IIF4II
2 , (5.14)

and the variational equations following from it are the Yang—Mills equations (5.9), dA * F
4 = 0.

We now want to showthat solutionsto the (anti-)self-duality equation

*F4 = F4 (5.15)

[which are solutions to the Yang—Mills equationsby the Bianchi identity (5.8)] are absolute
minima of (5.14). To show this, we prove that the absolutevalue IkI of k gives a (topological)
lower boundon S(A),

S(A) � 8it
2IkI . (5.16)

It is then clear from (5.13) and (5.14) that this bound is saturatedby connectionsA satisfying
*F

4 = F4 (*F4 = —F.4) fork <0 (k> 0).
Introducing the projection operators P±on

P~=P~, P~P_=0

anytwo-form a can be decomposedinto the sumof a self-dualandan anti-self-dualpart,

a = a+ + a , = P±aC Q~(M, g) , a±= ±*

Applying this decomposition to the curvature two-form F.4 we find

trF.4F.4 =trF~F~+trF,~F~=trF~*F~-trF~*F~ , (5.17)

tr F4 * F.4 = trF,~* F.4~+ tr * F~ , (5.18)

and therefore, as claimed,

lIF.4 112 = IIF.~112 + IIF.~112 � I IIF.~112 — IIF.~112 I = 8it
2IkI (5.19)

with equality iff k > 0 andF~= 0 or k <0 andF~= 0 (excludingthe caseof flat connections
k = 0, F.

4 = 0).
We will now takea look at the spaceA~: = {A C A I F~= 0} C A of anti-self-dualconnections,

andthe instantonmoduli spaceM = A+ /~ C C. M of coursedependson thebasemanifoldM, the
isomorphism class k of the bundleP, andthe (conformalclassof the) metric usedin the definition
of the Hodge duality operator,but we will indicatethis dependenceexplicitly only whereneeded.

Assumingthat A~is non-empty,a tangentvector-r C Q’(M,g) to A~ataconnectionA hasto
satisfy the linearized instanton equation

= (dAr)~ = 0 . (5.20)

If r is of the form r = dAA,AC Q°(M,g),and thereforetangentto the gaugeorbit of g throughA,
eq. (5.20) is satisfiedidentically, sincethen (dA-r)+ = [F,~,A] = 0. This is a general fact about
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gauge invariant equationsof motion which we will encounteragain in section 5.3.4: if F(A) is
somegaugeinvariant functionalof A, then (&F/ÔA)[dAA] is zero identically if ~A) = 0.

Turning now to M we havethus seenthat a one-parameterfamily (curve) of instantonsin M
definesan elementof KerP+ d.4/ Im tl.4, andthereforean elementof the first cohomologygroupH’4
of the instantondeformationcomplex

O~-sQ0(M,g)~Q1(M,g)”t~Q~(M,g)_s0 (5.21)

of Atiyah, Hitchin and Singer [5.8]. This complexis elliptic (since we havequotientedaway the
actionof g), whenceits cohomologygroupsare finite dimensional,andh~,= dim H~ should give
the dimensionof (the tangentspaceat A of) M.

Now h~can alternativelybe written as h~= dim(KerP÷d.4fl Kerd~),the numberof linearly
independentsolutionsto

P~d.4r = 0 , d*4r = 0 (5.22)

(i.e., insteadof modding out by the actionof ~ we “fix the gauge” d,~,r= 0). This way of looking
ath~amountsto replacingthe deformationcomplex(5.21) by the single elliptic operator

D,4 =P+d,4+d*4:Q
1(M,g)_~sQO(M,g)+Q~jM,g). (5.23)

This is a standardtrick in index theory. In this way the Euler characterof the de Rham complex

0 Q°(M) ~+ Q’(M) ~+

can for instancebe calculatedas the index of the operatord + d’ : ~even (M) ..~ QOdd (M). The
latter identifiesthis as the Eulercharacterof M.

The Atiyah—Singerindex theoremcannow be usedto computethe index

IndDA = dimKerDA — dimKerD~= h~— h~— h~, (5.24)

where h~= dim H~,

= {~ C Q°(M,g) d.4~= 0} (5.25)

is the spacewe havealreadyencounteredin our discussionof reducibleconnections,and

H~= {x C Q~jM,g)Id~x = 0} . (5.26)

Atiyah, Hitchin andSingerused(5.23) to computethedimensionof the moduli spaceof irreducible
(H~= 0) instantonson a self-dual Riemannianmanifold M with positive scalarcurvature.The
latter two conditionsallowedthem to proveavanishingtheoremfor H~andthereforethey could
usethe index formulafor D.4 directly to computethe dimensionof M as d(M) = h~= mdD.4.
Vanishing of H~also enabledthem to prove the smoothnessof the moduli spaceof irreducible
instantons(more on thatbelow).

In generalInd DA computeswhat is known as the formal (or virtual) dimensionof M,

d(M) =h’—h°—h2 , (5.27)

andthe Atiyah—Singerindex theoremdeterminesthis tO be

d(M)=pi(adP)—~dimG[~(M)+a(M)] , (5.28)
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whereX(M) = >70(—)’b~(M) anda(M) = b2~(M) — b~(M) are the Eulercharacteristicand
the signatureof M. For G = SU(2) and M one-connected(we shall assumethis for the remainder
of this and the following section)this is

d(M) = 8k—3[l +b~(M)] . (5.29)

In particular for M = S
4, one recovers the familiar (8k — 3)-parameterfamily of instantons

[b
2(S

4) = 0]. Heuristically,thesecorrespondto k (k = 1 )-instantons with 5k parameters indicating
their position andsize,anddim G(k — 1) = 3k — 3 parametersspecifyingthe relativeorientation
of the instantons in g. The explicitly known five-parameter family of solutions showsthat this
heuristicpictureis correctin the casek = 1. It alsoallows oneto understandthe non-compactness
of M in general,where—to be precise—by“in general” we meanthe five-dimensionalmoduli
spaces of simply connected manifolds with b~= 0. It is these moduli spaces (of simply connected
manifoldswith negativedefinite intersectionform—cf. the nextsection)whiçh featureprominently
in Donaldson’sfirst applicationsof instantonsto the topology of four-manifolds [5.4]. For these
manifoldsTaubes[5.12] hasshownby an ingenious“grafting” procedurethat the S4 instantonscan
be transplantedto M, thus establishingthat the moduli spaceis not empty in that case.The above
descriptionthenshows (or rather,suggests)that thereare instantonswhich arehighly concentrated
aroundpointsof M. As the scaleof the instantonsapproacheszerotheyapproximateinstantonswith
a delta function support which (becauseof their singularnature)are not includedin the original
moduli space M. It is then possible to compactify M by adding a “collar” consisting of highly
concentratedinstantons,the limiting boundaryconfigurationsbeing in one-to-onecorrespondence
with pointsof M. Thereforethe compactifiedmoduli spaceM will haveone boundarycomponent
equalto M. We will take a look at “the otherend” of M below.

It shouldperhapsbe emphasizedatthis point that a formula like (5.28) or (5.29) by no means
provesthat instantonsexist if d(M) > 0. The correctstatementis, that if instantonsexist, thenthe
formal dimensionof the moduli spaceis givenby (5.28).

If either of h°or h2 is non-zero onemeetsobstructions[5.8, 5.9] when trying to extend the
above infinitesimal (tangent space) analysisto the local (every elementof H,~.,is definedby aone-
parameter family—the converse to the above) and global (the local moduli spacesof h’ -dimensional
families give local coordinates on M, M is Hausdorff) level. Putcrudely,the moduli spaceM will
thenhavesingularities.Conversely,oneof the main resultsof this analysisis that d(M) gives the
actual dimension of M, if M is smooth.

Let us notethe following facts aboutthe cohomologygroupsH~andH~[5.9, 5.10]:
(i) As we have seen above, H~is non-zero iff A is reducible.As such H~is of coursemetric

independent.However,the answerto the questionof whetheror not therearereducibleinstantons,
dependson the metric. It is known that, regardlessof the metric, reducible instantons—ifthey
exist—areisolatedin M, and that no reducibleinstantonsexist for an open denseset (or: generic
choice) of metrics if b~(M) > 0.

(ii) Nearan irreducibleinstantonA, M is the kernel of the operator

VA:TH-sd.’4VEBP+FA+T , (5.30)

whose linearizationDA, eq. (5.23), is surjective if the cokernelH~,~ H~= H~vanishes.In that
casethe implicit function theoremcan be usedto deducethat the kernel of V is smoothnearA.
Again it canbe shownthat Hi—which is clearly metric dependent,eq. (5.26)—iszerofor ageneric
choiceof metric.
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We will makeuse of theseresults in section 5.2.6., wherewe will re-encounterthe cohomology
groupsH9~,H~andH~,in the guise of fermionic ~. ~i’ andx zero modesin the path integral of
Donaldsontheory.

(iii) If b,~(M) = h2 = 0, thenreducible instantons are genericallyunavoidableanda neighbor-
hood in M of a reducibleinstantonis modeledon H~/U(l),which is now [cf. (5.12)] a coneon a
complexprojectivespaceof dimensionh,~/2.Alternatively one canremovesmallneighborhoodsof
thesesingularpoints. At thatendthe moduli space(for k = 1, say)will thenbea smoothmanifold
with boundarya disjoint union IICP2 of complexprojectivespaces.Combinedwith our previous
observation on the structure of compactified moduli space M this suggests that a simply connected
compactorientedsmooth four-manifold with b~= 0 is cobordant to a disjoint union of CP2’s.
Donaldsonshowsthat this is correct,and this is the basicobservationallowing an applicationof
Yang—Mills theory to the topology of four-manifolds [5.4], a subject to which we turn now.

5.1.5. Topologyoffour-manifoldsandDonaldsoninvariants
The purposeof this section is twofold: We first wish to explain the significanceandthe proofof

the following theorem of Donaldson (actually a corollary of his main theorem):

Theorem. Let M be a simply connectedclosedorientedtopologicalfour-manifold with non-trivial
negative-definiteeven intersectionform. ThenM admitsno smoothstructure.

Then we will indicatethe constructionof the Donaldson,invariantswhich are able to distinguish
inequivalentsmoothstructureson a topologicalmanifold.

To set the stage for this we begin with a lightning review of four-dimensionaltopology, trying
to describebriefly why four dimensionsis special not only for physics but also for topology.
Regrettably but unavoidably,such a review cannot be but incomplete.Readableintroductions to
four-dimensional topology can be found in refs. [5.13—5.15]and, in particular, in the monographs
[5.16] and [5.17], to which we refer for details.

Recall that an n-dimensionaltopological manifold is a topological (Hausdorff) spacelocally
homeomorphicto P”’, andthat a smoothmanifold is locally diffeomorphicto R”. Evidently every
smooth manifold is a topological manifold, but the converse need not be the case. Moreover,
a smooth structure on a manifold (provided by a smooth atlas) is not necessarily unique, in
the sense that two smooth manifolds with the same underlying topological manifold need not be
diffeomorphic.

Now the situation concerningsmooth structuresin dimensionsother than four can be roughly
summarizedas follows:
— in lessthan four dimensionseverytopologicalmanifold hasa uniquesmoothstructure;
— in more than four dimensionsthe homotopy type and the Pontrjaginclassesof a manifold
determinethe smoothstructure (if it exists) up to a finite ambiguity; in fact, in thesedimensions
smoothingtheory (the standardreferenceis [5.18]) reducesto obstruction theory, whence to
problems involving characteristicclasses;as examplesof manifolds with non-standardsmooth
structures we mention the exotic spheresof Kervaire and Milnor [5.19] (27 in 7 and 991 in
11 dimensions),familiar to physicists from Witten’s discussionof global gravitationalanomalies
[5.201;

— finally let us mentionthat the contractibleflat spacesR” do not sharethis bizarrepropertywith
the spheres5”; it is a famousresult that, for n ~ 4, P” hasa uniquesmoothstructure.

Naively onewould expectthe situationin four dimensionsto be somewhere“in between” that in
lessand that in morethan four dimensions,andas far as topological four-manifoldsareconcerned
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this is indeedtrue to acertainextent. Smoothingtheory in four dimensions,however,turns out to
be vastly different,a far cry from the discreteandfinite situationencountered:in higher dimensions.

The most importantinvariant of a manifold M is its fundamentalgroup it
1 (M), and in two

(three) dimensionsit was (is) one of the main objectsof interest.In four dimensions,however,
it1 (M) is not a good starting point for a classification of manifolds, sincevirtually “anything”
(more precisely: any finitely presentable group) can appear as the fundamenial groupof a smooth
compact four-manifold.Parentheticallyit may be worth remarkingthat as a consequenceof this
the classification problem of smooth structuresis non-algorithmicin n � 4 (cf. ref. [5.21] and
referencestherein)! Interesthasthereforeuntil recentlymainly centeredaroundsimply connected
four-manifolds.Let us thenassumefor the time beingthat it1 (M) = 0. Thefundamentalinvariant
of a simply connectedfour-manifoldM is its intersectionform WM, a symmetricbilinear form on
H

2 (M, 7L) note that H2 (M, 7L) is torsion free], definedby

WM:H2(M,7L) xH2(M,Z)—+l, (a,b)s—s(aub)[M] . (5.31)

Here a U b is the cup-productof the two cohomologyclasses,and (a U b) [M] denotesevaluation
on the fundamentalclass of M (this requires a choice of orientation). As a consequenceof
Poincaréduality WM is non-degenerateandunimodular.If M is smooththereis a lessfancy way of
definingWM via de Rhamcohomology:if a and b now denoteclosedforms representingde Rham
cohomologyclasses[a], [b] C H2 (M,P), then

WM([a],[b]) =fab (5.32)

(as always, the wedge product is understood).The basic invariants of w are its rank p (w) =

dim H2(M,7L) = b
2(M), and its signaturea(w) [5.22]. This is the numberof positive minusthe

numberof negativeeigenvaluesof w. Equation (5.32) showsthat in the caseof asmoothmanifold
this is the sameas the numberof self-dual minusthe numberof anti-self-dualharmonictwo-forms
andas such coincideswith the signatureof M introducedin (5.28), i.e.,

a(WM) = a(M) = b~(M)—b~(M)

w is calledevenif all its diagonalentriesw (a,a) areeven.The mostprominentexampleof an even
positivedefinite form is the Cartanmatrix E8 of rank 8. Finally, to proveDonaldson’stheoremwe
needto know the intersectionform of CP

2,which is—sinceH2 (CP2,1) hasa singlegenerator—just
the (1 x 1) matrix (1) [or (—1) if the orientationof CP2 is reversed].

Now it has beenknown for a long time [5.23] that the intersectionform WM determinesthe
homotopytypeof M, and that every (non-degeneratesymmetric,bilinearandunimodular)form is
realizedas WM for somesimply connectedhomotopyfour-manifold.Note that, unlike the situation
in higher dimensions,the Pontrjaginnumbersof a manifold provideno independentinformation
in four dimensions,sinceHirzebruch’sfamoussignaturetheoremexpressesPi (M) in termsof w
as 3a(WM) = p

1(M).
However, classification by homotopy type is rather coarse,and so it was a significant step

forwardwhenFreedman[5.24] showedin 1982 that alsothe homeomorphismtypeof amanifold
is uniquely determinedby w if cv is even, and that there are preciselytwo non-homeomorphic
topologicalmanifolds for a given odd cv. In this way the classificationof topologicalfour-manifolds
is essentiallyreducedto the algebraicclassificationof quadraticforms.
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Turning now to smooth manifolds, two results which have emergedas a consequenceof the
investigationsinitiated by Donaldsonmay suffice to illustrate the radically different characterthe
classificationof smoothmanifoldshas in four dimensions:

(i) There are closed topological four manifolds with a countably infinite numberof distinct
smoothstructures[5.25, 5.26].

(ii) There is an uncountablefamily of distinct smooth structureson ~ [5.27] (cf. also ref.
[5.28] for a countablyinfinite two-parameterfamily).
We will not beableto indicatethe proofof eitherof theseresults,sinceeventhe simplestargument
[5.9] establishingthe existenceof at least oneexotic R4 requiressomeknowledgeof surgery. We
thusturn our attentionto two otherfacts (mentionedat the beginningof this section)which have
emergedfrom theseinvestigations,namely

(iii) manytopologicalmanifoldsadmit no smoothstructureat all,
(iv) thereare rational cohomologyinvariantswhich areable to distinguishinequivalentsmooth

structures(in marked contrastwith, say, the rational Pontrjagin classes,which were shown by
Novikov to be topological invariants).

Later on in this sectionwe shall sketchhow theseinvariantscanbeconstructed.As regards(iii),
we will see now that we have acquiredalmost enough informationalreadyto prove the theorem
quotedabove (andmore).

Recall from the previoussectionthat the (compactified)moduli space~I of instantonsprovides
a cobordismbetweenM and HCP2 if b~(M) = 0 (i.e., if WM is negative definite). As a simple
consequenceof Poincaréduality for manifoldswith boundary,the signatureof an orientedboundary
is zero [5.29, theorem8.2.1].Applied to 9AT (the orientability of ~ hasbeenestablishedin refs.
[5.4, 5.9] andmore generallyin ref. [5.30]) this meansthat the signatureof M equalsthat of
IICP2. Now wehavenot saidanythingaboutthe relativeorientationof the CP2’s, but regardlessof
thatwe can certainlydeducefrom a (WM) = a(IICP2) that

—n(w)<a(w)<n(w) , (5.33)

wheren(w) is the numberof CP2’s which we need to determine.Recall from section5.1.3 that
U(1)-reducibleconnections(responsiblefor the CP2’s) arise from a splitting E = E

1 ~ E~of E
into line bundles.Sincethe structuregroupis SU(2) we obtain

c1(E) = c1(E1) +ci(E2) = 0

which implies that E2 = Ej’ sinceline bundlesareuniquely determinedby their first Chernclass.

Thenwe find for c2(E),
c2(E) = —c1(E1)ucj(E1)

Thus the numberm(w) of splittings of the k = c2(E)[M] = 1 bundle E is equal to half the

numberof solutionsto
aeH

2(M,7L)

(half becausea and —a determinethe samesplitting). By associatingto eachsuch a its unique
anti-self-dualharmonic representativein H2 (M,O~),one seesthat a gives rise to an instanton.
Thereforem(w) = n(w), and someelementarylinear algebra [5.4, 5.9] showsthat for a negative
definite intersectionform n(w) < p(w) with equality iff cv is diagonalizableover 7L, i.e., iff it
is equivalentto the standardform (l) ~ ... ~ (—1). Combiningn(w) ~ p(w) with the above
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inequality (5.33) and recalling that a(cv) = — p (cv), we see that necessarilyp (cv) = n (cv). We
havethus provedDonaldson’stheorem:

Theorem. Let M be a smoothsimplyconnectedclosedfour-manifoldwith negativedefinite intersec-
tion form WM. Then

WM~_(l)EB.EB(l).

Donaldson’stheoremthusdeterminesmanysymmetricbilinear forms cv (realizedasthe intersection
form of sometopological four-manifold by Freedman’sclassification) which cannotarise as the
intersectionform of anysmoothfour-manifold.Fromthe above,the resultq~iotedat the beginning
of this sectionfollows immediately.

Subsequentwork concentratedon relaxing one or the other of the conditions in Donaldson’s
theorem.In refs. [5.31, 5.32] it was shownthat analogousconclusionscan still be drawn under
less stringentconditionson the fundamentalgroup of M, andDonaldsonwas thenable to show
that the abovetheoremis true for arbitrary ir1 (M) [5.30]. Similar resultsarealsoavailable [5.33]
for small non-zerovaluesof b~,andit was thenanothermajorbreakthroughwhenDonaldsonwas
ableto proveanumberof powerful theoremsfor manifoldswith arbitrary oddb~� 3 [5.5].

Responsiblefor thesedevelopmentswas a shift in emphasisfrom cobordismto homology, the
basic idea being to try to useM (or ratherM*, the moduli spaceof irreducible instantons)to
define a cycle [M] in the homology of C~.Of coursethis is anythingbut straightforward:M
dependson the metric, andonehasto makesurethat it only varieswithin its homologyclassas
the metric is changed.MoreoverM is usually non-compact,with quite a complicatedstructureat
the “ends”. It turns out, however,that this difficulty canbe overcomefor suitablygenericmetrics,
provided that one is in a “stable range” of k, Ik~> k0 for somek0 dependingon b~.The latter
condition ensuresthat the lower dimensionalstrataof the compactifiedmoduli space

7~1k~k > 1,
areof high enoughcodimensionsoas not to contributeto the evaluationof (compactlysupported)
cohomologyclassesof C~on [M]. It is this cohomologicalpoint of view to which we turn now.

As a prerequisitefor this approachto makesense,one hasof courseto makesure that (the
compactificationof) M = Mk is orientable.To seewhat this requirementamountsto, recall from
the previoussectionthatgenericallythe tangentspaceto M at a point [A] is H~= Ker DA. An
orientationof the index bundlemdD = Ker D — CokerD over C will thendefinean orientationof
the tangentbundleof M. It thus needsto be shownthat the determinantline bundle [5.34] of D
is orientable,andthe latter hasbeenestablishedby Donaldson[5.30].

Next one needsto know somethingabout the cohomologyof C*. The rational cohomologyring
of C~is generatedby cohomologyclassesin two and four dimensions(in particular, all rational
cohomologyclasseslie in evendimensions)andthekey ingredientin the constructionof cohomology
classeswhich canbe evaluatedon [MI is a map

p: H,(M) —~ H4~(C*) , (5.34)

which (for i = 0, 2) expressesthesegeneratorsin termsof the homologyof M. Sincethis map will
play an importantrole in the following we will nowgive two descriptionsof it [5.331.

The first one is in termsof determinantline bundles:If E is an embeddedsurfacein M, there
is a Dirac operator9~which canbe coupledto the restriction ri : C~—* C~of the gaugefields to
I. This family of Dirac operatorsdefinesa determinantline bundle [5.34] L

1 on C~which can
be pulled backto aline bundle£,~- = r~Lzon C~.We now define jt([X]) c1 (~Cj~).By Poincaré
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duality this characteristicclasscan also be representedby a codimensiontwo-subspaceof C*, and
this is essentiallythe definition Donaldsonadoptsin ref. [5.5].

Alternatively p canbe definedin termsof the universalbundleQ [5.35] overM x C~,which we
discussin detail in sections5.3.1 and 5.3.2: Let EQ be the associatedtwo-planebundle, c2 (EQ)
(a representativeof) its secondChernclass, and set p ( [5]) = fN~c2 (EQ). This equationis to be
understoodas follows: As a four-form on M x C

t, c
2 decomposesinto a sum of (i, 4 — /)-forms,

wherean (/,4 — 1)-form is an /-form on M anda (4 — i)-form on C~.In the aboveequationonly
the (2,2)-partcontributesand, integratedover5, this leavesus, as desired,with a two-form on C

t.

The preciseway of saying this is thatp([5]) is the slant product C2 (EQ ) / [5].
The relation betweenthesetwo definitions is provided by the family index theoremof Atiyah

andSinger [5.35, 5.36], which expressesthe characteristicclassesof the index bundlein termsof
those of the universalbundle. Explicitly one has (denoting by ch, the term of degree2/ in the
expansionof the Cherncharacterch)

cj(C~’) = —chl(ind8E) = —ch
2(EQ)/[E] = c2(EQ)/[S] = p([S]) , (5.35)

confirmingthe equivalenceof the two definitionsgiven above.
Let us now see formally (i.e., ignoring questionsof transversality,genericity, and reducibility)

how this map can be usedto define the desiredcohomology classes(Donaldsonpolynomials).p
can of coursebe extendedto a map

p:H~(M)x...xH2(M)_~*H
2di(C*)

d times

via the cup product in H*(C*). This map gives an injection from the polynomial algebraon
H

2 (M) into seven(C*), and it is this polynomial which—when evaluatedon the homology cycle
[M] E H~(C* )—clefinesthe Donaldsoninvariants.For this to leadto non-trivial results,M should
of coursebe even dimensional,and a look at (5.29) reveals that for simply connectedM this
is the casepreciselywhen b~is odd. Writing b~= T2p + 1, we then have d(M) = 2d where
d = 4k — 3(1 + p), andwe define

~k([YI1 [yd]) = Cu([?i1)U~ Up([yal))[J’vlk] , (5.36)

where [y,] E I-12(M). Using the equationsof section 5.3.1 or 5.3.2 for the curvature of the
universal connectionon Q, (5.36) can now be written explicitly as an integral of a product of
closeddifferential forms over M, and this is the form in which we aregoing to obtain (5.36) in
the next section.

Alternatively, in the Poincarédualpicture, (5.36) is (as the observablesof the topological sigma
model, section4.5.2) an intersectionnumber,determinedby the intersectionof the codimension-
two subspacesof C~and M and the orientation of M. Generically theseintersectionswill be
transverseandconsistof isolatedpoints.

If the formal dimensionof M is zero and M itself consistsof isolatedpoints, the Donaldson
invariant will just be the numberof thesepointscountedwith signs, the signs being determined
by the relativeorientations(i.e., the relativeorientationsof the determinantlines of D) at these
points. This situationdoesnot occurfor SU(2) bundlesin the stablerangeof k mentionedabove,
but is possiblefor SO(3) bundles.We mention it here sincewe will see in section 5.2.5 that the
partition function is non-zeroandequal to this “first” Donaldsoninvariant preciselyin that case.
An interpretationof this invariant as the Euler numberof an infinite dimensionalvector bundle
hasbeenprovidedby Atiyah andJeffrey [5.37], andwe will explain this in section5.2.6.
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It can now be verified that the numbersassociatedto M in this way are independentof the
metric on M. The proofof this fact canbefound in ref. [5.5], anda formal argumentbasedon the
standardequationsof topological field theory (section2) is sketchedat the endof section 5.2.7.
This metric independencemeansthat the Donaldsoninvariants are differential invariantsof M,
andwhile this canbe proveddirectly, the real mysteryconcerningtheseinvariantsis why theyare
not topologicalinvariants,i.e., why they areableto distinguishinequivalentsmoothstructures.The
latter fact was discoveredin ref. [5.25] andexpandedin severaldirectionsin refs. [5.26,5.5]. For
a discussionof the applicationof theseinvariants (which are very hard to computeexplicitly in
general)cf. the referencesmentionedaboveand refs. [5.11, 5. 17].

5.1.6. Floer homologyandMorse theory
Another importantcontribution to low dimensionaltopology—which then led directly to the

developmentof topological field theories—isdue to Floer [5.6, 5.7, 5.38]. He developeda new
infinite dimensionalversion of Morse theory (relative Morse theory), which permitted him to
successfullytackle anumberof difficult problemsin symplecticgeometryand (relevantfor ushere)
the studyof three-manifolds.

ThisrelativeMorse theoryis an infinite dimensionalgeneralizationofWitten’s tunnelingapproach
to classicalMorse theory [5.39]. In its homological version (the cohomologicalversion has been
explainedin detail in section3.10.2),the Witten complexfor a Morse functionf consistsof chain
groups Wq having onegeneratorfor each critical point P with Morse index p (P) = q, and a
boundaryoperatorow: Wq W~ql,

OwIP) = ~ n(P,Q)IQ) , (Ow)~= 0 , (5.37)
QE H’~

1

wherethe n(P, Q) are integerscountingthe gradientlinesbetweenP and Q with appropriatesigns.
The homologygroupsof this complexcoincidewith the homologygroupsof the manifoldM, which
of course(section3) alsoariseas the groundstatesof the Hamiltonian obtainedfrom the Laplace
operatorby convolutingit with the Morse function f.

A trivial but perhapshelpful remarkmaybe that this definitionof homologygroupsimmediately
implies (almost tautologically) theweak Morse inequalities,since

bq = dimHq = dim KerO~~ dimKerO~~ dim ~ = Nq

ImOw~~

As it turns out this approachto defining (co)homologygroups has a generalizationto certain
infinite dimensionalsituations,where it defines what Atiyah [5.11] calls a middle dimensional
cohomologywhich is expectedto reveal information inaccessibleby more classicalmethods.This
cohomologyis not unlike the semi-infinite cohomologyfamiliar from string theory [5.40].

In the context of three-manifolds,the desirefor such a generalizationarises as follows. One of
the main objects of interest is the fundamentalgroup ir1 (Y), which is convenientlystudiedby
meansof its representationsin some Lie group, say SU(2). One is thus (identifying conjugate
representations)interestedin the space

M(Y,SU(2)) = Hom(ir1(Y),SU(2))/SU(2)

or rather—dueto its somewhat singular nature in general—in the componentM * (Y,SU (2))
consistingof irreducible representations.If Y is a homology three-sphere[i.e. a closed three-
manifold with H1 (Y,7L) = 0], this is automaticallytakencareof, i.e.,

M*(Y,SU(2)) = M(Y,SU(2))\{l}
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sinceanyreduciblerepresentationwould factor through to a representationin U(I) andthenceto
a representationof the abelianizationof ir1 (Y) which is trivial by assumption.

RecognizingM (Y,SU (2)) as the moduli spaceof flat SU (2) connectionson Y (we will explain
thisidentificationin section5.4.3),oneis thereforemotivatedto studythe Chern—Simonsfunctional

CS(A)= ~—ftr(AdA + 4A
3) (5.38)

of a, necessarilytrivial, SU(2) bundleon Y as a Morse function on the spaceCt = A*/~of gauge
equivalenceclassesof (irreducible)connectionson Y, sinceits critical pointsarepreciselythe flat
connections.

A minor problemarisingat this point is that CS(A) is not invariant under largegaugetransfor-
mations (this fact and its implicationswill be reviewed in section6.2). As a consequence,CS(A)
is only well definedmodulo 2irl asa function on C~.

Much more serious, however, is the fact that the Hessianof CS at the gauge equivalence
class of a flat connection (critical point) A is the operator H

4 = *dA acting on the space
Q’ (Y,su(2)) /d4Q°(Y,su(2)) of Lie algebravalued one-formsmodulogaugetransformations.This
operator (being of Dirac type) has a spectrumwhich is unboundedfrom above andbelow, so
formally its Morse index is p = oc at everycritical point. But althoughthis seemsto be disastrous
for a potentialMorse theoretictreatment,it is neverthelesspossible to make senseof a relative
Morse index p(a,b) = p(a) — p(b) for two critical pointsa and b, which is—in the light of the
previousdiscussionof the Witten complex—reallyall thatwe needto know to define a homology
theory.Note that in this casewe are forced to considerthe informationcontainedin the gradient
flow betweentwo critical points: ordinaryMorse theory doesnot exist for CS, but neverthelesswe
can use this functional to define a homology. This illustratesclearly the power of Witten’s and
Floer’s approach.

In finite dimensions,the relativeMorse index can be determinedby extendingthe Hessianat
the critical points a and b to a one-parameterfamily H (t) of matriceswith H (0) = Ha and
H(1) = Hb. One thencountsthe numberof positive eigenvaluesof H(t) changingto negative
values as t increasesfrom zero to one, minus those crossingthe eigenvaluezero in the opposite
direction.The result—therelativeMorse index—isclearly independentof the one-parameterfamily
chosento interpolatebetweenHa and Hb.

This methodof determiningthe relativeMorse index hasan infinite dimensionalgeneralization
in the spectralflow of a family of operators(this concepthasbeen introducedby Atiyah, Patodi
and Singer in ref. [5.41]). The relativeMorse index ~u(a,b) can thenbe definedas the spectral
flow (modulo 8) of a family of operatorsH(t) along apath in C from the flat connectiona to the
flat connectionb with H(0) = Ha,H(l) = Hb.

The necessityfor the “modulo 8” canbe understoodas follows: As a discrete (integer)invariant,
the spectral flow is certainly invariant under smoothdeformations(homotopies)of the chosen
path. Thus in order to checkthat the abovedefinition of the relativeMorse index is well defined
(independentof the chosenpath) we only haveto checkthis on homotopyclassesof paths.Now
the differencebetweenthe spectralflows alongtwo non-homotopicpaths y and y’ is the sameas
the spectralflow alongthe closednon-contractibleloop y U y’~’,which can be computed[5.41] as
the index of an operatoron M = Y x 5l~The presenceof thesenon-contractibleloops is dueto
the existenceof “large” gaugetransformationson Y, since

,ri(C*) = ir~(G)= . (5.39)

Suchlargegaugetransformationscanbeusedas patchingdata (or clutchingfunctions) to construct
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non-trivial SU (2) bundleson M. In technicaltermsthesearethe SU(2) bundlesover the mapping
torus of the gauge transformation.Explicitly [5.41, p. 95], the operatoron M in questionis
[replacing *dA acting on Q’ (Y,g) /d4Q°(Y,g) by the operatorB = *dA — d4* acting on all of
Q’(M,g)] dt8/Ot + B, which is preciselythe (dualof the) deformationoperatorD4, eq. (5.23),
of the instantondeformationcomplex (5.21) (in the A0 = 0 gauge).Thereforewe can apply eq.
(5.28) for the index, andusing the fact that b1 (M) = 1 andb2(M) = 0 (since Y is a homology
three-sphere),we seethat this index is amultiple of 8, the integerk correspottdingto k E 7L labeling
the winding number (orhomotopysector)in (5.39). Thus the spectralflow is indeedwell defined
modulo 8, and consequentlythe chain groups W~,as well as the (Floer) homologygroupsHFq
will also be indexedmodulo 8. The definition of the boundaryoperatorOw involves, as before,
informationcontainedin the gradient flow betweencritical points (for detailscf. refs. [5.7] and
[5.42—5.44]).

One of the reasonswhy we havegone throughall this andwhy Hoer homology is relevantfor
Donaldson’swork, is thatthis gradientflow is determinedby the equation

(d/dt)A = — * FA (5.40)

which, wheninterpretedas anequationon Y x D~,is preciselythe (anti-)self-dualityequationin the
A0 = 0 gauge.Thus we really havean instantontunnelingfrom the flat connectiona at t = —oc to
the flat connectionb at t = + oc. This alsoexplainsthe discoveryof Donaldson(which originally
led to the interestin Hoer’swork) that thedefinition of his instantoninvariantson a four-manifold
M with boundaryY involves the Floer homologygroups,sincenearthe boundaryM looks like
Y x R~.The reasonwhy this observationis useful is that, as mentionedin the previoussection,
the Donaldsoninvariantsarevery difficult to computein general.Giventhe aboveresult,however,
onecould imaginecomputingthe Donaldsoninvariantsfor afour-manifoldM by writing M asthe
sum of two manifoldsjoined along a homology three-sphere(the analogof the Heegardsplitting
of three-manifoldsalongRiemannsurfaces),M = M1#y M2. The computationis then reducedto
one in Floer homology [5.11], which may be more tractable.For someprogressalongtheselines
seeref. [5.45]. We will recoverthis result from a pathintegralpoint of view in section5.2.9.

In analogywith the caseof supersymmetricquantummechanics(section3), the Floer (co ) ho-
mology groupswe havedefinedin this way are (formally) the ground statesof the Hamiltonian
[5.11, 5.39, 5.1]

H = ~(ó~ö7+ ö~5~), (5.41)

whereö is the exteriorderivativeon C, ö~its adjoint,and

o — ~ ~* — 2~uC5(A)~* —2,rICS(A)1—e e

Introducing one-forms OA?(x) yi,a(x) and vector fields x?(x) on A
3 satisfying the anti-

commutationrelations

{~i,’~(x),~j’(y)}= 0 , {x~(x),x~’(y)}= 0 , {~ti~(x),x~’(y)}= g~j5abo(3)(x...y) ,(5.42)

suchthat

0 = fd3xw~(x)OA~) 0* = —f d3xx~(x)OA~ )
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this Hamiltonian is moreexplicitly

H = Jd3x~(~0A~x)2+ ~t2trB
1B’ + tf’~trWiDJXk] , (5.43)

with B = ~ciJkFJk.Note that the first two termsare the usualYang—Mills Hamiltonian,while the
third term is aLorentz non-invariantcouplingto anti-commutingspin one fields. Atiyah therefore
conjectured[5.11] that there should exist a relativistic four-dimensionalfield theory with the
following features:
— it should be relatedto Donaldson’sinstantoninvariants,
— in a Hamiltonian treatmenton a four-manifoldof the form M = Y xR it shouldreproducethe
picturesketchedabove; in particularthe Floer homologygroupsof Y shouldemergeas the ground
statesof the theory.

A field theory meetingtheserequirementswas soonthereafterconstructedby Witten [5.1] and
we shall now turn to adetaileddiscussionof its properties.

5.2. Donaldson theory

5.2.1. Fundamentalproperties
For reasonsexplainedat the beginning of the previous section,we start by consideringthe

action and its propertiesas presentedby Witten [5.1]. As a first step towards a better un-
derstandingof this theory, we then show in sections5.2.2 and 5.2.3 how Witten’s action can
be derived from the Baulieu—Singer(Brooks—Montano—Sonnenschein)and the Labstida—Pernici
points of view. Thesederivations—althoughperhapsnot truly fundamental—makeobvious cer-
tain of the propertiesof Donaldsontheory, like the absenceof degreesof freedom and the
role played by instantonconfigurations.After a group theoreticinterlude in section 5.2.4 which
shows that Donaldsontheory is a “twisted” N = 2 superYang—Mills theory, we then grad-
ually make contactwith the mathematicalresults of the previoussection. In section 5.2.5 we
show that the partition function equals the first Donaldson invariant, describedtowards the
end of section 5.1.5, and in section 5.2.6 we explain the interpretation of the partition func-
tion as the Euler numberof an infinite dimensionalvector bundle over A/g, due to Atiyah
and Jeffrey. In section 5.2.7 we relate the counting of fermionic zero modes and the ghost
numberviolation to the index of the instanton deformation complex. In the quest for suit-
able (BRST invariant, metric independent)observables,a field theoreticanalogueof Donald-
son’s p-map appearsnaturally, and in section 5.2.8 the resulting observablesare identified
with closed differential forms on M. In section 5.3 we will show in detail that the geom-
etry describedby the zero mode sector of Donaldson theory is that of the universal bun-
dle Q. Anticipating this result allows us to complete the identification of these observables
with the Donaldsonpolynomials. In section 5.2.9 we will take a look at the theory from the
Hamiltonian point of view, making contactwith the featuresof Donaldsontheory describedin
section 5.1.6.

In large partsof this sectionwe follow closely Witten’s original paper, referring to it wherever
necessaryfor the detailswe haveomitted. Our notation (we startoff in componentsandgradually
convergeto an index free differential form notation) reflects the growing influx of mathematical
ideasfrom the previoussection.All in all, however, the mathematicallevel hereis considerably
lower—andour treatmentmoreformal—thanthat in section5.1.
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The action

s = f ~/jd4x tr(~F~,pF~— 2XapD~YJ~+ i~D
0~~

+~[~,Ua,1/1~’]—~D~D~—~[x~p,x~1) (5.44)

is of the expectedform Yang—Mills + ..., and is constructedfrom fields having an additional
(internal)Grassmanngradingwhich we refer to as ghostnumber,anticipatingthe BRST interpre-
tation of thesefields below. Up to somenumericalfactors,which we haveabsorbedby simplefield
redefinitions,this action is the one usedby Witten [5.1]. A~is an SU(2) gaugepotential, Fap its
field strength, (4, ~) are evenscalarfields with ghostnumbers(2, —2), X~p= ~�~pyöX~, ~t’~-,and~
are oddself-dual,vector andscalarfields with ghostnumbers(— 1, 1, —1), respectively.All fields
take values in the Lie algebrasu(2) of the structuregroup SU (2). And from now on, the trace
tr in integralsof Lie algebravalued forms will alwaysbe understood.We will also abbreviatethe
volumeelement.~/~d

4xto dx.
This actionis invariantunderthe usualYang—Mills symmetryas well as the following BRST-like

transformations:

OA,, =çtt.~, OWa=Da~, 0~50,

0x~p=F~ , Oq5=i~ , Oi~= [~y~] , (5.45)

whereF~= ~(F,~±P,p) and~ = ~ ~ We also note that in writing O’P, we shallnow
mean{Q, b} , whereQ is the (BRST) chargeoperator.

The energy—momentumtensorof (5.44), definedby OS = ~f dx T~pOg~fl,

T,,p = tr{(FayFp~’— ~g,,pF~oF~)

+[(D~w?—D~tl~)xp~+~
+ [D

1,cbDp~+ Dpq~D~— g,,pD~çbD~]— [(D~)~ + (Dp~)~~—g0p(D~)~~’]

+4[~WaWp — ~ , (5.46)

canbe written in the form

T~,p= {Q,V~,p}, (5.47)

with

= tr[(F~,.~p~’ + Fp~x~’—~g~pF~x~) + (~D~wp+ çiDpw~—g~,pq~D7yi~)]

Equation(5.47) is an immediateconsequenceof the following considerations:addingthe metric
independentterm f F~pFd1tPto the action (5.44) (this changesneitherthe energy—momentumtensor
nor the equationsof motion) we can write it (uponusingthe x equationof motion) as

~ , (5.48)

where

~ . (5.49)
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For certainpurposes(e.g.path integral considerations)this form of the actionis more convenient.
Varying (5.48) with respectto the metric oneestablishes(5.47), with

2 OV

By ourgeneraldiscussionof section2 we havethusestablishedthe topologicalnatureof the model
with all its consequences(metric independenceof the partition function, ...).

Moreover, the precedingequationssuggestthe following interpretation:f F~,pP”~is the classical
action supplementedwith gaugefixing terms which have the usual structureanti-ghost (Xap,c~)
times“gauge condition” F~= D~yf’= 0. This observationunderliesthe approachof Baulieu and
Singer [5.46] andBrooks, Montano, andSonnenschein[5.47], which we will discussshortly.

The fact that the gaugeconstraintF~= 0 arises,suggeststhat (anti-)instantonsindeed play,
as required,an importantrole in the theory. This is brought out more clearly by the following
observations:

If we examinethe x and ,~equationsof motion (in the smallcouplinglimit)

D~yJp_Dpyi,,~ç,py~D}yJô0, D~ti~’0 , (5.50)

we find that thesearepreciselythe equations(5.22) we haveencounteredabove in our discussion
of deformationsof instantonmoduli. Thus the zero modesof w are (co)tangentvectors to the
instantonmoduli space.Furthermore,one seesthat the absoluteminima of the actionS’ are the
(anti-)instantonconfigurations,which are thus also the vacua of this theory. These are BRST
invariant becauseof ÔXU~~J= F~.Thus we expect that in a weak coupling expansion(which is
legitimate in view of the argumentsof section2) the w integrationreducesto an integral over the
moduli space.We will return to thesemattersin ourdiscussionof observablesbelow.

In light of the precedingdiscussionit is now conceivablethat thereare (at least)two approaches
to constructingthe action (5.48). One [5.46, 5.47] is to regard the instantonequationas a gauge
fixing condition associatedwith the BRST-like shift symmetry OA,T, = yi~,eq. (5.45), while in the
other (pioneeredby LabastidaandPernici [5.48]) it arisesas a classicalequationof motion of a
bosonicaction. We will now discussin turn theseconstructions,which are the analoguesof those
given for supersymmetricquantummechanicsandthe topological sigma model in sections3 and
4. Historically, however, the caseof Yang—Mills was treatedfirst and suggestedthe applicationto
othermodels. In section5.3 we will pursueyet anotherapproach—themost transparentfrom the
geometricpoint of view: there we start off with a non-trivial classicalaction with a BRST-like
supersymmetry[5.49].

5.2.2. Theapproach ofBaulieu—SingerandBrooks—Montano—Sonnenschein
Motivated by the desire to interpret the symmetry OAa = ~ as the BRST version of the

topological shift symmetryA~—~ A,. + cc,, one is led to look for a classicalactionwhich is invariant
under such a large local symmetry.Two obviouscandidatesare zero and the Pontrjaginnumber
JFF. Taking the latter as a startingpoint we now wish to quantizethe theory.Since the action
is a constantnumber which doesnot provide a good measurefor the path integral, it requires
somerethinkingas to what one meansby quantizingthis theory. In this sectionwe will, however,
proceednaively, while we will addresssomeof the technicalandconceptualproblemsinherentin
this approachbelow.

In order to quantizethe theorywe haveto exposethe full symmetryof the action, which is

A,,, —* A,, + �~+ DaC . (5.51)
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This descriptionof the symmetry [5.46] is redundant,sincethe ordinaryYang—Mills gaugetrans-
formation part D,� can be absorbedinto the shift c,, by a field redefinition. This reducibility of
the symmetrywill—accordingto the generalprescriptionof [5.501—leadto cubic ghostterms like
thoseappearingin Witten’s action (5.44). Indeed,the abovetransformationlaw—which keepsthe
ordinarygaugesymmetryseparatefrom the shift symmetry—will leaddirectly to Witten’s action in
a form wherethe remainingYang—Mills symmetryhasalsobeengaugefixed.

At this point we can anticipatethe field contentof the gaugefixed theory.Firstly we have the
usual Yang—Mills triplet (c, ë,b) consistingof the ghost,anti-ghostandmultiplier fields neededto
enforcethe gaugeconstraint/3 .A = 0 [or its backgroundversiond40 * (A — A0) = 0]. Analogously
we introducethe set (~,va,Xap,Bap)(x andB are self-dual),which allows us to (partly!) gaugefix
the shift symmetryby imposingthe instantonequationF,,~= 0 as the gaugeconstraint,as suggested
in the discussionfollowing (5.49). However, the reducibility mentionedaboveimplies that ~ has
its own gaugeinvariance.We thus haveto introduceone further triplet of scalars (4), 4), ~) with
ghostnumbers(2,—2, —1), respectively.The appearanceof the Grassmannevenghost-for-ghost4)
is characteristicof a first order reduciblegauge symmetry [5.50], and ~j is the multiplier for the
gaugefixing conditionDa~I’~’= 0 on ~u.

The completesetof off-shell nilpotent BRST transformationsis then

OAa = Dac + W~,

0Wa = —[c,Iua] —D,,,q5 , 04) =

OXap = Bap , OB,,p = 0 , 04) = 77, 071 = 0
= —~[c,c] + 4) , öë = b , Ob = 0 . (5.52)

The structureof thetransformationsof the geometrical(A, ~tt,4), c) sector—forinstancetheappear-
anceof 4) in the c transformationlaw—finds a naturalexplanationwithin the framework of the
universalbundlewith connectionof Atiyah andSinger [5.35]. Thiswill be discussedin section5.3.

We arenow in aposition to write down the completequantumaction,

S = ~fdxF,,,pP~+ {Q,V} , (5.53)

where

V = fdxx~’~(F,,~~— ~ctB~’~)+ 4)(DaV’ — ~/171)+ ~(O.A— ~yb) . (5.54)

Upon choosingthe gaugeparametersa,/3, y to havethe values1, 0, 0 andintegratingout the field
B,,,~we arrive atWitten’s action (5.44)supplementedby the Yang—Mills gaugefixing terms (up to
simplefield redefinitions,e.g.,to generatethe cubicterm 4) [x x]~shift B to B — [c,x]). Notethat
we are alsofree to choosethe gaugea = 0, in which theB integrationenforcesthe deltafunction
constraintF,,,~= 0, reducingthe A integral to oneoveranti-self-dualconfigurations.This delta
function gauge,which we are alreadyfamiliar with from section3, will play an importantrole in
our discussionof renormalizationof topologicalfield theoriesin section8. We will also makeuse
of it in sections5.3 and5.4 to constructothertopologicalgaugetheories.

A variant of the above derivation was discoveredindependentlyby Brooks, Montano, and
Sonnenschein[5.47]. They alsobeganwith f FF as the classicalaction,the gaugesymmetrybeing
(5.51) without the Yang—Mills part Da�.This necessitatedasecondstageof gaugefixing (due to
the fact that the initial gaugefixed actionhada residual“ghostly” local symmetry)leading to the
action (5.48) and (5.49).
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5.2.3. TheLabastida—Perniciapproach
The basicideahereis to regardthe instantonequationF,~= 0 as arising from a suitableclassical

action, which in the caseat hand is

S ~fdx(G~p_F~)2 , (5.55)

where G(lp is an auxiliary self-dual field. The G equationof motion is G,,,~— F,~= 0, which is

simply the Langevinequationfor the system.As we will now showthereis enoughlocal symmetry
to set G,,p = 0, therebyrecoveringthe instantonequation.

We seethat (5.55) is invariant underthe transformations

OA,, = D(,c + C,, , oG~~ D[,,,�p] + 3~�apyôD~f’5— [�,Gap] . (5.56)

The important point to noticehereis that, when c,,, = ~DaE, these transformationspossessthe
on-shellredundancy

OA,, = 0 , OGap [Gap— ~j,~1~onsheII = 0 . (5.57)

Quantizing the theory with this on-shell reducibility requires us to make use of the Batalin—
Vilkovisky procedure;this is straightforwardand the result is that the quantumaction is that of
Witten (5.48), with the Yang—Mills gaugesymmetry also gaugefixed, or—equivalently—thatof
Baulieu and Singer describedin the previoussection. Relevant steps leading to this result are
explainedin appendixA.

5.2.4. Other approaches
There is yetanotherway to understandthe origin of the action (5.44). The motivationhereis to

obtainthe (scalar)BRST superchargeby “twisting” a setof conventional(spinorial) supercharges.
We are of coursefree to addanyBRST exact term to the actionprovidedthat it respectsgauge

invarianceandpowercountingrenormalizability.Adding {Q, i~[4),4)]} we obtain an action which
bearsa formal similarity to thatof usualN = 2 supersymmetricYang—Mills theory (on ll~~)[5.511.

This resemblancecan be made more precise as follows: the rotation group of l~ is locally
SU(2)Lx SU(2)R,while the global internalsymmetrygroupof N = 2 super-Yang—Millsis SU(2)

1x
U(l). ReplacingSU(2)Rby SU(2)R’ = diag(SU(2)RxSU(2)I)the supercharges—whichoriginally
transform as (~, 0, ~, —1) + (0, ~, ~, 1) under SU(2)L x SU(2)Rx SU(2)1 x U( 1)—now transform
as (~,4.,—!) e (0,0,1)+ (0,1,1) under SU(

2)L x SU(2)R’ x U(l). In this way we haveobtained
a scalar (singlet) superchargewhich we identify with the BRST chargeQ, with U(l) labelingthe
ghost number. It is crucial to realize that—asa consequenceof the scalar natureof the BRST
charge—theresulting theory is supersymmetricnot just on R” but on an arbitraryfour-manifold.

The aboveprocedurecan obviously be applied to other N � 2, d = 4 supersymmetrictheories,
and some exampleshavebeenworkedout by Yamron [5.52] and Karlhede andRo~ek[5.53],
while the general procedurein two dimensions—basedon a clever modification of the original
energy—momentumtensor—hasmorerecentlybeenexplainedby Witten [5.54] in his discussionof
topological 2D gravity (cf. also refs. [5.55, 5.56]).

Finally we mentionthe beautiful interpretationof Atiyah andJeffrey [5.37]. The latter we shall
describebriefly below (section5.2.6), although lack of spacewill not permit us to develop the
requiredmathematics(of equivariantcohomology,basedon ref. [5.57]) to the extentrequiredfor
a full appreciationof the eleganceof their approach.
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5.2.5. Evaluationof thepartition function
We will now—afterhavinginvestigatedthe origin of the actionof Donaldsontheory from several

different points of view—turn to someapplicationsandexplicit computations.Let us recall from
the generaldiscussionin section2, that in theoriesof Witten typethe partition functionandcertain
correlationfunctionsaretopological invariants.

If therearefermioniczeromodesthe partition functionwill—as in the toy-modelof supersymmet-
nc quantummechanicsin section3—bezero,andthis will leadusback to the issueof observables
below. Here we shallassumethat the moduli spaceconsistsof isolatedinstantons.In that casethe
partition function Z will in generalbe non-zero andcoincides—aswe will now show—with the
first Donaldsoninvariant describedat the endof section 5.1.5. We will now presenttwo ways of
evaluatingthe partition function.

As a consequenceof the coupling constant independenceof Z, we can compute it in the
weak coupling (semi-classical)limit. We can thereforewrite it as a sum of contributions from
the neighborhoodsof the isolated instantons.The calculation is performedin section 8 in the
contextof renormalizationof Donaldsontheory,and the result is that the contribution from one
isolatedinstantonis Pf(D4)/ det”

2D~D
4wherePf(DA) is the Pfaffian of the real skew-symmetric

deformationoperatorD4, eq. (5.23), of the instantondeformationcomplex (5.21) acting on the
fields (x~‘i, tp). Up to a sign, this ratio is of course 1 (as it should be by supersymmetry),and
it thus only remainsto determinethe relativesigns of the contributionsfrom different instantons.
Choosingone anddeclaringits contributionto be + 1, we can determinethe sign of any other
contributionby studyingthe spectralflow alonga curvein A connectingthe two instantons.In view
of our considerationsin section5.1.5, this is preciselythe prescriptionfor comparingthe relative
orientationsof theseisolatedinstantons.The final result,

Z(M) = ±1, (5.58)
instantons

thereforecoincidespreciselywith what we called the first Donaldsoninvariant, provided that we
declarethe choice + 1 for our referenceinstantonto fix the overall orientationof M. The above
procedureis consistent(i.e. independentof the pathchosen)sinceM is orientable.In field theoretic
terms this is equivalentto the absenceof a global anomalyin Donaldsontheory.

An alternativedemonstrationof (5.58) is basedon the observationthat the Langevinequation
Gap — F,~= 0 definesa completeNicolai map for the theory [5.58, 5.59].

As we are consideringisolated instantonsthe terms 4)[~i,,,,w°1 and 4)[X~p,X°~]in the action
may be ignored. One way of seeingthis is to assignthe charges(a,—a,b, —b,—b) to the fields
(4), 4)~w,x, ij). In this way the action is chargelessexceptfor the cubic terms;expandingthe path
integral in these and noting that due to the absenceof fermionic zero modes the measureis
chargelesswe seethatonly the zero order term contributes.

Now let usdefine a map

~(A) = , )L(A) = d40 * (A — A0) , (5.59)

aroundeach isolatedinstantonA0. The Jacobianof this mapmatchesthe inverseof the Pfaffian
of the (w~x~77) systemup to sign if we imposethe samebackgroundgaugefixing on w. Then the
ë—cghostkinetic term alsocancelsagainstthat of the 4)—4) system.The sign obviously hasthe same
sourceas that in (5.58), andsincethe remainingintegral over~ is just a Gaussianwe recoverthe
previousresult.
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On afour-manifoldof the form M = Y x R anothernaturalchoiceis the temporalgaugeA0 = 0.
The changeof variables

= dA1/dt + (*FA)i , )~(A)= A0 , (5.60)

trivializes the partition function in that case(i.e., reducesit to a sum of contributionsfrom the
instantons).The zerosof this mapare preciselythe solutions to the gradientequation(5.40) for
the Chern—Simonsfunctional we discussedin connection with the relation betweenHoer’s and
Donaldson’swork in section5.1.6.

5.2.6. TheAtiyah—Jeffreyinterpretation
The aboveeq. (5.58), expressingthe topological invariantZ(M) as asumof ±1’s,is reminiscent

of similar formulae in differential geometry,expressing,e.g., the Euler characterof a manifold in
termsof the signed sum of zeros of a vector field. That thereis more, indeedmuch more, to this
analogy,hasbeenshownby Atiyah andJeffrey [5.37]. Usingaformalismdevelopedby Mathai and
Quillen [5.57] they havenot only identified (5.58) as the Eulernumber (character)of a vector
bundleover the spaceA/Q of gaugeequivalenceclassesof connections(cf. section 5.1.3); they
have moreoverbeen able to reproduceWitten’s action (5.48), (5.49) term by term from purely
differentialgeometricconsiderations.

Explaining the latter would unfortunately lead us too far astray, and in the following we will
thereforeexplain only the first assertion.It will neverthelessbe necessaryto digressbriefly on
an observationmade in ref. [5.57] concerningintegral expressionsfor the Euler number. This
digression will reveal a close resemblancebetween the Mathai—Quillen formalism and that of
supersymmetricquantummechanics.And althoughwewill not go into this in anydetail, it may be
helpful in the following to keepin mind section3.8, wherewe discussedthe Euler numberfrom
the quantummechanicspoint of view.

We startwith someclassicalmaterial (for detailscf. ref. [5.60]). Recall that an oriented2m-
dimensionalreal vector bundle E over a manifold X has an Euler class e(E) e H

2” (X,/). Jf
dimX = 2m, this classcan be evaluatedon (the fundamentalclass [XI of) X to give the Euler
numberx (E) = e(E) [X] . In particular,if E = TX, the tangentbundleof X, x (TX) x (X) is
the Eulernumberof X. Therearetwo concretewaysof thinking aboutx (E). On the onehand, the
Gauss—Bonnet—Cherntheoremprovidesonewith an explicit differential form representativeev (E)
of e(E) constructedfrom the curvatureQ of a connectionV on E, such that

x(E) = Jev(E) . (5.61)

On the other hand, X (E) can be computedas the numberof zeros of a generic sections of E
(countedwith signs),

X(E) = ±1. (5.62)
x:s(x)=0

A more generalformula,

X(E) = fes,v(E) , (5.63)

obtainedby Mathai andQuillen, interpolatesbetweenthe two quite different descriptions(5.61)
and (5.62). Here e~,vis a closed2m-form on X, dependingon botha sections anda connection
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V, with the following properties: if s is the zero sectionof E, thene~,v= ev and (5.63) reduces
to (5.61); if one replacess by ts, with t E R, andevaluates(5.63) in the limit t —~ oc usingthe
stationaryphaseapproximation,(5.62) is reproduced.Moreovere~,v e~(we will suppressthe
dependenceon the connectionV in the following) is the pull-backto X via s of a closed form U

on the total spaceE of the vectorbundle,e5 = s~U. U is a representativeof the Thom class[5.60]
of E but, unlike the classicalThom class,which hascompactsupportin the fiber directions, U is
Gaussianshapedalongthe fibers [cf. eq. (5.64) below].

At this point it will be necessaryto introduce some more notation: we let ~ denote fiber
coordinatesof E, Xa correspondingGrassmannodd variables,andQ~’the curvaturetwo-form of
E. Then the Mathai—Quillenform U canbe written as a fermionic integraloverthe x’s,

U = Ne~
2fd~~ (5.64)

(N is anormalizationfactor). s~U is obtainedfrom U simplyby replacing~ by s(x). We seethat,
if we take s to be the zero section, (5.64) coincideswith the Gauss—Bonnetintegral expression
(3.126) for X = M,

N’ fd~dcii e_R,j’~t~~~’/4

(Qab = Qab~~Wi ciF), derivedin section3.8, andthereforewith (5.61),providedthat we convertthe

space—timeindices on the ~‘s to internal indices (~= e~~),andrememberthat the ci’ integral
servesto pick out the top form partof that expression,somethingthat is implicit in (5.64).

In finite dimensions(5.64) may perhapsbe regardedas an unnecessarycomplication,sinceone
hasthe simpleclassicalformula (5.61) at one’s disposal.But, as Atiyah andJeffrey have pointed
out, (5.64) is of a definiteadvantagewhendealingwith infinite dimensionalbundles,where (5.61)
is not terribly well defined,but whereit maybe possibleto give a meaningto (5.63) for asuitable
choiceof sections. (5.63) can then be regardedas defining a regularizedEuler numberXs (E),

which is, however,no longer necessarilyindependentof s. If s is a sectioncanonicallyassociated
with E, Xs (E) mayneverthelesscarry interestingtopological information.

As an exampleconsider, insteadof X = M, its loop spaceX = LM = {x(t) : S’ —~ M}. A
naturalsectionof the tangentbundleT(LM) is s(x)(t) = .~c(t).With this choice of sectionthe
exponentin (5.64),

— XaQ”~’Xb/4 — id~aXa (5.65)

(summationover the fiber indices now includesan integration over t) is precisely the action
(3.1) of supersymmetricquantummechanicswithout the potential V [the completeactioncanbe
obtainedby choosing,insteadof the above section,s(x)(t) = .k(t) + V’(x(t))]. We conclude
that the regularizedEulernumberXs(LM) of the loop spaceis equalto the partition function of
supersymmetricquantummechanics,i.e.,

Xs(LM) LM X(M)

This hasadmittedlybeensomewhatsketchy,andwe will comebackto thesematters(and related
issues,cf. the remarksat the endof section5.4.4) in afuture publication [5.611.

We now return to Donaldsontheory,andour aim is to show that its actioncan alsobe brought
into the form (5.65) (up to relativenumericalfactors;thesecanbe reconciledby simplerescalings
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of the fields). This is the (lesselegantbut simpler) converseof what hasbeendoneby Atiyah and
Jeffrey, who derivedthe actionfrom (5.64) and (5.65). The actionwe will use is (5.44) with the
topological term 4. J’M dx F~pF”~added,i.e.,

S JdX{~(~)22XapD0ciIfl+ 71D0W”+ 4)[w0,w”] D,~D~’4)4.4)[Xap,X~]} . (5.66)

Sinceweareworking equivariantly,the A integrationis understoodto be over the spaceX = A/c,

while the j integral forces cii to be (co)tangentto X. The 4) integral leadsto the delta function
constraint

4) (D~D”)~’[wp,W~1, (5.67)

which incidentally showsthat the vacuumexpectationvalue (4)) of 4) is also given by the above
expression.We will needthis result for ourdiscussionof observablesin Donaldsontheoryin section
5.2.8. Plugging (5.67) back into (5.66) one arrivesat

= f~x4.(~)2 — 2x~pD”w~+ ~[Xap,(D~D~’[Wo,w°]]x~. (5.68)

Modulorescalingsof thefields thisis alreadyof the desiredform (5.65),with X = A/c.Comparison
of Xa with X0p(x) showsthat the standardfiber of the vectorbundleE in question is the infinite
dimensionalvectorspaceQ~(M,g) of self-dual two-forms.S hasthe canonicalsections(Aa) =

giving rise to the first two termsof ~, sinceds(An) = (D~Wp )~ It remainsto identify the curvature
term in (5.68) in order to determineS. In section5.3.1 wewill showthat (D0D”Y’ [Wp,~ (with
D~W”= 0) is a curvatureform on the principal c-bundleA —* A/c. Thus the third term in (5.68)
is a curvatureform of the vectorbundleS = (AxQ~(M, g))/~associatedto A throughthe adjoint
actionof c on Q~(M, g). Thus putting all this togetherwe have derivedthe result (obtainedin
ref. [5.37]) that the partition functionof Donaldsontheory (the first Donaldsoninvariant) canbe
interpretedas the Eulernumberof the vectorbundle5,

Z(M) —Xs(
5) . (5.69)

5.2.7. Constructionofobservables
If the dimensionof the moduli spaceM is non-zero,therewill be non-trivial solutions to the

deformationeqs. (5.22). Since—aspointed out above—theseare preciselythe equations(5.50)
that ci’ has to satisfy, we will have to soak up thesefermionic zero modesin such a way that
the topologicalpropertiesof the theory arepreserved.We have alreadyseen the general strategy
(discussedin section2) at work in the topologicalsigmamodel (section4.5).

Zeromodesof thefields x~,7,4), 4) will be present,in addition to the aboveci’ (andcorresponding
numberof A) zero modes,if thereare non-trivial solutionsto the equations

= 0 , D,,,4) = Dc,4) = D~~j= 0

Written in differential form notation,

d~~=0, dAçb=dA4)=dgj=0,

werecognizetheseas the equationsdefiningH~andH~,respectively,eqs. (5.25) and (5.26),while
the equationsobeyedby ci’, (d

4ci’) + = d4 ci’ = 0, areof coursepreciselythosecharacterizingH~.
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Noticing that x and ‘j haveopposite(—1) ghostnumberto ci’~we see that the formal dimension
of M [the index (5.24) of the deformationcomplex(5.21)], d(M) = — h°— h2, is equalto the
netghostnumberviolation of Donaldsontheory. In analogywith ‘t Hooft’s treatmentof instantons
[5.62], we thus expectto haveto insert d(M) fermionicghostzero modesinto the path integral
(compensatingfor the non-invarianceof the naivemeasureunderthe ghostnumbersymmetry) in
order to get anon-zeroresult.

If M is smooth [and whenced (M) equalsthe actual dimensionof MI this procedurehasthe
obviousandattractiveinterpretationof turningthe scalarZ into a d (M) form which—asa volume
form—canbe integratedoverM (this will be explainedin more detailbelow). It is thiscase(where
H°= H2 = 0 andwherethere will be neitherX zero modesnor reducibleconnectionsto worry
about) which we shall considerin the following. This simplifying assumptioncan bejustified to a
certainextentby recalling from section5.1 that [for SU (2)] H2 is zero foE a “generic” choiceof
metric,and that reducibleinstantons[which are in any caseisolatedfor SU (2)] do not exist for
an open densesetof metrics if b~(M) > 0 (this alsobeingthe relevantregimefor the Donaldson
polynomials).We arethenonly left with the A and ci’ zero modes.

If the dimensionof G is greaterthanthree,reducibleconnectionscannotspeasily beavoidedand
lead to seriousmathematicalproblemssince the singularity structureof M becomesmuch more
intricate.At presentit is thereforenot known to what extentDonaldson’swork canbe generalized
in that direction. And althoughthe field theory point of view may offer ~omeinsights into this
question,further input from mathematicsseemsto be required,to learnwhich way of handlingthe
zero modesassociatedwith reducibleconnectionscorrespondsto the way the singularitiesof M are
dealtwith on the mathematicalside.

Let us now return to our discussionof observables.Recall that theseare BRST equivalence
classesof gaugeinvariant and metric independentfunctionalsof the fields. In order to construct
suchfunctionalsandto discusstheirproperties,it will beconvenientto resortto adifferential form
notation (seeappendixB for details),in which the BRST transformationslit the geometricalsector
read

OA =~—d
4c ,

= —~[c,c] + 4) , 04) = —[c,çb] , 0~= 0 . (5.70)

Theseequationsimply

(d + 0)tr(F4 + ci’ + 4))” = 0 (5.71)

as aconsequenceof the “Bianchi identity”

(d + 0)(FA + ci’ + 4)) + [A + c,F4 + ci’ + 4)] = 0 , (5.72)

whosegeometricalorigin will becomeclearwithin the frameworkof section5.3, andon which we
will (for n = 2) baseourconstructionof observablesleadingto the Donaldsonpolynomials (other
observables,relatedto 2D Yang—Mills theory,havebeenproposedin ref. [5.63]). In principle it
is of coursepossibleto considerthe equationswith n > 2 as well, which may lead to new results
in the caseof higher rankgaugegroups.Their mathematicalrelevancehas,however,not yet been
established,due to the problemswith higher rankgaugegroupsalludedto above.

Writing

4.tr(F4 + W + 4))2 = (5.73)
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wherethe W, are are /-forms on M with ghostnumber4 — i given by

W0 = ~tr(4)~) , W1 = tr(~ii’q5) , W2 = tr(F44) + 4.wci’)
W3 = tr(F~4iu), W4 = ~tr(F3) , (5.74)

we canexpand(5.71) in termsof ghostnumberandform degreeas

0W0=0, dW0+0~=0, dW1+0W2=0,

dW2 + OW3= 0 , dW3 + OW4 = 0 , dW4 = 0 . (5.75)

Thus picking a k-homologycycle y on M we can constructa functional

Wk(Y)JWk~ (5.76)

which is clearlymetric independentandgaugeinvariant.As aconsequenceof OWk = —dWk_I it is
BRST-closed,

OWk(~’) = -fdW~1= -fWkl 0,

and thereforean observable.Moreover, it is topological in the sensethat its BRST cohomology
classonly dependson the homologyclassof y, since

Wk(O.8) = fdWk = OfWk+I

This implies, for instance,that the ghostnumber4 observableW0(P) is independentof thechosen
point P e M in a connectedcomponentof M, as it should be, since in a topological theory
individual pointshaveno intrinsic meaning.

Actually, the transformations(5.70) appearto imply that all the observablesconstructedabove
arenot only BRST-closedbut actuallyBRST-exact.For instance,tr4)

2 canbe written as {Q, tr(4)c —

l/3c3)}. This and relatedobservationshadgiven rise to somecontroversyin the literature [5.64—
5.66] (a good discussionof this can be found in ref. [5.67]), but the situation is now well
understood,and thereare severalways of establishingthe non-triviality of theseobservablesand
their counterpartsin othertopologicalfield theories.We will explainthesein section5.3.3. Suffice
it to say herethat the above relation saysas much (or little) about the triviality of W

0 as the
(formally identical) relation trF3 = d tr(AF4 — l/3A

3) saysaboutthe triviality of the Pontrjagin
numberf trF3.

Accepting the non-triviality of the above observables,we have thus found an assignmentof
k-homology classesof M to BRST equivalenceclassesof observableswith ghost number4 — k.
Thus, for any given (formal) dimensionn = d (M) of M, we can now define new topological
invariantsZ (YI, Y2,. . . , Yr) by choosingk,-homologycyclesy~such that the superselectionrule

~(4—k
1) = n (5.77)
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is satisfied, andsetting

Z(y1,y2,...,y~)= (llwkYi)) . (5.78)

5.2.8. Observablesas differentialformson moduli space
Our aim now is to showthat thesecorrelationfunctionsreduceto integralsof productsof closed

differential forms on M. More precisely,we will be ableto assigncloseddifferential forms Wk (~‘)
on M to the Wk(y) in suchaway that

Z(y1,...,y~) fWki(YI)~~11k,(Yr) . (5.79)

This form of the correlationfunctions is alreadyquite reminiscentof the equationdefining the
Donaldsoninvariantq~,( [vi ~ [Yr]), andwhat remainsto be shownthenis that the cohomology
classof Wk (Y) canbe identified with p( [y]).

The key property responsiblefor allowing us to go from (5.78) to (5.79) is againthe coupling
constantindependenceof (5.78).As in the caseofthe partitionfunctionZ wecanthereforecompute
thesecorrelation functionsexactly in a weak coupling (or semi-classical)limit. Alternatively, we
could of courseusethe deltafunctiongaugedirectly to express(5.78) as an integral overM.

Assumingfor simplicity, as in our discussionabove,that the only zeromodesarethoseof A and
its superpartnerW, the stepsleadingto (5.79) are the following:
— one integratesout all the non-zero modesto obtain as the remainingmeasuref d& . . . da’~x

dy”, wherethe a arecoordinateson M; this measureis canonicalsincethe da transform
inversely to thedwi;
— in order to get anon-zeroresult oneneedsto insertan observable0 of ghostnumbern into the
path integral,which—upon“integratingout” the non-zeromodes—reducesto

0’ = ~

wewill be morepreciseaboutwhat this amountsto in practicebelow;

— onethenarrivesat
(O)=fdal...dandwi...dci,n01f0c2..fl(ak)dal...danEfO

— thefinal stepinvolvedin proving a formula like (5.79) is to show that if an observableis of the

form 0 = 0102 Q~,its associateddifferential form is

0 = 01
02’”Ok , (5.80)

at leastto lowest order in e2 andmodulo Q-exactterms.
Sinceon M, 0 reducesto the exteriorderivative(for adetailedexplanationofthis pointcf. section

5.3.2), the aboveprocedureassignscloseddifferential forms on M to observables.In the casesof
interestto us [0 = Wk(y)] this assignmentmoreoverdescendsto a mapu : Hk(M) —~ H4”(M)
sincethe argumentsof the previoussectionshowthat the cohomologyclassof Wk (y) only depends
on the homologyclassof y.
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Explicitly, the l’~’~(y) are obtainedfrom the J4’~,(y), which are functionalsof F4, ci’ and 4), by
replacing
— F4 by its instantonvalue,
— ~‘ by its zero modepart,
— 4) by the zeromodepart of its VEV (5.67),

(4)) = —G4[~,*~] , (5.81)

whereG4 is the Green’sfunction for the operator (d4 * d4). Equation (5.81) can alsobe derived
directly from thesuperpartnerof the classicalequationof motion d4 * ci’ = 0 (section5.3.2). Note
also that (5.81) expressesthe ghostnumber2 field 4) explicitly as a two-formon M—in accordance
with our generalidentificationof ghostnumberandform degree.Furthermorethe productrelation
(5.80) holds by virtue of thefact that all the Wick contractionsinvolved in the differencebetween
the left and right handside lead (on purely dimensionalgrounds) to higher powersof e

2. This
completesthe derivationof (5.79).

In section 5.3.2 we will show in detail that the zero modepart of F
4 + ci’ + 4) is the curvatureof

the universalconnectionon Q. Whencethe map ii is equalto Donaldson’smap,u, eq. (5.34), by
the definitions (5.73) and (5.76) and the slant productdescriptionof p. Thus the field theoretic
approachof this sectionhaspreciselyreproducedthe constructionof the Donaldsonpolynomials
explainedin section5.1.5. For the sakeof comparisonwith section 5.1.5 let usnotethatDonaldson
only considershomology two-cycles in M [for thesethe superselectionrule (5.77) reducesto
2r = d (M)]. If, as in section5.1.5,M is simply connected,thereareno non-trivial one-andthree-
cycles, and four-cyclesjust give rise to constantfunctionson M. However,Donaldson’stechniques
can certainlybe extendedto includethe zero-cycles(points) of M leadingto additional invariants
involving the generatorof dimension4 in the cohomologyof C~.

Although we havederivedtheseequationsfor the Donaldsonpolynomialsin a non-rigorousfield
theoreticway, their requisitepropertiescannow be checkedby completelyclassicalarguments.The
computationsestablishingthat
— the W0’) areclosed,
— their cohomologyclassdoesnot dependon the representativeof the homologyclass 0’] of y,
can, for instance,bedonein sucha way asto mimic the quantumfield theoryargumentateverystep,
the crucialdifference,however,beingthat thesearenow finite-dimensionalandwhence—atleast as
long as one ignores questionsrelatedto the singularitiesof M—perfectly rigorousmanipulations.
Of coursethesepropertiesof the Donaldsonpolynomialsalso follow straightforwardlyfrom their
slant productdefinition and the descentequations(5.75) associatedwith the secondChernclass
of the universalbundleQ. However, in the proofof the fact that
— they only vary within their cohomologyclassundervariationsof the metric,
the field theoreticapproachdoesgivesomenewinsightandprovidesa formulathatis not completely
obviousfrom the point of view of section5.1.5. In order to display this formula, let us consider
a one-parameterfamily of metricsand the correspondingone-parameterfamily of moduli spaces,
which we call the parametrizedmoduli spaceZ. Assumefor simplicity that we cansplit the exterior
derivatived~into the exteriorderivativedM on M and the exteriorderivativedg along the curve
of metrics. We are interestedin computingdgO, where 0 is a p-form on M. By our standard
argumentswe obtain,usingthe fact that 0 is metric independent,

dg0 = OdgS = 0{Q,dgV} = dMOdgV dMTo , (5.82)

which shows roughly that 6 only varies within its cohomology classas the metric is varied. A
betterway of phrasingthe aboveresult is the following: decomposingformson Z accordingto their
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form degreeon M and their form degreeon the spaceof metrics, 0 is a (p,0)-form and T0 is a
(p — 1, 1)-form. Then (5.82) showsthat 0 extendsto a dz-closedp-form

0z on Z, in our case
Oz := 0 — T

0, which restrictsto 0 = 0(g) on each fiber M = M(g); thus the field theoretic
approachgivesan explicit expressionfor the requiredextensionterm T0.

In the Poincarédual situationconsideredby Donaldson[5.51, the analogousstatementis that
the intersectionsare one-dimensionalmanifolds with boundary,which give the desiredhomology
betweenthe (boundary)intersectionpointscorrespondingto two different metrics.

5.2.9. TheHamiltonianpoint ofview
The purposeof this section is to recoverthe results on the relation betweenFloer homology

and Donaldsontheory anticipatedin the non-relativistic treatmentat the end of section 5.1.6.
Since Witten’s original work no significant (published)progressseemsto havebeenmadein the
Hamiltonian approach(someaspectshavebeeninvestigatedin refs. [5.68—5.70]),andindeedthe
mostfundamentalproblems (relatedto questionsof unitarity andthe presenceof zero modes) in
the rigorousconstructionof the Hilbert spaceof the theory still remainto be overcome.We shall
thereforebe contentwith indicatingbriefly howthe Hoercohomologygroupsariseperturbativelyas
the theory’s groundstatesin the simplestof all situations(whenthe flat connectionsare irreducible
andisolated—thisis alsothesituationconsideredby Floerandthe only onein which Hoerhomology
hasso far beenconstructedrigorously).We will thenshowhow the fact thatDonaldsoninvariants
on amanifold with boundaryshouldbe definedas taking values in the dualof theHoerhomology
groupsof the boundary,arisesquite naturally from the path integral point of view. —

Before turning to theseissues,let us commenton the existenceof an anti-BRST operatorQ in
the Hamiltonianversionof Donaldsontheory.For the time beingwe assumethat the four-manifold
M is of the form M = Y x It In this casethe fundamentalequationT0p = {Q, Vap} implies the
relation

H = ~{Q,~} , (5.83)

familiar from supersymmetricquantummechanics(section3.1), where~ ~ 2f~,V00. Nilpotency
of ~ [which correspondsto the secondsupercharge07 of Atiyah’s Hamiltonián (5.41), (5.43)1 can
be establishedeither by direct computationor—moreelegantlybut indirectly—by appealingto a
time reversalsymmetrypossessedby the action (5.44) augmentedby certain Q-exacthigherorder
terms.

The usefulnessof Q in the presentcontext is unfortunatelyseverelylimited by the fact that the
naturalHilbert spacescalarproductis not positivedefinite, which preventsus from making direct
useof the powerful machineryof Hodge theory to investigatethe physicalsector of Donaldson
theory.And while ref. [5.1] containssomesuggestionson how to overcomethisproblem,we believe
that to dateno truly satisfactoryanswerhasbeenfound. We should, howevei~,point out that this is
an importantpoint and that it is to be expectedthat a resolutionof this prbblemwill require, or
leadto, majorprogressin our understandingof Floer homology.We will thei~eforemakeno further
referenceto Q-cohomologyin the following.

Let us now look at the ground statesof the theory. For small coupling these are obtained
by expandingaround the classical minima of the potential. The Yang—Mills part of the action
contributesaterm proportionalto F1~F’

3,which tells us that classicalminiffia areflat connections.
Thescalarcontributionto the energyis proportionalto D

14)D’q5 andwethusrequireD,çb = D1q5 = 0,
which is compatiblewith ~ = 0 and—byour assumptionthat flat connedionsare irreducible—
implies 4) = 4) = 0. If the flat connectionsare isolated,therewill be no A and ci’ zero modesto
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worry aboutandwhence,setting all the otherfields to zero,we will get a uniqueground statefor
each flat connection.

In perturbationtheory it is easyto seethat all thesestatesareBRST invariant, since an isolated
flat connectionis annihilatedby Q accordingto the transformationlaws (5.45), and in expanding
aroundsuch aflat connectionQ is quadraticin the oscillatorsandwill thereforealsoannihilatethe
state.

The BRST invarianceof thesegroundstateswouldhavefollowed from (5.83) if the Hilbert space
scalarproductwerepositive definite,sincethen (by standardarguments,cf. section3.7)

HW=0~Qq1=~y=0. (5.84)

In the presentcasethe ~ implication no longer holdsautomatically,andwethereforehadto check
by handthat theground statesare really BRST invariant.

The converse—thatHoerhomologyclasseshavezeroenergy—followsfrom ourgeneralarguments
of section2: H is zeroon physicalstates—thelatter beingdefinedas thecohomologyvectorspace
of the BRST operatoracting on the (unconstrained)Hilbert spaceof the theory. The existence
of a non-BRSTinvariant (i.e., non-physical) zero-energystatewould thus have signalleda kind
of spontaneousbreakdownof BRST symmetry (which we have,however,ruled out perturbatively
above).

In the abovediscussionwe haveassumedthe absenceof reducibleflat connections,not because
the generalizationis straightforward,but, on the contrary,becauseit is simply not knownat present
how to deal with other situations.Let us commentbriefly on the natureof the problemsthat
arise in this context [5.71]. On the one hand, reducibleflat connectionslead to singularitiesof
the moduli space (cf. sections5.1.4 and 5.4.3), which in turn castssome doubt on the validity
of the semi-classicalapproximationand the formal argumentsestablishingits exactness.On the
other hand, reducibleconnectionsgive riseto non-compactdirectionsin the moduli space(space
of solutions) of the theory,since d44) = 0 is a linear equationfor 4). Then the convergenceof the
various integralsover moduli spacewe have encounteredin this sectionis no longer guaranteed,
andfurtheranalysisis required.While certainad hocresolutionsof theseproblemsareconceivable,
a satisfactorytreatmentof these matters is still lacking. Analogousremarks apply to all other
topological gaugetheories.

Let us now see how Hoercohomologygroupsmaketheir appearancein Donaldsontheory on a
four-manifoldM with boundary/3M = B [5.11]. In order to computecorrelationfunctions (0) of
local operators[like the Wk0’)] on such a manifold one needsto specify boundaryconditionson
B. Computingthe partition function or a correlationfunction with that boundarycondition, and
varying the unspecifiedfields on B, oneobtainsa functional of the boundaryvalues which is a
state in the Hilbert spaceof the theory definedon B x It Converselyanysuch statemay be used
to specify aboundarycondition.

Upon integratingoverthe fields at the boundaryonegetsanumber,andthe questionarisesunder
which circumstancesthis numberwill be a topological invariant. If we are computingcorrelation
functionsof BRST invariant (and metric independent)operators,the by now standardarguments
imply that all we haveto requireis BRST invarianceof theboundarycondition. In termsof Hilbert
spacestates~Pon B this translatesinto the requirementQ~P= 0, which implies that !P represents
aFloer cohomologyclass.Likewise, hadwechosenthe boundaryconditionsin sucha way that the
correspondingstate were Q-exact,the Q Ward identitieswould havetold us that the correlation
function vanished.Thus we haveshown that they are independentof the representativeof a Hoer
cohomologyclass.

Moreover, the fact that the observables0 representingthe Donaldsonpolynomialsgive us a
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number (O)~p once we have specifieda state [W] e HF* (B) shows that on a manifold with
boundarythe Donaldsoninvariants (0), regardedas mapsfrom HF* to the complex numbers,

—* (0).p, take valuesin the dualof theHoercohomologygroups.As mentionedin section5.1.6,
thisobservationof Donaldson—whichwas oneof the main motivationsbehindAtiyah’s suggestions
leadingto the constructionof topological field theories—mayleadto a powerful new methodfor
calculatingDonaldsoninvariants[5.11, 5.45].

5.3. Geometry of topological gauge theories

In the previoussectionswe haveanalyzedDonaldsontheory from severaldifferent points of
view. We now wish to obtain aclearerpictureof the geometricalstructuresunderlyingthis theory.

In section 5.1 we havealready seenthat the Donaldsonpolynomialscan be constructedfrom
the characteristicclassesof the universalbundle with connectionof Atiyah and Singer. We shall
thereforestart with a descriptionof this bundle.This will (as hadbeennoticedby a numberof
groups [5.46, 5.72, 5.731) also allow us to understandthe origin andgeometricalsignificanceof
the BRST transformationsof Donaldsontheory. It will alsosuggesta numberof waysof resolving
the issue of “triviality of observables”encounteredabove. Moreover,the underlyinggeometrywill
turn out to be sogeneralthat it immediatelyprovidesuswith topologicalgaugetheoriesassociated
with arbitrary moduli spacesof connections[5.49, 5.74]. As an illustration of how this works in
practice,we aregoing to constructtopologicalgaugetheoriesof flat and Yar~g—Millsconnectionsin
section5.4. Therewe havealso includedasectionon moduli spacesof flat connections,which we
will makeuseof in our subsequentdiscussionof observablesin thesemode’s.

5.3.1. Theuniversalbundle
In ref. [5.35] Atiyah andSinger introducedacertainuniversalbundlewith connection(Q,A) in

order to computecharacteristicclassesof the index bundleof families of Dirac operatorscoupled
to gaugefields. Thisbundlecanbe describedas follows:

Let P -~+ M be aprincipal G-bundleoverM, A the affinespaceof connectionson P [modeledon
Q’ (M, g)] andc the groupof verticalautomorphisms(gaugetransformations)of P. Thenthereis
a naturalactionof c on P xA which hasno fixed points,andthereforePx A —~ (P xA)/~= Q is
aprincipal c-bundleover Q. Since the G actionon P x A commuteswith thatof c, G actson Q.
If one chooseseither A to be the spaceof irreducibleconnectionsor c to be the group of pointed
gaugetransformations,Q is the total spaceof a principal G-bundle,

Q—’Q/c=MxA/c , (5.85)

over M x A/a. A G-invariantmetric on Q defines (cf. section5.1.2) a connectionfor (5.85) by
declaringhorizontal vector fields to be those orthogonalto the fundamentalvector fields of G.
Givenmetricsg on M and tr on G, such ametric is obtainednaturally from the G x c-invariant
metric ~on PxA definedby [X,� T~P,‘r~ET4A = Q

1(M,g)]

g(~,A)((Xl,x
1),(X2,r2)) = g~(~)(7r~XI,7r~X2)+ trA(X1)A(X2) + fit * r2 . (5.86)

If we realizeA/Q locallyby asectionof A —‘ A/c, thenevidentlythe (1,0) partof this connection
A with respectto the decompositionof forms on M x A/~is AIM~{[Al} = A, where A is the
representativeof the equivalenceclass [A] in the gauge chosen. The curvature F of A has
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componentsof form degree(2,0), (1,1), and (0,2),andevaluatedon horizontalvectorsX1 and i,

[i.e., A(X,) = d4 * r, 0]; theseare

F(2,o)(XI,X2) =F4(X1,X2) , (5.87)

F(l,l)(.XI,zl) = ‘ri(m~X1) , (5.88)

F(0,2) (r1, ‘r2) = —G4 [r1, *t2] , (5.89)

where G4 = (d4 * d4) ‘. The non-locality of (5.89) has its origin in the fact that the horizontal

projectorH in A hasthe form
H(r) = r—d4G4d4*z . (5.90)

Indeed,oneverifieseasily that

d4*H(r) = 0 , H(H(r)) = H(’r)

Equation(5.90) showsthat G4d4* is a connectionon the principal c-bundleA, which immediately

implies (5.89).

5.3.2. GeometryofDonaldsontheory
Let us study the connectionand curvature on this bundle in some more detail, but from a

different point of view. Pulling the G-bundleQ backto (a trivial G-bundleon) P xA (the reason
for doing this will becomeapparentbelow) we can write the connectionas the sum of a (1,0)-
anda (0,1)-form on P x A, A = A + c. Likewise we split the exterior derivatived on P x A as
d = d + 0. We then find that the curvature

P = dA + ~.[A,A]= P(20) + F(I,!) + F(o,2) (5.91)

is given by

F(2,o) =dA + ~[A,A} , (5.92)

P(I,l) = OA + dc + [A,c] , (5.93)

F(o,2) =Oc+ ~[c,c] . (5.94)

As 02 = 0, (5.93) and (5.94) alsoimply

0P(l,l) = —[c,P(ll)] —dAP(O,2) , (5.95)

oF(0,2) = —[c,P(02)] . (5.96)

We thereforeseethat, if we identify

ci’ , 4’ P~,o), (5.97)

eqs. (5.93)—(5.96)areformally identicalto the BRSTtransformations(5.70),

OA =yi—d4c , (5.98)

Oc =4)—~[c,c] , (5.99)
0ci’ =—[c,w]—d

44) , (5.100)
04) =—[c,4)] , (5.101)
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of the fields in the geometricalsector of Donaldsontheory.Furthermore,the descentequations
(5.75) arethen nothingbut the Bianchi identity for F. Theseobservationsprovidedthe basis for
the claim that theuniversalbundle Q adequatelydescribesthe geometryunderlyingthis theory.

However, this is far from beingthe wholestoryyet, since,e.g.,the identification (5.97) is purely
formal so far. To put this on a firmer footing and to establishthe relationbetweenthe geometry
describedhereandthatof the universalbundlediscussedabove,we haveto understandin particular
— how 4’ endsup beinggivenby 4’(ti, 12) = —GA[tI, *t~], eq. (5.89),
— the apparentdiscrepancybetween(5.93), F(Il) = ci’ = OA + cl4c, and (5.88),which canbe read
as P(l,l) = OA.

In the courseof resolvingtheseissueswewill alsobe led to understand
— why eqs. (5.98)—(5.l01)havenecessarilyto be regardedas (global) equationson P x A rather
thanas (local) equationson M x A/c,
— how triviality of O-cohomologycanbe reconciledwith the non-trivial topology of A/~(andM),
— how the covariantgauge fixing condition on ci’~d4 * w = 0, is compatiblewith a background
gaugefixing dA0 * (A — A0) = 0 of A.

Let usstartby analyzingthe consequencesof thegaugefixing conditiond4 * ci’ = 0. Thisappears
as a 0-function constraintin the path integral treatmentof Donaldsontheory, and thereforethe
following equations[5.75] canbe readeither as (classical)equationsof differentialgeometryor as
relationsholdingat the level of expectationvalues in Donaldsontheory.

The first thing to notice is that, with d4 * w = 0, (5.98) describesa decompositionof OA
into two pieceswhich are orthogonalwith respectto the natural scalar product on A inherited
from a metric on M. Sincethis is the metric we usedto define a connectionon A, regardedas
the total spaceof a principal bundle, we see that (5.98) gives a decompositionof OA into its
horizontal0”) andvertical (—d4c) part; andthis is the reasonwhy we haveto regard0 as being
the exteriorderivativeon A andnot on A/c, andwhy (5.98) only makessenseas an equationon
theformer.

One maythereforenow be temptedto declarethat oneobtainsthe exteriorderivativeon A/~(a
necessarypreliminary stepif we want to endup with 0 as the exteriorderivativeon M and thus
with the de Rham cohomologyon M) by taking the horizontal (c = 0) part of (5.98), (5.100)
and(5.101).But thisis wrong since,by definition, the horizontalpart0’~of the exteriorderivative
is the covariantexteriorderivative,whosesquareis the curvatureof the bundle; in contrastto this
the vertical part of 0, 0V is nilpotent. It is exactly the BRST operatorof ordinary Yang—Mills
theory,and as such its interpretationas the exterior derivativealongthe gaugeorbits is of course
well known.

The truncatedequations

OHA = ci’ , 0’~~= —d4çb , = 0 , (5.102)

areidenticalto the BRSTtransformations(5.45) usedby Witten,andthe statementthathis BRST
operatoris nilpotent only up to a gaugetransformationgeneratedby 4) is anotherway of saying
that 4) is a curvatureform. The equation0H4’ = 0 is then the Bianchi identity for 4), analogous
to d4F4 = 0, while 04’ = —[c,4’] is the analogueof dFA = —[A,F4]. However, on invariant
polynomialsofthe curvaturetensor,for instance,the exteriorcovanantderi~’.ativecanbe identified
with the exterior derivative on the basespace,and this is the way the exteriorderivative on M
arisesin Witten’s approach.

The condition d4 * ci’ = 0 has yet anotherimportant consequence(in either the 0 picture
developedhere or the 0’~picture chosenby Witten): the exterior (covariant) derivative of this
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equationis

[w,*w] + d4*d44’ = 0 , (5.103)

which implies that 4’ is indeedthe curvaturetensor(5.89) determinedpreviously,

(5.104)

At the level of expectationvalueswe havealreadyderivedthis equationin section5.2.6.
Now thatwe havegaugefixed ci’ to be orthogonalto gaugetransformations,it remainsto choose

a gauge (slice in A) for A itself, in order to get back from the trivial bundle on P x A to the
non-trivial bundleQ over M x A/c. This we do as usual by demandingd4, * (A — A0) = 0 for
somebackgroundconnectionA0. The exteriorderivativeof this equation(with respectto 0) gives

d40 * (ci’ — d4c) = 0 , (5.105)

or

c=K4d40*y, , K4 = (d40*d4~~ . (5.106)

Theseequationsagainhavea numberof interestingconsequences:
(i) The first (trivial) remarkis that (5.106) is of courseagainsatisfiedat the level of expectation

values,as follows from the action (5.53). As a consistencycheck it can alsobe verified that the
equations

4’=0c+~[c,c] ,

hold with c and4’ given by (5.104) and (5.106),respectively.
(ii) Oneilluminating way of looking at (5.105) [5.75] is to regardc as agaugetransformation

taking ci’ (gaugefixed at A) to acotangentvectorof A (gaugefixed at A0), namely ci’ — d4c. This
alsoexplainswhy the relation F(1,1) = OA of Atiyah and Singer is replacedby F(1,1) = OA + d4c
in the presentcontext. The former relation is valid on tangentvectors r E Q’ (M, g) satisfying
d4 * r = 0. With the gaugefixing chosenfor A herethis is only achievedby addingdAc to OA,
wherec is given by (5.106).

(iii) Relatedto this is the role of c as the (0,1) part of the connectionon Q (or its pull-back).
From (5.106) we see that it is gauge fixed to vanishon tangentsto A horizontalwith respectto
A0. In this respectit differs from the more conventionalconnectionon Q, which is definedby
declaringhorizontality to be with respectto A instead.Nevertheless,c is of coursea perfectly good
connectionon the A/~part of Q, sinceit evidentlysatisfiesthe conditions (5.1), (5.2).

Summarizingthe above discussion,we havenow completedin detail the identification of the
zero modesectorof Donaldsontheorywith the geometryof the universalbundle,andin particular
thereforethe identificationof theobservablesof Donaldsontheorywith the Donaldsonpolynomials.

Having pinneddown the theory to A/c, we can—by imposingfurther constraintson A (and
thusci’) compatiblewith gaugeinvariance—restrictthe theory to somemoduli (sub)spaceof A/c.
Donaldsontheory, for instance,follows from imposingF4+ = 0, which implies (d4ci’) + = 0. Pairs
(A, ci’) satisfying theseconditions in addition to those encounteredabovewill then representa
point in the moduli spaceof anti-instantons,anda cotangentvectorto thatpoint.

But we can clearly imposeother conditionsas well, in this way constructingtopological gauge
theoriesbasedon othermoduli spaces.We will discussthis in the next section.First, however,we
will turn to the issue of “triviality” of observables,since the problemas well as its resolutionsare
quite independentof the particularmoduli spacechosen.
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5.3.3. Observablesand triviality
Combiningthe descriptionof the Donaldsonpolynomialswe havegivenin section5.2 with what

we havelearnedabove,we seethat theyare obtainedfrom expansionof thesecondChernclassof
Q. The claim that theseobservablesare in asensetrivial hasbeenbasedon eitherof the following
two observations:

(i) Locally tr F2 canbe written as

trF2= (d-
1-0)tr(AE—4.A

3)

this implies that all the Wk (where ~trF2 = ~~IJ Wk) are 0-trivial modulo d, and thusthat all
the observablesWk0’) = f~Wk are BRST-exact.Of coursethe emphasishereis on “locally”; but
while this certainlymeansthat

trF,~= dtr(AF
4 — 4.A

3)

doesnot necessarilyhaveanyglobal implications,the situationconcerning

tr4)2 = Otr(c4)— ~c3) (5.107)

is not so clear.Fromthis point ofview whatneedsto be explainedis whyc [and therefore(5.106)]
doesnot makesenseglobally.

(ii) Perhapsmorestrikingly (but equivalently)the essenceof the mattercanbe capturedby the
following argument [5.64]: By making the field redefinitions

= ‘~i—d
4c, (1.” = 4)— ~[c,c]

the BRST algebra(5.98)—(5.l0l) canbe broughtinto the form

OA=yi’ OW’=O , Oc=q5’ , 041=0

which showsvery clearly thatany0-closedfunctionalof thesefieldswill be0-exact.Fromthis point
of view onehasto explain why O-cohomologyis not the one relevant for Donaldsonpolynomials
and their pathintegralevaluation.
We will now first give avery generaltopologicalexplanationof what is going on here.Afterwards
we will presenta second (geometrical)and third (algebraic)argumentpertinent to the point of
view expressedin (i) and (ii), respectively.

Topological explanation. Characteristicclassesof Q give rise to de Rham cohomologyclasses
on A/a. The fact that theseare 0-exact is—in view of the identification of 0 with the exterior
derivativeon A—nothingbut the fact thatanycohomologyclassofA/~is trivial whenregardedas
a cohomologyclasson (the contractiblespace)A. Thus clearly this whole issue of triviality is no
issuefrom themathematicalpoint of view. Whatremainsto be understood,though, is how physics
in, say, the path integralformulationtakesthis into account.

Note that in Witten’s (0’~)formulationthereis no problem.That only arisesonceone enlarges
the spacefrom A/~(or a sectionof A —~ A/G) to all of A, as manifestedby the appearanceof the
gaugeghostc in, e.g., (5.107).

Geometricalexplanation.The idea hereis to explain why (5.106) is not valid globally andcan
thereforenot be usedto deducethe 0-triviality of observablesderived from tr 4)2 via the descent
equations.
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But this is easy to understand,since in general the bundle Q will be non-trivial over A/c. In
that casetherewill be no global non-singularexpressionfor the connectionc of the curvature4).
But we have alreadyseenthis explicitly in (5.106)! Due to the Gribov ambiguity [5.76, 5.77],
K4 = (d4, * d4)— I will necessarilybe singular somewhereunder very generalconditions,which
showsthatc = K4d4, * ci’ can only be regardedas beingdefinedlocally on A/c.This point of view
hadbeenadvocatedin oneway or anotherin refs. [5.49, 5.67, 5.66, 5.75] and was madeprecise
by Kanno [5.78].

Algebraic explanation.In view of the topologicalargumentgiven above,one way of phrasingthe
problem is: how doesonedetectthe non-trivial cohomologyof A/~by computationson A?, and
the answer[5.64] is providedby basiccohomology [5.79], which is designedto do just this.

However, in orderto makeuseof this in the presentcontext,the quantizationprocedureadopted
in section 5.2—basedon the BRST operator0, which combinesthe topological shift symmetry
and the gauge symmetry into a single operator (cf. OA = ci’ — d4c)—is not the most suitable
(fundamentallydueto the fact of coursethat0, as the exteriorderivativeon A, cannotdetectthe
non-trivial cohomologyof A/c). An alternativemethod—advocatedby Home [5.80]—is to keep
thesesymmetriesseparateand to augmentWitten’s action (5.44) by ordinarygaugefixing terms.
If one proceedsin this mannerone ends up with a theory which is—apart from a bigger field
content—ineveryway equivalentto the onediscussedin section5.2 [5.67, 5.73, 5.75]. However, it
is theseextrafields which allow oneto resolvethe issue of triviality in the following way: although
the observablesare 0-exact, they cannotbe written as the 0 of somethingwhich is gaugeinvariant
[5.64].

Thuswe haveseenthat thereare variouswaysof establishingthe non-triviality of observablesin
Donaldsontheory (and other topologicalgauge theories).Of course,ultimately all the arguments
presentedabove are preciselyequivalent;dependingon the context, however,oneor the other of
thesepointsof view may be more useful or to the point.

5.4. Construction oftopologicalgaugetheories

5.4.1. Theclassicalaction
As explainedin section2, part of the philosophybehindWitten typegaugetheoriesis that they

are cohomological theoriesassociatedwith moduli problems,i.e. upon specifying the fields, the
symmetries,andthefield equations,thereis a (perhapsnon-unique)field theorywhosecorrelation
functionscomputeintersectionnumberson the moduli spaceof solutionsto the equationsmodulo
the symmetries.The generalprocedureleadingto thesetopologicalfield theoriesgiven the above
data was developedin refs. [5.49, 5.74].

Now that we have understoodthe geometryunderlyingDonaldsontheory, the constructionof
topological gaugetheoriesassociatedwith arbitrarymoduli spacesof connections(thisalsoincludes
moduli spacesof Riemannsurfaces,cf. section5.4.3)is straightforward.In.additionto the conditions
d4, * (A — Ao) = d4 * ci’ = 0, which project the theory down from A to A/c, we can now simply
imposea furtherconditionon A (and therefore,by “supersymmetry”,on ci’)~

.F(A) = 0 (5.108)

(where j is some functional of A), as long as this condition is gauge invariant. Someobvious

choicesfor F are

F(A) =F4~ (5.109)
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F(A) =F4 ‘ (5.110)
F(A) =d4*F4 . (5.111)

Thesegiverise to Donaldsontheory,a topologicalgaugetheoryof flat connections,anda topological
theorybasedon the moduli spaceof solutionsto the Yang—Mills equations,respectively.Note that
there is no problem of principle with the constructionof topological gauge theories basedon
explicitly metric dependentfield equationslike (5.109) or (5.111).Note also that, while (5.109)
only makessensein four dimensions,(5.110) and (5.111) arenot restrictedin that way.

Combining(5.108) with the fundamentalequationOA = ci’ — d4c, we learnthat ci’ — d4c hasto
satisfy the linearizedequation

~[W—dAc1 = 0 . (5.112)

If A satisfies (5.108) thenthis is equivalentto

~[ci’] = 0 , (5.113)

sincegaugeinvarianceof F implies

~[dAA] = 0 (5.114)

for all (0,1)-formsA e Q°(M,g).Thus both ci’ and w — d4c representcotangentvectors to the
moduli spaceMy determinedby (5.108),albeit in differentgauges,

d4*ci’=O, d40*(ci~—d4c)=0.

In the examples(5.109)—(5.111) for F given above, (5.113) is, more explicitly,

(d4yi)~=0 , (5.115)
d4yi =0 , (5.116)

d4*d4yi = [*F4,wI , (5.117)

and (5.114) is easilyverified directly in thesecases.
It is now clearhow to encodethe geometryof My andof the bundleQ overM x My (this is

just the restriction of Q via the inclusion M x My ‘—p M x A/a) into a supersymmetricaction.
To enforce (5.108) we introduce an anti-ghost (ghostnumber —1) field x and a multiplier B
with

0x = B, OB = 0. The natureof x and B will dependon the choiceof F: in the examples
(5.109)-(5.111) they will be self-dual two-forms, (n — 2)-forms and one-forms,respectively, in
order to makeBF(A) an n-form on M. Thenwe chooseour classicalaction to be

S~= OfxF(A) =JBF(A) ±x~[W] . (5.118)

Evidently B imposesthe desiredclassicalequationof motion F(A) = 0, whereasthe x equationof

motion restricts ci’ to be tangentto F(A) = 0. For flat connections(5.118~)readsmore explicitly

s~=fBF
4+(Y’xd4cii . (5.119)
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As in Donaldsontheory (cf. section5.2.2), we introduce anti-ghost—multiplierpairs (4),77) and
(e,b) to imposethe gaugefixing conditionson ci’ andA. Thenour (preliminary,cf. below) quantum
actionwill be

= ofxF(A)+4)d
4*ci~ +ed40* (A—A0) . (5.120)

In the caseF(A) = F4~this leadsto the actionfor Donaldsontheorygiven by Baulieuand Singer
(in the a = 0 gauge),whereasfor flat connectionswe obtain

s =f{BF4 + (—)“xd4~—(—)”~[F4,c]+~d4*W +~[W,*W]

+4)dA * d44) — 4)d4 * [c, ci’] + bdA, * (A — A0) + ëd40 * ci’ — ëdA,* d4c} . (5.121)

The qualification “preliminary” refers to the fact that (5.120) will in generalstill possessresidual
local symmetries.In fact, in more than two dimensions,there will be a whole tower of on-shell
reduciblesymmetriesof (5.121),resulting from the obvious invarianceOB = —d4E where E is
an (n — 3)-form. One of the aims of the next sectionwill be to show that the fully gaugefixed
actioncan still be written as a BRST commutator,with an off-shell nilpotent BRST operator.This
off-shell nilpotency (which is requiredfor the argumentsof section2 on the topological nature
of this model to go through directly) is not ensuredby the Batalin—Vilkovisky algorithm (due
to the on-shell reducibility), andwe are thereforeforced to constructthe quantumaction in a
differentway. The successof our methoddependscrucially on the fact thatwe work with a BRST
operatorwhich combinesthe topological, gauge, and the above p-form symmetries,instead of
introducinga new BRST operatorwhich accountsfor the latter only (aswould haveresultedfrom
the Batalin—Vilkovisky procedure).

Let us makesomemorecommentsconcerningthe action (5.121):
(i) As in Donaldsontheorywe couldhaveequallywell chosenan actionbasedonx (F4—(a/2) *B)

with a non-zero.For a = 1 the resultingactionwould then (upon having integratedout B) again
havetakenthe form “Yang—Mills action+ .. .“. And in order to constructthis theory rigorously,
a = 1 may ultimately be a better (since less singular) choice, but for our presentpurposesa = 0
is certainlymore convenient.

(ii) The classicalaction (5.119) showsthat thistheorycanbe regardedas a supersymmetrization
of BF systems[5.81, 5.82], Schwarztype topologicalgauge theorieswith classicalaction f BF4,
whichwewill discussin detail in section6. Thereforewewill whenceforthrefer to theoriesdescribed
by the action (5.119),(5.121) as super-BFsystems[5.49].

(iii) When B is aone-form(e.g. 3D super-BF)one canpostulatea secondnilpotent supersym-
metry 0 in addition toO, definedby OA = x,

0ci’ = —B. The super-BFaction (5.119) can thenbe
written as

scjoOfAdA+4A3

Grouping A, w~x andB into an N = 2 superconnectionshows (0 and 0 are, as usual, replaced
by Berezin integrals) that (5.119) can alternativelybe regardedas the Chern—Simonsactionof a
certainsupergroup(called super-IGby Witten [5.83]).. It can be shown [5.49] that this second
supersymmetryextendsto an anti-BRST symmetryof the completequantumaction. Analogous
remarksapply to the Yang—Mills action [basedon (5.118) with F(A) = dA * FA] in anydimension.
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One also finds a counterpartof this observationin BF theories:in threedimensionsthesecan be
regardedas Chern—Simonstheoriesfor the group IG = TG (the tangentbundleof G). We will
explainthis in more detail in section6.2.3.

(iv) The third term in (5.121) canbe eliminatedby ashift of B or, equivalently,by redefining
the transformationsof x andB to be

ôx = —[c,x] + B , 0B = —[c,B] + [q5,x]. (5.122)

Written thisway the full quantumaction, as well as the transformationsfor the requiredadditional
(ghost, anti-ghost,and multiplier) fields, take a more transparentform. We are thereforegoing
to usethis form of the transformationsin the following section.Similar remarksapply to other
couplingsinvolving the gaugeghostc.
Beforeconcludingthis sectionlet us makea short remark on the philosophyof the Baulieu—Singer
approachto topologicalfield theories.This approachis often referredto as one whereone gauge
fixes zero or a topologicalinvariant (or v’~for thatmatter).Indeed,theform of the action (5.118)
suggestsan interpretationin which the classicalaction is zero and F(A) = 0 is a “gauge fixing
condition” for theshift symmetryA ‘—f A + X. However,herewe seeclearly that thiscannotbe quite
right: firstly one is neverjust quantizing zero, but one has in mind a wh~1ehost of geometrical
constructions;secondly the resultingtheory clearly dependson the choice of the “gauge fixing
condition” F; and thirdly noneof theseconditionsbreak the shift symmetrycompletely [indeed,
the only one which doesthat is F(A) = A — A

0, A0 arbitrary but fixed, which leads to a trivial
theory]. Thus, while this way of phrasingthings providessome useful heuristics,it is certainly
misleadingif takentoo literally.

5.4.2. Thequantumaction
In this sectionwe will completethe gaugefixing of the super-BFtheoriesintroducedabove,by

taking into accountthe non-Abelianp-form symmetry

= d4A~..3 , (5.123)

and (for n > 4) its descendents0A~3= d4A~4 This is discussedin generalin ref. [5.49],
whereit is shownthat, despitethe on-shellreducibility of (5.123) for n � 4, the completequantum
actioncanbe written as the commutatorof an off-shell nilpotent BRST operator.Herewe will only
treatthe threedimensionalcasein detail, wherethequantizationis straightforward,sincethatmodel
is the most interestingfrom the mathematicalpoint of view (being relatedto the Chern—Simons
functionaland the Cassoninvariant).In higherdimensions,the correct (minimal) field contentis
specifiedby the Batalin—Vilkovisky ghosttriangles (for an explanationandthe detailsseeappendix
A), andwe will only quotethe resultsin that case.

At this point we canalreadyanticipatean interestingsubtletyarisingupon gaugefixing (5.123),
namelythat the requiredcovariantgaugefixing conditionon B, d4 * B = 0, will inevitably modify
the B equationof motion from FA = 0 to

F4 = —*d4u (5.124)

whereu is someghostnumberzero (n-3)-form. In threedimensionsthis equationis knownas the
Bogomol’ny equationdescribingmonopolesin the Prasad—Sommerfieldlimit, u acquiringthe role
of a Higgs field. We thereforeappearto be dealingwith (generalized)monopolesalthoughwe had
set out to quantizea theory describingflat connections.Let us show that this is not the caseand
that in the situationat hand (5.124) implies F4 = 0 [5.49]. Therearetwo casesto consider.If
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the manifoldM is closed (compactandno boundary),thenan analogof the squaringargumentof
section3 clearly leadsto the conclusionthat (5.124) implies that F4 and d4u are separatelyzero
(alternatively,usethe Bianchi identity to deduced4 * d4u = 0, multiply by u andintegrateby parts
to concludethat d4u is zero, which implies F4 = 0). If, on the other hand,M hasaboundaryor
is non-compact,the aboveargumentwill remainvalid providedthat the boundaryterm

q=f~4u= _fu*d4u (5.125)

(the “monopole charge”) is zero. The asymptoticbehaviorof u (as a secondaryanti-ghost or
multiplier field) can,however,not be specifiedarbitrarily, but is determinedby thatof the primary
fields of the theory; if we are modeling flat connectionsthe natural condition is that F4 —+ 0 in
a certainway at infinity, and this in turn fixes the asymptoticbehaviorof the multiplier B and
consequentlythat of u. From eitherof the two aboveexpressionsit thenfollows thatq = 0.

The origin of the Higgs field andits necessityat intermediatestagescanalsobe understoodin a
different (but equivalent)way from the Langevinpoint of view. In order to describea theory of
flat connectionsone would naively startoff with a classicalactionof the form S = f (G — F4 )2,
where G is a two-form. But this actionclearly doesnot haveenoughgaugefreedomto set G to
zero, a shift in A only permitting one to removethe exact part in a Hodge decompositionof G.
In order to eliminate all of G one needsa completeHodge decompositionon the right handside
of the Langevin equationG = F4 + .... Thus (ignoring harmonicmodes,which can trivially be
incorporatedalongthe lines of section6.2.1) the correctLangevinequationto startoff with is

G = F4 + *d4u

SettingG = 0 one recovers(5.124).The equivalenceof the two argumentsleadingto (5.124) can

be demonstratedby writing the classicalaction (the squareof the Langevinequation)as

s=~fG_FA_*dAu2=fBG_FA_*dAu_~aB2 . (5.126)

Thus, having cometo grips with this slight complication, let us completeour taskof writing
down the completequantumaction in the threedimensionalcase.Determiningthe requiredset of
fields is straightforward:in addition to the fields alreadypresentin (5.121), the one-forms~and
B contributeoneghost—anti-ghost—multipliertriplet each,denotedby (P0, ~ ao) and (E0, .L’o, lro),
respectively. The requiredx and B transformations(combining the previous shift and gauge
symmetrieswith the p-form symmetry)are

Ox =—[c,~]—d4po+B , (5.127)
OB =—[c,B]—d41’o+ [4),xl+ [W,po] , (5.128)

andcovarianceandnilpotencythendeterminethe actionof 0 on the remainingfields:

OPo = —[c,po] + X0 , 0X~= —[c,Xo] + [4’,Pol
0/o =—[c,~öo]+ao , OIo=—[c,Xo]-i-Ho

= —[c,ao] + [4),~] , OH0 = —[c,Ho] + [4),Xo] . (5.129)

Only two kindsof termsin the abovetransformationsmayrequire someexplanation:Thoseof the
form OX = [4),X] + ... are requiredfor nilpotency of the [c, ] gaugerotationsbecauseof the
shift by 4) in Oc, and the additional ci’ term in OB is thereto compensatethe A variation in d410.
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Choosingthe actionto be

Sq = {Q,fXFA + ,00d4*X + Z0d4~B+ çbd4* ci’ + c~d*A} , (5.130)

we find that indeed all the invariancesof the action are completely fixed. Integration over B
enforces(as expected)the constraintFA = — * d4 (~o— H0). As such (~o— H0) plays the role of
the Higgs field we hadpreviouslycalled u. We havethus arrived at our goalof constructingan
off-shell nilpotent BRST operatorQ such that the full quantumactioncanbe written as a BRST
commutator,preservingexplicitly the Witten type natureof this model, by combining the super-
andgaugesymmetries.Incidentally,we haveon the way alsoachievedthis for the super-Yang—Mills
system[(5.118) with F(A) = d4 * F4], sincethe non-classicalpart of the aboveactioncoincides
preciselywith the oneof the super-Yang—Millssystemin anydimension,as B andx will alwaysbe
one-formsin this case.

After havingdiscussedthis three-dimensionalexample,the extensionto higherdimensionsturns
out to be, somewhatsurprisingly, fairly straightforward.Normally one would haveexpectedcon-
siderablecomplicationsarising from the fact that in more thanthreedimensionsthe ghostsand
ghosts for ghosts for x andB will have their own (on-shell) gauge invariances.Looking at the
B transformation(5.128) it is obviousthat they will give rise to a term proportional to F4 in
addition to thosealreadypresentinvolving ci’ and 4). As aconsequenceof the Bianchi identity for
the universalcurvatureF4 + ci’ + 4’ this is, however,basicallythe only modificationrequired. But
while the structureof thetransformationsin higherdimensionsis similar to the above,thereis the
necessityof introducingextraghostsand their correspondinganti-ghostsandLagrangemultipliers.
In otherwords, onemustensurethat the full field content,as specifiedby the Batalin—Vilkovisky
triangles, is represented.Labeling,e.g., the fields in the B triangle by (Ef), i,j = 0, 1,...,n — 2,
whereX,,2 = B and

1n—2—i is the ith ghostof B (seeappendixA), with analogousnotation for
the x triangle (p~),the BRST transformationsare simply [cf. (5.129)1

0I,° = —[c,E~]—d
4E~_1+ [4),p?] + [W~P,°..1]+ [F4,p?_2]

0p~ =—[c,p,°]—d4p?1 +E~, (5.131)

andforj= l,...,n—2,

0~’f = —[c,Ef] + Hf , OH! = —[c,Hf] + [4),E/]

Op~ = ~[c,p1] + af , Oaf = —[c,af] + [4),pfl. (5.132)

HereHf anda/ aremultiplier triangles,and0 is evidentlynilpotent on all the fields. The complete
quantumactioncanthenbe chosento be

( n—2 n—2—j

Sq = ~Q~fXF4 + 4)d4* ci’ + ãd*A> > (~fd4*Ef~+ p~d4*pf~)~ , (5.133)
I. j=1 i=0 )

andone verifies that all invariancesof the action are gaugefixed and that all ghosts have (as
requiredfor the correctnumberof degreesof freedomto emerge)standardkinetic terms.

The situationhereshouldbe contrastedwith thatencounteredin the quantizationof theSchwarz
typeBF theories(section6.2.4),wheretheconstructionof acompletequantu~nactionis muchmore
complicatedandapparentlyonly possiblewith aBRST operatorwhich is ndt nilpotent off-shell.
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5.4.3. Moduli spacesofflat connectionsI
As a preparationfor our discussionof observablesin super-BFtheoriesin the following section

we will now provide some informationon moduli spacesof flat connections.This will also serve
as a useful backgroundfor our subsequentdiscussionof Schwarztype topological gaugetheories
(section6).

We begin by recalling the descriptionof the moduli spaceM = M (M, G) of flat G connections
on a manifold M in termsof representationsof the fundamentalgroup ir1 (M) ir of M, leading
to the useful identification

M = Hom(ir,G)/G , (5.134)

where the quotient actionof G is by conjugation:given a flat connectionA anda point p in the
fiber above somebasepointx E M, the holonomyh~0’) arounda loop y in M dependsonly on
its homotopyclass [y] e ir, and this assignmentof elementsof G to homotopy classesbehaves
multiplicatively under compositionof loops, determiningan elementp.~e Horn(it, G); the latter
is well defined modulo inner automorphismsof G, sincechangingthe referencepoint p in the
fiber to pg,g e G, conjugatesthe holonomiesby g, h~,(y)= g’h~(y)g; converselyevery such
homomorphisma definesa naturalflat connectionA(a) with PA(~)= a in the principal G-bundle
associated(via a) to the principal it-bundle overM given by the universalcoveringof M; this
establishes(5.134).

The spacesHom(ir, g) and M have a rich geometricalstructurereflecting propertiesof both
the manifold M and the group G, and for a wealth of information concerningthesespacesthe
readeris referredto the work of Goldman [5.84] and Hitchin [5.85]. Here we just note that in
generalHom(ir, G) andM are not smoothmanifolds (the latter may not evenbe Hausdorffif G
is non-compact).If M = X is a compactRiemannsurface,and G is compact,M is a compact
complex variety whose singularpoints are precisely the reducible representations.Under fairly
generalconditions,thesesingularitiesarenot too bad(of quadratictype).

To get a feeling for the dimensionof thesespaces,let us takea look at someexamples.If M =

is a Riemannsurfaceof genusg, the standardpresentationof it is in termsof 2g generators
a,,b1,i = l,...,g, satisfying the one relation a1b1a~b~•agbga~b~’= 1. For g > 1 and G
simple, this implies that the dimensionof M is 2gdim G (for the assignmentof group elementsto
the generators)minusdim G (one relation) minusdim G (identifying conjugacyclasses),i.e.,

dimM(S,,G) = (2g—2)dimG . (5.135)

For g = 0, M is one point (the trivial representation),but for g = 1 the relation satisfiedby a
and b is ab = ba. This implies that (generically) a andb can be representedby elementslying
in the maximal torus T of G. On T x T, actionby conjugationreducesto the actionof the Weyl
group W, andthe moduli spaceof flat connectionsis the orbifold (T x T) /W of dimension

dimM(21,G) = 2dimT . (5.136)

If G = U(1) on the otherhand, the one relationis automaticallysatisfied,sinceU(1) is Abelian,
and by the sametoken conjugation acts trivially, so that for all g one has M (Ig,U(l)) =

U(l)
2~(the Jacobianvariety of Eg oncea complexstructureon ~g hasbeenchosen).Therefore

dimM (Eg,U (1)) = 2g, correspondingto 2g “vacuumangles”or “Aharonov—Bohmphases”.
As ourfinal example,let usconsidermoreconcretelythe caseit = i (i.e., M could be a circle or

a solid torus), G = SU (2). Every elementof SU(2) can be put into the maximal torus T = U(1)
by conjugation,but the fact thatone is dealing with SU(2) andnot with U(l) showsup through
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the fact that thereis a residualactionof the Weyl group W = 12. Thus if U(1) is describedby
avariable 0 e [0, 2m), the Weyl group identifies0 and 2ir — 0. Thereforethe moduli spaceof flat
SU(2) connectionsis the closedinterval (manifold with boundary) [0, it].

We havealreadyseenthat (inner) automorphismseof G acton Hom(it, G), but so do automor-
phismsof it. In particularall the moduli spacesM (Eg,G) carry naturalactionsof the mappingclass
group iro(DiffEg), since—by a theoremof Nielsen [5.84]ito(DiffEg) = Out(it), the group of
outerautomorphismsof it. This remarkacquiresparticularsignificancein the caseG = PSL(2,Eli),
wherea componentof M is Teichmüller spaceandM/Out(it) is thereforethe moduli spaceof
Riemannsurfacesof genusg. This observationunderliesmany of the constructionsof topological
gravity, andwe will thereforetake a closerlook at the moduli spaceof flat PSL(2,R) connections
in section6.2.7.

The above discussionshows that moduli spacesof flat connectionsare reasonablynice and
interestingspaces;it should thereforebe possibleto obtaintopological informationon M from the
cohomology (and, in particular, intersectionnumbers)of M. But on generalgroundsone should
expectthe topologicalinvariantsarisingfrom these(obviously metric independent)moduli spaces
to be less subtlethan the Donaldsoninvariantsconstructedfrom the metric dependentinstanton
moduli.

What the abovediscussiondoesnot tell us,however,is how to constructtheseinvariants,andin
particular,how the fermionic zero modesof the super-BFactionare relatedto the dimensionand
singularitiesof M. This informationis, to acertainextent,providedby an indextheoremapproach
to M, basedon the flat connectiondeformationcomplexwhich we will describebelow. As we will
see, this approachis in generalnot as powerful as in the caseof instantons.For one, the index
of the deformationcomplex,the formal dimensionof M, turns out to be identically zero in all
odd dimensions;this implies that, unlike in the caseof instantons,thereis no relation betweenthe
net ghostnumberviolation (zero) andthe dimensionof M in odddimensions,andrequiressome
rethinkingconcerningthe constructionof observables.Moreover, in the instantoncasethereis the
addedflexibility in a choice of metric, allowing one to prove vanishing theoremsfor particular
[5.8] andgeneric [5.9] metrics,whereashereM andall the cohomologygroupsof the deformation
complexaremetric independent.Nevertheless,as we will shownow, thereare somethingsthat can
be learnedfrom this approach.

The (Zariski) tangentspaceT4M to M ata flat connectionA is the spaceof solutionsto the
linearizedequationsof motion modulogaugeequivalence.In otherwords, it is preciselythe space
of ci’ zero modes (dAw = d4 * = 0) of the action (5.121). This is the first cohomologygroup
H~(M, g) of the twistedde Rham(or flat connectiondeformation)complex

0 ciA I dA dA n0—~Q(M,g)—~Q(M,g)—4...—*Q (M,g)—*0 . (5.137)

Note that it was necessaryto include all the higher rank forms to renderthe complexelliptic—a
fact that is reflected in the necessityto gaugefix the non-Abelianp-form symmetry (5.123) by
introducingthe hierarchyof ghostsandmultipliers into the action (5.133).

The Euler characteristicof this complex,or the index of the deformationoperator

d4 + d~ : Qeven(M g) .‘ Qodd(Mg) , (5.138)

is easyto compute:since it is independentof the local coefficient system,we may as well choose
the trivial connection.This gives

ind(d4 + d~)= ~(M)dimG (5.139)
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or, in termsof the dimensionsh~of the cohomologygroupsH~(M, g),

h°4—h~+ ~ + (—)~h~= x(M)dimG . (5.140)

That (5.137) is the correctcomplexto considercan also be readoff directly from the action. For
instancein two dimensionsthe relevantpart of the action is fxd4w + i~d4* ti’, in agreementwith
(5.138). In threedimensionsx alsocouplesto the multiplier a0, andf—~d4q,+ tjd4* ci’ + a~14*x
againagreeswith (5.138),*a0 representingQ

3(M, g). Fromthe abovewe seethat the ghostnumber
—1 x zeromodesarematchedby the ghostnumber+ 1 ~i’zero modes,andthat therearean equal
numberof ghostnumber + 1 a

0 andghostnumber—1 ,j scalarzeromodes.This featurepersistsin
all otherodd dimensions,where,as announcedabove,both sidesof (5.140) are identically zeroby
Hodge duality, giving no informationon the dimensionh]~of T4M.

In two dimensions(5.140) reducesto

h~= (2g—2)dimG±2h~, (5.141)

which is in preciseagreementwith the resultsobtainedearlier in this section:
— for g> 1, h~= (2g — 2)dim G at an irreducibleconnection,which checkswith (5.135);
— for g = 1 the discussionleading to (5.136) shows that all flat connectionsare reducible.The
leastreducible(simplepointsof M) amongthesearethe connectionsA with h~= dim T; for these
the predictionof (5.141),namelyh~= 2dimT, coincideswith the result (5.136);
— for g = 0, the only flat connectionis the trivial connection,for which h°4= dimG, in agreement
with h~= 0.

In four dimensionswe concludefrom (5.140) that

h~= h~ + ~[h~—x(M)dimG] . (5.142)

At an irreducibleconnection,h~,measuringthe cokernelof (5.138),will (as in section5.1) be the
obstructionto using the implicit function theorem to deducesmoothnessof M nearA. Contrary
to the situationencounteredin section5.1.4, this obstructionis independentof the metric. If it
happensto vanish,oneobtains—~x(M) dim Gas the dimensionof the moduli spaceof irreducible
flat connections.Onething to be learnedfrom this is that (for h?i = 0) x (M) < 0 is a necessary
condition for non-trivial moduli spacesof flat connectionsto exist.

In higherevendimensionsthereare moreandmoreunknowncohomologygroupsto worry about,
andthe index theoremprovideslessandless concreteinformationon h~.The aboveresult for the
dimensionof the moduli spaceof irreducible flat connectionsin four dimensionswill, however,
remainvalid wheneverh~= 0 for i > 2.

One more important piece of informationwe will make useof in the following is that, under
a very generalcondition on G, all the moduli spacesof flat connectionson Riemannsurfacesare
symplectic manifolds.This condition on G—that its Lie algebrashould admit a G-invariantscalar
product—isvery natural from the point of view of Chern—Simonstheory (section6.1): it ensures
thata gaugeinvariantChern—Simonsactionfor Gcanbe written down; M (Eg,G) is thenthe phase
spaceof Chern—Simonstheoryon Eg x R andshould thereforebe a symplecticmanifold. Denoting
this scalarproductby tr, the symplectictwo-form at a point A E M is

w4([X], [Y]) =ftrXY , (5.143)

where X, Y are arbitrary representativesof the cohomologyclasses [X], [Y] e H~(M, g). This
result in all its generalityis dueto Goldman[5.84], who hasalsoshown that, for G = PSL(2,R),
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w4 agreeswith the Weil—Peterssonform on TeichmUller space.Note that, in two dimensions,the
intersectionpairing is anti-symmetric.

5.4.4. Observablesand the Cassoninvariant
Let us now see what the previous section has taught us about observables.Again we have

the characteristicclassesof the universalbundle—thistime restrictedto the moduli spaceof flat
connections—atour disposalto performintersectiontheory.On M, the non-vanishingcomponents
of~(F4+ ~, + q5)

2 are

W
0 = ~tr4)

2 , W
1 = trçv4) , W2 = trci’ci’ , (5.144)

giving rise to four-, three-,andtwo-formson M, respectively.For G = U(n) onehasthe additional
possibility of constructingobservablesfrom tr 4) alone.This is of utmostimportancein topological
gravity in two dimensions,wherethe spin connectionis aU(1) gaugefield. In a careful anddetailed
analysis,Verlindeand Verlinde [5.86] have shownthat the operators4) (x) of the Lorentz ghost
for ghostarethe basicbuilding blocksof observablesthere.We postponea furtheranalysisof these
mattersto section7 andcontinueherewith the hierarchyof observablesbasedon the secondChern
classof the universalbundle.

We have alreadyseenthat in two dimensionsthe moduli spacesare evendimensional(in fact,
symplectic). Sincethe rationalcohomologyof A/~hasa generatorin two dimensions [5.87], we
considerthe observablefEg ci’ct’. Ignoring reducibleconnectionswe have (g > 1) h~= (2g —

2) dim G, andwe thereforeexpectthe correlationfunction

(g—l)dimG

V(Eg,G) = ((fciiw) ) (5.145)

to be a non-zerotopological invariant of
1g~In the contextof topologicalgravity this observable

appearsin ref. [5.88]. But from the previoussectionwe alreadyknow what (5.145) is! A glance
at (5.143) showsthat f~~çti is the symplecticform w of M (this is anotherway of seeingwhy,
amongthe candidatesWk, W

2 is the object of interest).Thus V(Eg,G) is nothingother, than the
symplecticvolumeof M,

V(Eg,G) = Vol(M(Eg,G),W) ~ 0 . (5.146)

Other correlationfunctionslike

(g—1)dimG—2k

K (f w~) tr4)
2(x

1) tr4)
2(x

2) . . .tr4)2(xk))

(computingintersectionnumbersof the symplecticform with the curvatureof the universalbundle
on M) will alsobe non-zeroin general,andmay lead to more refined invariantsof Eg associated
with M.

In higher dimensionsthere may or may not be ci’ zero modes.We will now take a look at the
former case,andafterwardsdeal with the situationwhereM consistsof isolatedpoints.

The situationis thenin principle the sameas in two dimensions:thezeromodesof thegeometrical
(A, w,4),c) sectorcapturethe geometryof the moduli spaceand the universal bundle; on these
zero modesthe BRST operatorreducesto the exteriorderivative; in particular,ci’ zero modesstill
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represent(co)tangentsto M; observablesconstructedfrom thesefields leadto cohomologyclasses
of M; correlationfunctions with the correctghost numbercomputeintersectionnumbersof M;
theseare topological invariants.

In practice, however,one is confrontedwith the zero modesof the other fields of the theory,
in particularthoserepresentingthe higher cohomologygroupsof the deformationcomplex, which
makecorrelationfunctionsof operatorsfrom the geometricalsectorill-defined.

One possible strategythat suggestsitself in that case is the following. In our discussionof
zero modesin supersymmetricquantummechanicswe havealreadyseenhow the Faddeev—Popov
procedurecanbeusedto gaugeawayharmonicmodes.Thisprescriptionis evidentlynot limited to
quantummechanicsandhasbeenexplainedin refs. [5.75, 5.81] within the contextof topological
gauge theories (cf. sections6.2.1 and 6.2.5). The new (gauged) action is now BRST-invariant
(in fact, BRST-exact)with respectto the combinedBRST + Faddeev—Popovoperator.This also
ensuresthatno metric dependenceis introducedinto the theoryby “dropping” the harmonicmodes
in thatparticularway. Sincethe fields in the non-geometricalsectorwereonly introducedin the first
placeto reducethe theory to M in a well definedway, which is achievedwithout their zero modes,
oneshould simply gaugeall thesezero modesaway (this is essentiallythe procedureadvocatedin
ref. [5.49]). In view of the above this is not only legitimate (compatiblewith BRST invariance
andmetric independence);it is alsoa reasonablething to do, sinceone is thenleft with a situation
which is essentiallythe sameas in two dimensionsor Donaldsontheory, allowing one to evaluate
intersectionnumbersof M in the standardway.

In threedimensionsthe partition function itself is well definedif the moduli spaceM consists
of isolatedflat connectionswhich are—apartfrom the unavoidabletrivial (product) connection—
irreducible. As explained in our discussionof Floer homology in section 5.1.6 we are thus [if
G = SU(2)] interestedin the casethat M is a homologythree-sphere.

The partition function will reduce to a sum of contributions from the points of M, which—
by supersymmetry—areplus or minus one, Z(M) = >~M±1.A look at the classical action
S = fM BF4 — ~d4yJrevealsthat the relative signs aredeterminedby the (mod 2) spectralflow of
the operatord4, the samespectralflow that definesthe relativeMorse indicesof Floer homology.
Sinced4 is the Hessianof the Chern—Simonsfunctionalwhosefirst derivativedefinesa vectorfield
on A/c, Z can be regardedas defining the Eulernumberx (A/c). Fromthe Mathai—Quillenpoint
of view this has also beenestablishedby Atiyah andJeffrey [5.37] by considerationssimilar to
thosepresentedin section5.2.6.

It is a result of Taubes[5.42] that this topological invariant agrees(possiblyup to a sign) with
the Cassoninvariant [5.89] )~(M),or, more precisely,

Z(M) = 2A(M) . (5.147)

(Actually Taubesalsofixes the absolutesign, but thisrequiresconsiderationsinvolving perturbations
of the trivial connection,andwe will not enterinto this here.) A(M) is a very powerful invariant
of threemanifolds,which generalizesthe classicalRohlin invariant (with which it agreesmod 2)
andhasalreadyled to manyinterestingresultsin low-dimensionaltopology [5.89]. Fromthe above
it is apparentthat the Cassoninvariant is closely relatedto Floer homology, the precise statement
beingthat )~(M) is the Euler characteristicof the Hoercomplex [5.111.

Casson’soriginal definition of A(M) was somewhatdifferent, involving Heegardsplittingsof M
along a RiemannsurfaceEg, and intersectiontheory in M (Eg,SU(2)). We will now show how
his definition can be recoveredfrom the path integral point of view. Imagine splitting M along
a RiemannsurfaceEg, i.e., M = M1#ZgM2~whereM1 and M2 are handlebodies(solid Riemann
surfaces).Then—accordingto the generalprinciplesof quantumfield theory—thepath integral
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over connectionson the manifold M1 with boundary8M1 = Eg will define a wave function !P1
having supporton thoseflat connectionson Eg which extendto flat connectionson M1, i.e. on
M(M1,SU(2)) C M(Eg,SU(2)).Likewise the path integral over connectionson M2 will produce
a wave function ~ having supporton M (M2, SU(2)) C M (Eg,SU(2)). The partition function
Z (M) canthenbe computedas the scalarproduct

Z(M) = f ~P7!1j~, (5.148)

M(Eg,SU(2))

and evidently only receivescontributionsfrom flat connectionson Eg which extendto both M1
andM2 or—in otherwords—fromflat connectionson M. By our assumptionthat M is a homology
three-spherethis implies that (5.148) is a sum over the points of M (M, SU (2)). The key point
in Taubes’work is to showthat the relativealgebraicintersectionnumbersof M(M1, SU(2)) and
M (M2, SU(2)) in M (Eg,SU (2)) can be determinedfrom the spectralflow of d4. Then one gets
(denotingthe total intersectionnumberin M by #M)

A(M) = 1 ~ (M(M1,SU(2)),M(M2,SU(2))) , (5.149)
2 Mcrg,sU(2))

which is preciselyCasson’soriginal definition.
In the meantime,the invariantA(M) hasbeengeneralizedto other classicalgroupsG [5.90],

whereonehasto cometo terms with the stratificationof M (M, G) determinedby the degreeof
reducibility. Recoveringthis generalization(which involves equivariantLagrangianperturbation
theory) from the path integral point of view remainsan interestingchal1en~e,since it may teach
one how to properly handlethe scalarzero modesassociatedwith reducibleconnections.

As canbe seenfrom the above,super-BFtheory in threedimensionsbearsastriking resemblance
to supersymmetricquantummechanics.This is brought out yet more clearlyby the fact that there
arean equalnumberof ci’ andx zeromodes,with oppositeghostnumber,bothrepresentingtangents
to M. This is of coursea feature also presentin supersymmetricquantummechanics,wherethe
action (3.1) with V = 0 hasan equalnumberof ~i’ and~i zero modes,both representingtangents
to M. In the latter casethe partition function is non-zeroin general,Z(M) = ~(M), despitethe
presenceof fermionic zeromodes:thesezeromodesappearin the actionandcanbe soakedup by
bringing down appropriatepowersof the Riemanncurvaturetensor.An analogoussituationoccurs
here in the 3D super-BFtheory,provided that one works in a gaugewith a ~ 0 [cf. remark (i)
after (5.121)]; againZ will in generalbe non-zero,giving Z(M) =

The underlyingreasonwhy three dimensionsstand out in this respectis the presenceof the
secondsupersymmetrymentionedabove [remark (iii) after (5.121)], which suggeststhat—asin
supersymmetricquantummechanics—oneis really doing de Rham cohomology,this time on M.
Sincea better understandingof this far-reachinganalogyrequiresa more detailedexplanationof
the Atiyah—Jeffreyand Mathai—Quillen formalisms [5.37, 5.57] thanwe can presenthere,we will
comebackto thesemattersin ref. [5.61].

Further reading
A Morse theoretic interpretationof Witten type topological field theories (related to the

Langevin/Nicolaimap point of view) has been put forward in ref. [5.65]. The issue of met-
ric dependenceof the pathintegral measureof topologicalfield theorieshasbeenaddressedin refs.
[5.91, 5.92].



248 D. Birmingham et aL, Topological field theory

Donaldsontheory itself hasnaturally attractedmuch attention,andvarious aspectsof its quan-
tization and renormalization(which we shall discussin detail in section7) are treatedin refs.
[5.67, 5.80, 5.63, 5.93, 5.94] and refs. [5.47, 5.95, 5.49, 5.96], respectively,while supersymmetric
extensionsof Donaldsontheory canbe found in refs. [5.97,5.98] aswell as in ref. [5.73, 5.99]

Severalother specific models in less than four dimensionshavebeenconstructedexplicitly, in
particular in the earlydays of topologicalfield theories,whenthe generalityof theseconstructions
was not yet so clearly understood.DimensionallyreducingDonaldsontheory to threedimensions
[5.73], one obtains (dependingon the manifold andboundary conditions) either a topological
gaugetheory of monopoles(which can alternativelybe constructeddirectly from the Bogomol’ny
equationalong the lines of ref. [5.100] or section 5.4), or a theory equivalentto 3d super-BF
theory. Reference[5.101] deals with supersymmetrictopological theoriesin three dimensions.
Two-dimensionaltheorieshavebeendiscussedat length in the contextof topologicalgravity (and
herewe referto section7 for references)as well as in refs. [5.102—5.104].

One importantdevelopmentwe have not toucheduponat all is the relationbetweenstochastic
quantizationand topologicalfield theories,discoveredin ref. [5.1051.This hasbeenfurtherelabo-
ratedupon in refs. [5.106—5.109]with emphasison the possibility of using stochasticquantization
to establishrelationsamongtopologicalfield theoriesin different dimensions.In a similar context,
a relationbetweenYang—Mills theory in two dimensionsandDonaldsontheory hasbeenproposed
in ref. [5.63].

6. Schwarztypetopological gaugetheories

Having consideredWitten type gaugetheoriesin somedetail, we now turn our attentionto the
Schwarztype counterparts.Recall (section2) that theseare definedas topological field theories
with a non-trivial, but metric independent,classicalaction. We beginin section6.1 with a review
of the essentialfeaturesof three-dimensionalChern—Simonsgaugetheory,and follow this in section
6.2 by introducingthe arbitrary dimensionalBF theories,which serveto model the moduli space
of flat connections.

6.1. Chern—Simonstheory

We shall now examinean extremely rich topological field theory, namely, the Chern—Simons
model [6.1, 6.2]. Ourdiscussionherewill be, necessarily,brief~thereis alreadyavastliteratureon
this subject,dealingwith both the three-dimensionalcomputationalpoint of view, as well as the
two-dimensionalconformal field theory aspectsof the system.Our aim is simply to give a flavor
of someof the specialfeatureswhich this modelpossesses,featuresnot sharedby the other models
discussedin this report.

We first discussthe action and its symmetries,and presentthe candidateobservables.The
partition function, togetherwith theseobservables,provide topological invariants for the three-
manifoldendowedwith knot andlink configurations.The beautyof Chern—Simonstheory is that it
presentsan effectivemeansof computingtheseinvariants,for an arbitrarythree-manifold,certainly
in a largecouplingexpansion(recall that this model is of Schwarztype).

We go on to discusssomeof thepropertiesof theseinvariants,andfollow this by making explicit
contact with the 2D conformal field theory aspects of the model. Finally, in section 6.1.6, we briefly
describe the Chern—Simons approach to 2 + 1 dimensional quantum gravity [6.3, 6.4].
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6.1.1. Action, symmetriesand observables
The Chern—Simons action is definedas follows:

S(A)=~_ftr(AAdA+~AAAAA)~ (6.1)

whereM is an orientedthree-dimensionalmanifold on which the theory is defined; A = A~Ta is

a connectionon a principal G-bundle overM, and T~is a representationof the structuregroup
G, which we take to be SU (n). The normalizationof the tr will be specifiedpresently.Since the
integrandin (6.1) is a volume form on M, andis definedwithoutany referenceto the Hodge (star)
duality operator, it is clearly metric independentandthus correspondsto a Schwarztype model.
Giventhis action, our aim is to study (amongotherthings) the partition function Z = fdA ~
A minor point, which is perhapsworth a mention,is the fact that, sinceS is a first order system,
a factorof i is requiredin the definition of the Euclideanpathintegral.

Let us now discussthe symmetriesof the action. Clearly, the action is invariant under the
usual infinitesimal Yang—Mills type gauge transformations,namely OA,, (x) = Dn� (x), where
Da = on + [An, ] is the covariantderivative.However, given that gaugetransformationsin the
presentcaseare mapsg : M —~ G, togetherwith the fact that it

3 (G) = 1 for anycompactsimple
group G, one must exercisecaution in studyingthe behaviorof S under gauge transformations
which are not connectedto the identity. Indeed,the following situationarises [6.5—6.7]:defining
a finite gaugetransformationby

An —~ A~= g~D~g , (6.2)

we find that

S(A~)= S(A) + 2irkS(g) , (6.3)

where

S(g) = ~_~.ftr(g_1dg)3 (6.4)

is the winding numberof the mapg. Choosinganormalizationfor the tr to be tr T~Tb = —

in the fundamentalrepresentation,anddemandinggauge invariance,fixes the normalizationof k
to be an integer. In otherwords, we now see thate~is indeedasingle-valuedfunctional which is
invariantunderall gaugetransformationsg.

A point worth noting hereis that, evenon R
3, onefinds the necessityof restrictingto integerk

values [6.8]. This arises due to the necessityof imposingboundaryconditions,a suitablechoice
being, for example,to let g —~ I at infinity. Since such acondition essentiallycompactifiesO~to
S3, the quantizationconditionagainfollows.

In addition to studyingthepartitionfunction,onewouldalsolike to constructmetric independent
observables.In actualfact, it turnsout thatonecandefinesuitableobservabieswhich areessentially
computableon anythree-manifold.We shall specify more precisely what is meantby “essentially
computable”,in section6.1.4.Considera closedorientedcurvein M, and let R be an irreducible
representationof G. We should point out that sucha curve C correspondsto an embeddingfrom
thecircle 5’ to the manifoldM, andis calledaknot. Onethenconsidersthe Wilson loop operator
definedby

WR(C)=trRPexPfA , (6.5)



250 D. Birminghamet a!., Topologicalfield theory

where the trace is takenin the R representation,and P denotespath ordering. Since W is the
holonomyof the one-formA aroundthe loop C, it is clearlymetric independent.The task then is
the following: let M bean orientedthree-manifold,andchooser orientedandnon-intersectingknots
C,, i = 1,..., r (the union of theseknotsis calleda link). Assigningan irreduciblerepresentationR,
of G to eachknot, we considerthe observable[6.2]

Z(M;C1,R1)= fdAe~~ftwR~(CI). (6.6)

Sincethe classicalactionandobservableswe havedefinedaremetric independent,the hopeis that
the associatedquantumpartition function andcorrelationfunctionswill enjoy similar properties.
This is not, apriori, guaranteed;the aim is to makesenseof theseobjects in a metric independent
way, within the realmsof quantumfield theory. If this can be achieved,the Chern—Simonstheory
will indeedbe a topological field theory.

Before treating the evaluationof the partition function and observables,we pauseto discuss
anotherimportantaspectof this theory,namely, its phasespace.

6.1.2. Phasespace

We first notethat the equationsof motion which follow from the action (6.1) are

F4 = dA + ~.[A,A} = 0 . (6.7)

Thus, the stationarypointsof the actionareflat connections,and the reducedphasespaceis the
moduli spaceof theseconnections.We havealreadydiscussedin section5.4.3,at somelength, the
propertiesof thisspace.Thisallows us to be more briefhere,andwe will concentrateon the special
featuresfor the casein hand.

Canonical quantization. Our aim hereis to give amore explicit descriptionof the Hilbert space
of Chern—Simonstheory [6.9—6.14].For this purposeit is most convenientto adoptthe canonical
approach,in which we take the three-manifoldto be of the form M = I x R, for somegenusg
surfaceI. The coordinatealongthe real line R canbe regardedas time. Quantizationon this space
will thenproducethe associatedHilbert spaceN~,in which the statesof the systemare, loosely
speaking,functionalson the spaceA1 of gaugefields on I.

Writing A,,, = (As, A0), whereA0 is the time componentof the gaugefield, the action (6.1) takes
the Gaussianform

S=_~_fdtf�’1tr(Ai~jAi_AoFii) (6.8)

allowing us to readoff the Poissonbracketsfor the system,

{A~(x),A~(y)}= (4it/k)e1~0”O(x —y) . (6.9)

In order to set up the canonical formalism for a secondorder system, one first introduces
canonicalmomentafor the fields, and thenusestheseto rewrite the original action in first order
form. The Poissonbracketsfor the canonically conjugatevariablescan then be readoff. In the
presentinstance,wealreadyhavea first ordersystem;thisprocedureis unnecessary,andthe Poisson
bracketstructureis immediatelyevident.
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We must now quantize these commutation relations, subject to the Gauss law constraint
(k/4ir)Ff1 = 0, which is enforcedby the multiplier field A0. At this point we have two op-
tions: we can either first quantizethe system,obtain the wave functions,and thenconstructthe
physicalHilbert spaceby imposingthe constraints;or we can first impose the constraints,and
thenquantizethe reducedphasespace.We will discussthe secondoption here (for a comparison
of the two approachesin the presentcontext cf. ref. [6.101). The constraintsurfaceis the set
of flat connectionsin A1. On this constraintsurfacethe first class constraints(k/4it )F,’~act by
gauge transformations,and the reducedphasespaceis the moduli spaceM = M (I, G) of flat
connectionson I.

We have alreadydiscussedmany propertiesof M in section 5.4.3; the most important one for
our presentpurposesis that M is a symplecticmanifold. A direct way of seeingthis is to note
thatA1 is an infinite dimensionalsymplecticmanifold [with symplecticstructuregiven by (6.9)],
and that M is a symplectic quotient of A1 with momentmapF,’~.As such M inherits a unique
symplectic structurefrom A1 by the Marsden—Weinsteinconstruction [6.15]. First reducing and
thenquantizingthus amountsto quantizingthe symplecticmanifoldM (I, G). Let usdigressbriefly
to understandwhat this means.

In general,whenonewishesto quantizea classicalsystem,the first stepis to definethe canonical
coordinatesq’ andmomentaPi. In a coordinaterepresentation,for example,the quantumHilbert
spaceis the spaceof squareintegrablefunctionsof the coordinatesq’. The operatorsci’ thenact as
multiplication operatorson the wave functions, producingthe c-numberq’, while the momentum
operatorsj

3, act by differentiation, j3’ 8/0q’. This procedureworkswheneverthe phasespaceN
of the classicalsystemis a cotangentbundle,N = T*Q, becausethenthereis a preferredseparation
of the spacevariablesinto coordinatesandmomenta.

Another representationwhich is often usedis the so-calledholomorphic (or coherentstate)
representation(in quantummechanicsthis is also known as the Bargmarinrepresentation).One
introducesthe variable a’ = p’ + iq’ and its complexconjugatea’ = p’ — iq’, i.e., one choosesan
identification betweenN = R2” andC~.Wave functionsare takento dependonly on a’. Thenthe
operatorsa’ actas multiplicationoperators,producingthe c-numbera’; this is in distinctionto the
coordinaterepresentation,wherethe a’ act asacombinationof multiplication anddifferentiation
operators.For N = R2n this representationis equivalentto the abovecoordinate(or Schrodinger)
representation,the unitary equivalencebeing provided by the so-called Bargmannkernel. The
advantageof the holomorphic representationis, however,that it is also availablewhen N is not
a cotangentbundle, provided that N admits a complex structurewhich is compatiblewith its
phasespace(symplectic)structurecv, or, in other words, if N is a Kãhler manifold. In that case,
the appropriategeneralizationof the aboveprescriptionis that the Hilbert spaceis the spaceof
holomorphic sectionsof a complex line bundleL (the prequantumline bundle) over N whose
curvature is the Kähler form cv. Since, as such, cv representsthe first Chern classof L, such a
bundleonly existsif cv is an integraltwo-form on N.

In general—ifneitherof theseadditionalstructures(cotangentbundle,Käbler form) isavailable—
thereis no canonicalway of cuttingthe phasespacevariablesin half to constructaquantumHilbert
space,andalthoughthissplitting can certainlyalsobe donein anon-canonicalway (in the parlance
of geometricquantizationthisis a choiceof polarization),the resultingquantumtheorywill depend
on such an (arbitrary) choice.

With this in mind let us now returnto our problemof quantizingM(I, G). For compactG, M
is compactas well, andcan thereforenot possiblybe acotangentbundle.Fortunatelyit turns out,
however,thata choiceof complexstructureJ on I equipsM with acomplexstructurecompatible
with its symplecticstructure,thusmaking it a Kãhlermanifold which we shalldenoteby Mj. This
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is a consequenceof the Narashiman—Seshadritheorem [6.16], which identifies moduli spacesof
flat vector bundleson Riemannsurfaceswith certainmoduli spacesof holomorphicvectorbundles.
We thushavethe holomorphicrepresentationatour disposalto quantizeM. The aboveintegrality
conditionon the symplecticform is equivalentto the requirementthatk in (6.9) bean integer,and
this is thereforeanotherway of deriving the quantizationcondition on k as a consistencycondition
for the quantumtheory. It now follows from either the generalargumentsof Quillen [6.17] or
the more explicit constructionof Pressleyand Segal [6.18, 6.14] that the prequantumline bundle
is a power (dependingon G and the Chern—Simonscouplingconstantk) of the determinantline
bundleassociatedwith the family of operators04 on I = Ej.

This then yields a Hilbert space7l~.,and it remainsto investigatethe residualquantization
ambiguityinherentin the choiceof complexstructureJ. Fromthe three-dimensionalpoint of view,
no a priori specificationof J was required,andonemight thereforehopeto be able to prove that
thereis a canonicalidentificationof Hilbert spacesN~and7~1~’,constructedfrom differentcomplex
structuresJ and J’ on I. Actually this may be a little too much to ask for, sincephysicalstates
correspondto raysin a Hilbert space,andthe correctphysicalrequirementshouldthereforebe that
at least the projectiveHubert spacescan be canonicallyidentified.

To seewhat this amountsto geometrically,imaginesmoothly(holomorphically)varyingJ. This
gives a family of Hubert spaceswhich can be regardedas forming a holomorphicvector bundle
over TeichmUller space,the spaceof complexstructureson I. The questionis then if this vector
bundlehasacanonicalprojectivelyflat connection.Having initially had the statusof aconjecture
for sometime, this questionhas in the meantimebeenansweredin the affirmative [6.11, 6.12].

It is here that contactis madewith the modulargeometryapproachto conformal field theory,
initiated by Friedan and Shenker [6.19] andaxiomatizedby Segal [6.20]. From this point of
view the Hilbert spacefl~of Chern—Simonstheory is nothing but the spaceof conformal blocks
of a conformal field theory on Ij, the energy—momentumtensor of the latter governing the
projectively flat parallel transport via the Knizhnik—Zamolodchikovequation [6.21]. It was this
observationby Witten, that the Hilbert spacesof Chern—Simonstheory provide a realization of
Segal’saxioms, which initially led to the discoveryof the relation betweenChern—Simonsgauge
theory and conformal field theory. In section 6.1.5 we will describea more pedestrianway to
understandthis relation,which doesnot requirea detailedknowledgeof conformal field theoryand
modulargeometry.

6.1.3. Evaluationof thepartition function
We would now like to establishsomeformal propertiesof the Chern—Simonspartition function.

Therewill bea little overlapherewith the materialpresentedin section8.4, althoughouremphasis
in the latter is on the calculationalaspects.

We wish to considerthe partition function in the large-k (i.e. semi-classical)approximation.
Sucha limit correspondsto consideringfluctuationsabout the stationarypointsof the action;these
arethe flat connections.Let us assumethat the moduli spaceis zero dimensional,i.e., consisting
of afinite numberof isolatedflat connections.In such a case,the partition function takesthe form
[6.2] Z = >~Z(A’),where eachZ(A’) is the one-loopcontributionto Z, evaluatedat the flat
connection Ai, labelled by i. In order to give an explicit expressionfor Z(A’), we first need to
quantizethe action.

Sincethe symmetryhere is of the standardYang—Mills variety, no unnecessarygymnasticsneed
to be performedin order to obtain the quantumaction. For the purposesof calculation,we first
decomposethe A field as A = A’ + ~ whereA’ is the background flat connection, and A~is the
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quantumfluctuation. We alsochoosethe backgroundcovariantgaugeD(A’) .A~= 0. The quantum
action is thengiven by

Sq = ~-~fd3x tre~”~(Aa0pAy+ ~AaAPAY)

+ fd3x tr[bD(A,). (A —A,) + ~D(A,) .D(A)c] , (6.10)

where ~, c are the ghosts and b is the multiplier field. Expanding (6.10) to secondorder in the

fluctuations(bearingin mind that ~, c,b arepurely quantumfields) we obtainthe quadraticaction

= fd3x tr(e A~DpA~+ ~ + ?D2c) , (6.11)
whereit is understoodthat the covariantderivativeis with respectto the backgroundflat connection

A’. This yields the following expression:

Z1 = ei~~’)det[—D2] det”2 [H(A’)] , (6.12)

whereD2 is the ghost operator,H(A’) is the first order operatorfor the At’, 4’ system,and I is
definedas the Chern—SimonsactionS without the factorof k. Our tasknow is to studythis ratio
of determinants.The subtletywhich arises (and which is describedin moredetail in section8.4)
is the fact thatdetH possessesa non-zerophase;otherexamplesof this situationcanbe found in
ref. [6.22]. We have

det”2 H(A’) = I der”2 H(A’ )I eu7r~~H(A1)(oL/4, (6.13)

where

77jg(41)(5) ~sign(A~)IA~I~ . (6.14)

Here, 77H(A)(s) is definedvia the eigenvaluesA~of the operatorH at the flat connectionA’ [6.23—
6.25]. In section8.4.3 we presentan explicit computationof this function; here,we shall content
ourselveswith generalarguments.The aim is to establishthe topological natureof the partition
function. At this point we havetwo quantities,the absolutevalue of the ratio of determinants,
and the phaseof detH. The former correspondsto the Ray—Singertorsion [6.26, 6.27, 6.1] and
is certainlymetric independent;we shalldenoteit by T,. The problemnow is to understandthe ‘1
phase.Appealingto the Atiyah—Patodi—Singer[6.23] index theoremwehavethe result

~[ii~~.+~(O)— 77H(o)(O)l = (c~/it)I(A’) , (6.15)

wherec,, is the quadraticCasimir in the adjoint representation,and is an integer.Using this, we
can write the partition function as

Z = ~ ~ e’~”~’~~T, . (6.16)

The first thing to noticeis that the integercouplingconstantk hasbeenshiftedby an amountc~
we shall not dwell on this issue here,but will say more aboutit in section!8.4. This phenomenon
was also noticedby explicit calculationin ref. [6.28]. Our main concern’ now is to understand
the phasefactor 77)’~(0)(0). It is the 77-functionof the operatorH coupledto the trivial connection
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A = 0 and also coupledto the metric which was used in effecting the gaugefixing; it is thus
metric dependent.Since our main goal is to maintaingeneral covariance,we may wonderif it
is possible to somehow modify this phaseinto a metric independentform. This is indeed the
case,and again accordingto the Atiyah—Patodi—Singertheorem,we know that the combination
~71grav+ (l/24it)I(g) is a topological invariant, modulo a subtletywhich we now discuss.In the
above,77H(o)(O) = dim(G)77grav,with lgrav beingthe purely gravitational77-function, and

1(g) = ~—ftr(cvdcv + 4w3) , (6.17)

where cv is the Levi—Civita spin connection. The problem is that to define 1(g) as a number
requiresone to choosea particulartrivialization of the tangentbundleof M. Although this canbe
done,different (i.e. homotopicallyinequivalent) trivializations will yield different valuesfor 1(g).
The rule, however,is that two trivializationswhich differ by a relativetwist of s units, are related
by 1(g) —~ 1(g) + 2its. This is similar to the occurrenceof the winding numberin thevariationof
the Chern—Simonsaction in (6.3). We can now considerthe final form for the partition function,

Z = exp{imdim(G)[~77grav+(l/24ir)I(g)]}~e +C)J(A)T, . (6.18)

To interpret this result, we define a framed manifold as follows [6.2, 6.29—6.36]: A framed
manifold is one that is presentedwith ahomotopy classof trivializations of the tangentbundle.
Given this definition, we now see that the Chern—Simonspartition function providesus with a
topological invariant of framed three-manifolds,together with a prescriptionfor how it behaves
under a changein framing, viz., Z —~ Z e21n1~h1mG/24.

We remark here that we have implicitly assumedthat k > 0 in the above analysis. Since the
77-function is odd under a sign changein k, it is straightforwardto establishthe generalk result,
for details see section8.4. We should also notethat therewill, in general,be situations wherethe
above analysisis incomplete.We haveassumedthat the moduli spaceconsistsof isolatedpoints;
when the dimensionof moduli spaceis non-zero,the discretesum given above will be replaced
by an integral over moduli space.Furthermore,one also needsto be aware that situations may
arisewherethe ghostor multiplier fields possesszero modes,i.e., wherereducibleconnectionsare
present;more care is againrequiredto dealproperly with such cases.

We concludethissectionwith a discussionof an importantfeatureof the partition function, that
is, its behaviorwith respectto the connectedsum of manifolds [6.2]. This is a conceptalready
introducedin section 3.8.6.

Let M be the connectedsum of M
1 and M2, joined alonga two-sphereS

2 (seesection 5.4.4).
Now, accordingto the tenetsof quantumfield theory, if we considerour action to be definedon
a manifold with a single boundarycomponent,then the resultingpath integral must be performed
with respectto field variablestaking prescribedvalueson the boundary.Evaluatingthe pathintegral
yields an object which is a functional of theseboundarydata; this object is a wave function or,
in other words, a vector in the Hilbert spaceof the theory associatedwith the boundary.As an
aside,if, for example,we chooseamanifold with two disjoint boundarycomponents,we obtainthe
propagationamplitudebetweenthe statesdefinedon the two boundaries.

Resortingto a little visual gymnastics,oneseesthat the path integralover M
1 with boundaryS

2
yields a vector in the S2 Hilbert space;let uscall thisstatew. Correspondingly,the integralover the
otherhalf of the manifold, M

2 with boundary~2 yields avector ~ in the dualvector space.The
entirepath integralthengives the innerproductbetweenthesetwo states,Z(M) = (w, ~). At this
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point, we know neitherw nor ~. However, let us repeatthis performanceby replacingM with S3.
In this way we find Z (S3) = (v, ~),wherev, 13 correspondto the vectorsobtainedby integrating
over the two halvesof 53~Again, neitherv nor ‘13 is known. We can now recall our discussionin
section6.1.2 aboutthenatureof the Hilbert spacefor Chern—Simonstheory;and it is easyto show
that for the caseof S2 this Hilbert spaceis one-dimensional.In the languageof that section,the
moduli spaceA

1 associatedwith the Riemannsphereis a single point, and the line bundleL is
the complexplane. As such, anytwo vectorsenjoy the remarkableproperty that they are linearly
dependent!We have w = av and ~ = b?5, for complexconstantsa and b. Usingthis information,
we deducethat [6.2]

Z(M)Z(S
3) = (w,~)(v,i3) = (~,bi5) (v,b’iü) = Z(M

1)Z(M2) . (6.19)

Thisproperty, that the partition functionbehavesmultiplicatively with respectto connectedsums,
can also be usedto establishasimple result when M containsa trivial link. Considerr unlinked
andunknottedcircles C, i = 1, ..., r in S

3. By iterating the aboveargument,andavoiding to cut
anyof the knots, we find that

Z(S3Cj,...,C~) .
1—1.Z(5

3C,) (620)
Z(S3) — 1,1 Z(S3)

The abovetwo formulaearewell knownto knot theorists;however,it is pleasingto seehow simply
they arisefrom the path integralpoint of view.

6.1.4. Evaluationofthe observables:knot invariants
The central idea in Chern—Simonstheory is that it offers a meansof computing invariants of

knot and link configurationson an arbitrarythree-manifold.Now, within knot theoryan important
role is played by the so-calledskein relations[6.29—6.35];the main propertyof such a relation is
that it providesa way of relating a particular knot (or link) configuration,to a simpler one. The
first step is to picture the link projectedto the plane;as such, there will be a finite numberof
“crossings”, that is, pointsat which two projectedlines meet.One must thendistinguishbetween
an over-crossing,an under-crossing,anda zero-crossing.The skein relationallows us to reducethe
numberof crossings;andby iteration, this relation essentiallyallows us to computethe invariant
of agiven link.

Confident of the visualization powersof the reader,we proceedto describethis construction
in the simplestcase;we considerS3 with gaugegroup SU(n), andconsidera link L with all the
componentWilson lines lying in the fundamentalrepresentation[6.2]. Let us focusour attention
on aparticularcrossingwheretwo Wilson lines meet. We imagineencompassingthis crossingwith
a two-sphere,and removing it from S3 the cut surfacenow consistsof two pieces.One of these,
denotedBR, is a three-ball with boundary~2 on which thereare four markedpoints; thesepoints
are connectedon the interior of BR by the two Wilson lines. The remainingpart of the surfaceis
againathree-ball,denotedBL, with an S2 boundarycontainingfour markedpoints; in this casethe
markedpointsareconnectedon the interior by the residual(complicated)partof the link. It may
be helpful to bearin mind the two-dimensionalanalogueof thispicture: considerthe samecrossing
on a two-sphere;we then encompassthis with a circle S’, which is the boundaryof a two-ball
(equivalently,a two-disc).

Having conqueredthe visual problem, we can now proceed.As before, the path integralson
BL,BR determinevectorsx~ci’ in the Hilbert space.We thus have Z(53L) = (x~ci’). As before,
we know neitherx nor ci’; indeed,if thesewere directly computable,the presentgyrationswould
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be superfluous.Now, in this case,the Hilbert spaceis that associatedwith the two-spherecon-
taining four markedpoints in the fundamentalrepresentation.The dimensionof this spacecan
be determinedfrom group propertiesto be two. Thus, any threevectorsobey a relation of linear
dependence;this is calledthe skein relation. We have

acu+flw,+yy,2=0, (6.21)

where ci’,, ci’~are any two other vectors in the Hilbert space,and a, /3, y are complexnumbers.
Taking the innerproductof (6.21) with x~we find

a(x,y,) + Il(x,ci’,) + Y(X,ci’2) = 0 . (6.22)

We can rewrite the aboveequationmore suggestively,as follows:

aZ(S
3L~)+ /JZ(S3L

0)+ yZ(S
3L_) = 0 , (6.23)

where we have introduced the notation L+,Lo,L_ correspondingto an over-crossing,a zero-
crossing,andan under-crossing.In order for such a relation to be of practical use, we need to
determinethe coefficientsa, /3, y; we shall mention two methodsfor doing this. The first resorts
to informationavailablefrom conformal field theory [6.37—6.39], while the secondmaintainsthe
three-dimensionalpoint of view [6.40, 6.41].

In the former, we usethe notion of the braiding (or half-monodromy) matrix [6.37]. Given
a configuration of two Wilson lines with an over-crossing(L+), we define an operatorB which,
acting on L~,producesthe configuration L

0. A repeatedapplicationthenproducesL_. Since, in
this instance,B actsin a two dimensionalspace,it hastwo eigenvalues,A, andA2. We cannow use
the fact thateverymatrix obeysits own characteristicequation(by the Cayley—Hamiltontheorem),
to write the relation

(X,[(B—Aj1)(B—A21)]yj) = (X,[B
2—B(A

1+A2) +A1A21]yi) = 0 . (6.24)

Thus,with the conventionthatByi = yl, andB
2yi = ci’2, we can now computethe coefficients in

the skein relation from the eigenvaluesof the braidingmatrix, which areknown [6.37—6.39].
It is perhapsusefulto considerexplicitly the caseof SU(2), wherethe fundamentalrepresentation

is the spin j = ~ representation.Giventhe fact that

= leO , (6.25)

we can define the eigenvaluesof B via the conformal weightsof the fields which transformas the
j = ~, 0, 1 representations.Notingthat theconformalweightof a spinI field is h~= I (I + 1)/ (k + 2)
(see,e.g., ref. [6.42]) we find the eigenvalues

2, = — e_~~r2hht/2~’~I)= — e~~n/2~~+2)20 = + e_ (2h,
12,’,0) = e

3~’2~1’~2~. (6.26)

The relative plus and minus sign in the above eigenvaluesarises due to the occurrenceof the
representation,either symmetricallyor anti-symmetrically,in the decomposition(6.25). Equation
(6.24) now takesthe form (uponmultiplication by q”4 = e1~~I2~2);we note for laterusethat q

is called the monodromyparameter)

q”4Z(S3L÷)— q’/4Z(S3L_) = (q”2 — q”2)Z(S3Lo) . (6.27)

It should be pointed out that the coefficients in the skein relation dependupon the “framing of
knots”, a conceptwhich we shalldefine shortly. Suffice it to sayat this point that the form given
abovecorrespondsto what is known as “vertical framing” [6.2, 6.43].
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The alternativethree-dimensionalviewpoint allows one to computethe skein coefficientsin a
large-k approximation;nevertheless,geometricallyit is quite elegant[6.40, 6.41].

The basic idea is to consideran arbitraryWilson line with definingcontourC; we thenperform
an infinitesimal deformationof C. It is well known, see, for example, ref. [6.44], that such a
variation producesa factor of F,,,. (x), where x is the point on C at which the deformationis
implemented.Thus,we have

U(x,,x2) —~ U(x,,x)I”F,,,.(x)U(x,x2) , (6.28)

whereU(x,y) is a Wilson line operator,and is definedas in (6.5),with respectto an opencontour
C; I” is the infinitesimal areaelementcenteredat x, andthereis no summationhereoverp, ii.

Onenow usesthe fact that the equationof motion for the theory is proportionalto the curvature
tensor;this allows us to replaceF,,,. in (6.28) by the derivative of the actionwith respectto the
gaugepotential.More care is requiredwhenworking with the fully gaugefixed action;however,it
canbe shownthat theseadditional termsdo not affect the analysis[6.45]. It is straightforwardto
establishthat

(F,,a,.O,02...)= Z_1~f dA eisc,,,.pOA~)(OIO2~~). (6.29)

Thus, the presenceof the curvaturetensorhasbeen replacedby a derivative, which now acts
on the remainingobservables.This is the key point, as suchan effect is computable.For example,
we can now evaluatethe expectationvalue of the deformedWilson line in (6.28). By a similar
argument,onecan relatean over-crossingto an under-crossing;that is, performingan infinitesimal
deformationof an L+ configurationwill yield an L Wilson line, together with an infinitesimal
correction.Thiscorrectionis thencomputablewith the aboveidentity (6.29). In otherwords,such
a procedureprovidesa geometricalmeansof obtainingthe skein relation. We should remark that,
sincewe aredealingwith infinitesimal deformations,this computationyields the 0(1/k) term in
the skeincoefficients.In practice,the computationrelieson the existenceof a Fierz identity for the
generatorsof the Lie algebra;such identitiesalwaysexist, although in manycasestheir form may
be quite unwieldy.

We shouldpointout a subtletyin definingWilson line expectationvalues; this is relatedto what
is calledthe framing of knots, which we now define [6.2, 6.29—6.35].Givena knot with defining
contourC, one choosesanormal vector field along C; this producesadeformedcontourC’. One
canthenconsideran infinitesimal ribbonbetweenthe two pathsC andC’; this is called the framing
of the knot C. One can now define, for example, the self-linking numberof aknot as the linking
numberbetweenC and C’. However, such a definition clearly depends on the topological classof
the normal vector field. In order to keeptrackof this situation,we require a rule for how a given
knot expectationvalue changesundera changein framing. Indeedthis is possible [6.2], andone
should recall a similar featureemergingin our discussionof the framing of the three-manifoldin
section6.1.3.

We concludethis sectionwith our promiseto specify more preciselythe meaningof the phrase
“effectively computable”,which was introducedin section6.1.1.In the above,we haveestablished
somebasicpropertiesof the partition function whenM = S

3, andobservablesdefinedthereon.In
order to generalizetheseresultsto an arbitrarythree-manifold,oneintroducesthe notion of surgery.
The general idea is the following: we beginwith an arbitrarythree-manifoldM, togetherwith an
embeddedcircle C. The circle is then thickenedto a solid torus,which is theli excisedfrom M. As
is now familiar, wehavetwo manifolds,eachwith aboundary;we performa 4iffeomorphismon the
boundaryof the solid torus,andthen re-unitethe two manifolds.This givesa newthree-manifold
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i~f. It can be shownthat an arbitraryM can, in this way, be reducedto S3 sucha procedureis
called surgery.

6.1.5. Connectionswith conformalfield theory
We havealreadyseen, in asomewhatabstractform, via the projectivelyflat bundlecondition of

section6.1.2, the connectionbetweenChern—Simonstheoryand two-dimensionalconformal field
theory.We shall now briefly describehow more explicit contactcanbe made.We treatthe simplest
of examplesandtake the manifoldM to be M = D x ER, whereD is the two-dimensionaldisc; we
arefollowing herethe treatmentof ref. [6.9].

Recall (6.8), which is written for a manifoldof the form M = I x ER as

s = —~-_fdtf�”tr(Ai~jAj_AoFij) . (6.30)

In the presentcasethe boundaryof M is a cylinder OM = 5’ x ER, andwe must be careful with
boundarycontributionsto the action. It is easyto seethatwith the choiceA

0 = 0 on the boundary,
(6.8) is againthe actionof interest.Integratingover A0 enforcesthe constraintF,~= 0. This can
be solvedas follows: A, = —8,g~g’, where g is a single-valuedfunction g : D x ER —~ G. The
single-valuednessof g is possibledue to the fact that the disc is simply connected.

If we now changevariablesA~—* g (with unit Jacobian),andsimply write the action (6.30) in
termsof g we find

S = ~— f tr(g’0~gg’01g)d4’dt + ~-~ftr(g_1 dg)
3 . (6.31)

Thi,f M

where 4) is the coordinateon 5t~One can immediately recognizethis as being a WZW model,
written in chiral coordinates[6.7]. In (6.31), the kinetic term appearsin an off-diagonal form;
thisis the usualsituationwhenonesusescomplexcoordinateson the plane,for example.However,
hereone obtainsa chiral WZW model in terms of the real coordinates4), t on 51 x ER. We thus
see that, alreadyat this level, we are making explicit contactwith conformal field theory via the
WZW model. The fact that the chiral form appearsin terms of real coordinates4), t, ratherthan
the complexcombinationsz = t + i4), ~ = t — i4’, hasan importantconsequencefor the symmetry
of the model, as we now discuss.

The symmetryof this actionis given by [6.2, 6.9]

g(4),t) —* h(4))gh(t) . (6.32)

It shouldbe pointed out that the abovesymmetryis specifiedby the requirementthat it preserves
the chosenboundaryconditions.The invarianceunderh (t) correspondsto a local gaugesymmetry
which needsto be fixed; the remaininginvariance,under h(4)), is a global symmetry,andthusthe
Hilbert spaceof the theorywill carry representationsof this group.

We can now proceedwith the canonicalquantizationof the model; the solution to this problem
is alreadywell known [6.7], andit sufficesto makea few remarks.Givenan actionof the form

S=fdtLi(~)~~- , (6.33)

wherec1’ arethe field variables,onecan considerits variation as follows:

os= fdtw,~O~’dcI.J/dt. (6.34)
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Here w,3 = 8,L~— 0~L,.In fact cv can now be interpreted as the symplectic form, and the Poisson
bracketsof the systemare definedvia

[X,Y]PB = (6.35)

wherecv’] is the inversematrix. In the presentcase,asimilar constructioncanbe set up, andone

cancheck that the variation of the chiral WZW model is given by
c5S = ~- fd4)dt tr (g_bog~g_1~) . (6.36)

From here, one constructs the currents

4 = ~ , (6.37)

anda little work establishesthat their Poissonbracketstructureis preciselythe defining relations
for a Ka~—Moodyalgebra,with acentralextensionproportionalto the Chern—Simonscouplingk.

An importantremark is the following: The WZW model written in complexcoordinateshasan
off-diagonal kinetic term of the form

f
The correspondingsymmetryis given by g(z, ±)—~ Q(z)g(z,±)Q’(±),and this leads to the result
that thereare two commutingKaë—Moody algebras,given by the currents[6.7] J~-~ k(8~g ) g’,
J~-~k(0gg~)g. The fact that the Chern—Simons action leadsto a chiral WZW model with action
andsymmetrygiven by (6.31), (6.32) means that there is a singleKa~—Moodyalgebraassociated
with the model,correspondingto h(4)).

6.1.6. 2 + 1 gravity asa Chern—Simonstheory
We will now describe yet another important application of Chern—Simons theory. It has oft

beenwonderedif quantumgravity could be endowedwith a gaugetheory interpretation,see, for
example, ref. [6.46] and references therein. The fields of interest here are the vierbein and the
spin connection,and thebasic idea is that thesewould combineto form a gaugefield for the non-
compactPoincarégroup ISO(d — 1, 1), wherethe symbol I refersto the additionof the translations
to the Lorentz group SO (d — 1, 1). The spin connection could play the role of the gauge field for
the Lorentz group, while the vierbein takes careof the translations.However, in addition to a
descriptionin termsof ahypotheticalgaugefield, one also requiresan actionwhich will describe
the correspondingdynamics of the system (and furthermore,thesedynamicsshould be thoseof
generalrelativity).

Ratherthandwell on histories, let usproceedanddescribehow 2 + 1 dimensionalgravity (with
the usualEinstein—Hilbertaction) canbe re-interpretedasa gaugetheory,in which the gaugefield
actionis simply the Chern—Simonsactionfor the Poincarégroup [6.3, 6.4]. Therehavealsobeen
many previousstudiesof 2 + 1 dimensionalgravity, as a more tractablealternativeto the 3 + 1
dimensional theory [6.47].

Let M be 2 + 1 Lorentzianspace—time;the initial field contentis given by the dreibein e’
2 and

the spin connection cv,”b, where tangent space indices are i, j, k and Lorentz indices are a,b, c.
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Considernow the Einstein—Hubertactionwritten in termsof thesefields,

S = r~1A�abce~(8Jw— 0kw~c+ [wj,wk]bc) . (6.38)

The aim is to show how this actionmay be expressedin Chern—Simonsform. To this effect, let
us reconsiderour original action (6.1). Writing A = A’~T’~in a basis T” of the Lie algebra, the
quadraticpart of (6.1) becomes

Squad~fdab(Aa dAb) , (6.39)

wheredab = tr (T~Tb). Previously,we chosea specific normalizationfor this trace in the funda-
mentalrepresentation.However, more generally,dab is an ad-invariantquadraticform on the Lie
algebra.We want this quadraticform to be non-degenerate,in the sensethat all componentsof the
gaugefield possessa kinetic term. For semi-simplegroups,a non-degeneratemetric alwaysexists,
namely, the Cartan—Killing metric,which is positivedefinite for compactG. The novelty of 2 + 1
dimensionsis that a non-degeneratemetric exists for the group ISO(2,1) (this is not the casein
otherdimensions),althoughISO(2, 1) is not semi-simple.

Let usdenotethe Lorentzgeneratorsby Jab, and the translationsby Pa. The metric of interestis
thenspecifiedby

(Ja,Ph) ôah ‘ (Ja,j
6> = (Pa,Pb) = 0 , (6.40)

where we have introduced, for convenience,the combination ja ~fabcJb,,,The commutation

relationsof ISO(2, 1) are now given by
[Ja,Jbl = ~abc~~’ , [Ja,Pb] = fabcPC , [Pa,Pb] = 0 , (6.41)

whereit is importantto realizethat indicesare raisedand loweredwith the Lorentz metric jab.

We introducethe following gaugefield
A, = ej’~Pa+ Wj’~Ja , (6.42)

where(01a = .~fabcW~hC.A simpleexercisewill establishthat the Chern—Simonsaction (6.1),written
in termsof this gaugefield, andwith this choiceof Cartan—Killing metric, takesthe form

scs = f cl~ke,a(0jcvka— Okcvia + �abcWjbWkC) . (6.43)

Our achievementsthus far lie at the level of the action; we must now examinethe symmetries
of the theory.As we alreadyknow, the Chern—Simonsactionis invariant under infinitesimalgauge
transformations;in the caseunder studythereare no large gaugetransformations,due to the fact
that it3 (ISO(2,1)) = 0, hencethe couplingconstantis not necessarilyquantized.

Let usconsideran infinitesimalgaugetransformationÔÁ, = —D, u, wherethe gaugeparameteris
decomposedas u = P~~Pa+ raJa. This leadsto the componenttransformations

= _8~~a— �“~e,brC — fabcW,bpC . öcv,cz = _0,ra — �abccvi6rc . (6.44)

We require that thesetransformationsare equivalentto the usual onespresentin gravity theory,
that is, local Lorentz transformationsanddiffeomorphisms.The parameter1a designatesthe local
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Lorentztransformation,andaglanceat (6.44) showsthat the standardformulaeareobtainedhere.
The remainingquestionis the issueof diffeomorphisminvariance;presumablythis is relatedto the
pa parameter.However,anotherglanceat (6.44) will establishthe fact that the correspondenceis
not complete.

Consideradiffeomorphismgeneratedby avectorfield —v’, then as usualthe transformationof
the dreibein andspin connectionare obtainedby taking the Lie derivativealongthis vectorfield.
For the dreibeinwe have

= _v~~(0,,,e,’~— O~ek”)— 8, (v~~eka)
= ~v’~(8kcv,” — O~cvk”) — o,(Vkwk~~), (6.45)

whereD, is the covariantderivativewith respectto the spin connectioncv. The aim is to studythe

differencebetween(6.44) and (6.45). Letting p” = v”~ek”,we find that

— ~e,a = —v”(Dke,’~ — D,ek”) + �“~v”cvkbe~C. (6.46)

However, we now see that the first term on the right hand side of (6.46) vanishesby the cv
equationof motion, D,e~”— Die,” = 0, while the secondterm correspondsto a local Lorentz
transformationwith parameterx’~= vkcvka. Thusour final result is that the gaugetransformations
of theChern—Simonstheory (6.44) are equivalentto local Lorentzanddiffeomorphisminvariance
(6.45), on-shell.

The above identification of 2 + 1 gravity as a Chern—Simonsgaugetheory with gaugegroup
ISO(2,1) hasremarkableconsequencesfor the solution of the model [6.48, 6.49]. We can, for
example,proceedwith the canonicalquantizationofthe theory,alonglinessimilar to 6.1.2.Further-
more,the conceptualaspectsof adiffeomorphisminvariant problemreceivea new interpretationin
gaugefield terms;andpracticalcalculationsobtaina simplicity concomitantwith thisinterpretation.

Further reading
Someof theearlyreferencesin whichtheChern—Simonstermwasconsideredin variousothercon-

texts arerefs. [6.50—6.57].Papersdealing with the formalaspectsof the theoryandits quantization
are refs. [6.58—6.78]andexplicit computationsof observablescan be found in refs. [6.79—6.96].
The conformal field theory aspectshave beenstudiedby the authorsof rafs. [6.97—6.113],and
the quantumgroup structureinherentin Chern—Simonstheoryhasbeeninvestigatedin refs. [6.43,
6.80, 6.114]. The Chern—Simons interpretation of 2 + 1 dimensionalgravity, andextensionsthereof,
hasreceivedfurther attentionin refs. [6.115—6.131].

6.2. BF theories

BF theories are Schwarz type topological gauge theorieswith classicalaction

S~(n,p)=fBpdAn_p_i (6.47)

in the Abeliancase,and

S~(n)=ftrBn_2F4 (6.48)
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in the non-Abeliancase.M is a closed orientable n-dimensional manifold, and in (6.47) B and
A are differential forms (possibly taking values in a flat vector bundle), the subscript indicating
their rank, while in (6.48) F4 is the curvatureof some flat principal G-bundle over M, with
B e Q”

2(M,g). Theseactionswere introduced in refs. [6.132] and [6.122, 6.133], wherethey
were analyzed from the canonical and covariant (path integral) point of view, respectively. They
havealsobeensuggestedindependentlyin refs. [6.134,6.135].

At first sight the theoriesdescribedby the aboveactions (the first linear and the secondbarely
non-linear)mayappearto be rathertrivial anduninteresting,but, somewhatsurprisingly,quite the
oppositeturns out to be the case,and we will in the following sectionssketch some of the many
things that canbe donewith, andlearnedfrom, BF theories.

Quantizationof the Abelian modelsis quite straightforward,the quantumactiontaking the form

Sq(n,p) = S~(n,p)+ {Q,yi(n,p)} , (6.49)

whereQ is a metric independentoff-shell nilpotent BRST operator.From the generalarguments
of section 2 it then follows that the partition function Z (n,p) is a topological invariant of M.
Schwarzhasshowna long time ago [6.1] that this invariant is relatedto the Ray—Singertorsion
TM [6.26], and we can use this observation in either of two ways. On the one hand, the BRST
approachprovidesus with a formal proof of the metric independenceof TM. On the otherhand
we can,more profitably, usethisknown propertyof the Ray—Singertorsionto prove rigorously the
topologicalnatureof AbelianBF theories,if we definethe determinantsappearingin the evaluation
of Z(n,p), e.g., via c-functionregularization.TM hasa numberof other interestingproperties,and
it is temptingto try to establishthesefrom the field theorypoint of view. As an illustration of how
this canbe done,we show that triviality of T(M) in even dimensions, i.e., T(M) = 1, follows
from asimplescaleinvarianceof the quantumaction (6.49) [6.122].

As in Chern—Simonstheory, the partition function is not the only observableof interest, and
we will show in section6.2.2 that the analogsof the Chern—SimonsWilson loops, namelyWilson
“surfaces” associatedwith A and B, determinelinking and intersectionnumbersof manifolds in
anydimension [6.122,6.136, 6.1371.

We then turn to the non-Abelianmodelsdescribedby the action (6.48). Quantizationof these
modelsis complicatedby the fact that—in morethanthreedimensions—theyhavea string of on-
shell reduciblesymmetries,the samenon-Abelianp-form symmetrieswe havealreadyencountered
in the context of super-BFtheoriesin section5.4. In contrastto what we achievedthere,here it
will not be possible to constructa quantumaction with an off-shell nilpotent operator.It is of
coursepossible to constructa BRST invariantquantumactionwith an on-shell nilpotent BRST
symmetry(this is guaranteedby the BV algorithm),but neitherwill the quantumactiondiffer from
the classicalactionby a BRST commutator,nor will the BRST operatorbe metric independent.
Thisthencastsseriousdoubtson the topologicalnatureof thesemodels,andmore generallyon the
belief that “reasonable”metric independentclassicalactionslead to topologicalfield theories.It is
thereforegratifying to see that metric independenceof the theory can neverthelessbe established
[6.1381,althoughoneneedsto work alittle bit harderin the presenceof the abovecomplications.

After somepreliminaryremarkson the classicalaction(6.48) (concerningfor instancetherelation
betweenChern—SimonsandBF theory in threedimensions)we sketch the argumentsleadingto the
aboveconclusion.But wishingnot to burdenthis sectionwith somewhatmore technicalissues,we
refer to refs. [6.139] and [6.138] for the detailsof the constructionof the quantumactionand the
proofof metric independence,respectively.

Thereare many thingsthat canbe done with non-AbelianBF theories,and in the following we
sketchsomeof these.For instance,we show that (6.48) can be regardedas a zero couplinglimit
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of Yang—Mills theory, and how BF theories in turn provide us with a complete non-perturbative
Nicolai mapfor Yang—Mills theoryon anyRiemannsurface.Moreover,BF systemshaveaNicolai
map in any dimension(this somehowbeing the commonlink amongall known topological field
theoriesapartfrom Chern—Simonstheory). This Nicolai map reducesthe partition function to an
integral over the moduli space of flat connections, with measure given by the Ray—Singer torsion
[6.133]. We show this explicitly in two and threedimensions,andsupport the simple argument
(somewhatcavalierin the handlingof zero modes)by introducing a BRS1T methodfor keeping
track of the zero mode integrals, i.e., the integralsover the collective coordinatesof the moduli
space. Returning to two dimensions,we take this opportunity to explain the relation between
PSL(2, ER) BF theory (and its Witten type counterpart—the topological gravity model of section
7) andHitchin’s self-duality equationson a Riemannsurface[6.140]. We beginwith a review of
the Hitchin equations,andsummarizethoseresults of ref. [6.140] which are relevantfor us here
(section6.2.6). We thenprovidesomemore information (beyondthat containedin section5.4.3)
on the moduli spaceof flat PSL(2,ER) connections(section6.2.7),and, armedwith that, investigate
the corresponding BF theory (section6.2.8). Finally, we draw thesethreadstogetherandexplain
the relation between the two sets of equations, as well as some of its implications.

6.2.1. QuantizationofAbelian BF theories

The action (6.47) has the (reducible) Abelian gauge symmetries

B,, —p B,, + dA,,_, , ~ —~ A~_,,1+ dA’~_~..2. (6.50)

Gauge fixing these can be achieved via straightforward (repeated) application of the Faddeev—
Popov trick, keepingin mind the extraghoststhat appearin the quantizationof reducibletheories.
Additionally (6.47) is invariant underthe shifts

B,, —~ B~+ .1’,, , ~ —~ A~.,,..,+ i~,’_~_,, (6.51)

where 1’ andF’ are harmonicforms. These zero modesymmetriescaneasilybe dealtwith (we will
explainthis below), the net effect beingto gaugethe harmonicpiecesof all the fields in the theory
(A, B, ghosts,multipliers, anti-ghosts)to zero.This reducesthe partition function to an integral
over thecoexactpiecesof the fields, the exactpieceshavingbeentakencareof by the gaugefixing
of thesymmetry (6.50),and the harmonicpieceshavingobedientlydroppedout upon gaugefixing
(6.51).

The spaceof solutions to the equationsof motion ~ = dB~ = 0 modulo the gauge
symmetries(6.50) is the finite dimensionalvectorspace.A( = H~(M) ~ H”~’ (M). If M is of the
form M = I x ER, Ii is even dimensional and naturally a symplectic vector space, as behoves a phase
space.If onemodsout furtherby the harmonicshift symmetry (6.51), the reducedphasespaceis
a point. The generalcovarianceof thetheory is reflectedin the fact that, on shell, diffeomorphisms
are equivalentto gaugetransformations.The explicit formulaecanbe found—for themoregeneral
case of non-Abelian BF theories—in section 6.2.3, eq. (6.73).

Let us start by explaining how the harmonic modes can be eliminated, so that we will henceforth
not have to worry about them. The approach we choose relies on a straightforward application of the
Faddeev—Popov procedure, developed for this purpose in refs. [6.141—6.1 43~]. Recent applications
can be found in refs. [6.144, 6.145, 6.122].

The analogy with ordinary gauge invariance is of course, that in QED(say)the part of the vector
potential A which lies in the gauge direction does not enter into the action and is the cause of
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the problemsassociatedwith defining the partition function. This is preciselythe situationwe are
confrontedwith in the presenceof zero modes.Using the Hodge decompositionof a p-form,

B~= öz~1 + dfl~_1+ yp , (6.52)

where y~is harmonic, we can readoff what the appropriategaugefixing should be. When the
action is invariant under B1, —~ B~+ dA~_1this meansthat /J~—~does not appear.Gaugefixing
thenamountsto projecting/Ji out by meansof aLagrangemultiplier enforcinga deltafunction
constrainton B in the pathintegral.Thus,one addsa term to the actionwhich doespreciselythis,
f ir~,_id* B~,plus the correspondingghostterms.

Now the zero mode problemis posedas the invariance of the action under B~—p Bp + Ep,
whereI’,, is harmonic,which meansthat y~of (6.52) doesnot enterinto the action. Following the
previousrationalewe gaugefix by projectingout y~,i.e., by addinga term f I~* BA!, to the action,
where E is an arbitrary harmonicform. Let {y~,j = 1 b~= dim H~(M)} be an orthogonal
basisof harmonic p-forms, i.e., fM ~ * = Vô~k,where v = JM *1 is the volume of M, and
expandE = ny1. Then n

1 arethe multiplier fields, which comealongwith the ghostse’ andtheir
anti-ghostsë-’, satisfyingthe harmonicBRSTalgebra

{QhB
1,} = yje’ , {Qh,e.~}= 0 , {Qh,ëJ} = , {Q”,n’} 0 . (6.53)

Note that n-’,ë-’ ande~are constantreal numbers,not functionsof space—time,sinceH”(M) is a
finite dimensionalreal vectorspace.The term to be addedto the actionis then

{Qh,feJy~*B~}= eJfyj*B±vëJekôjk , (6.54)

which showsthat v is the Faddeev—Popovdeterminantin this case.Evenwithout invoking BRST
invariance,it is evidentthat the additionof (6.54) doesnot introduceanymetric dependenceinto
the partition function, since the vbp contributionfrom the secondterm cancelsagainstthe ~
contributionarising from the integral over c and the harmonicmodeof B in the first term. This
then gaugefixes the harmonicmodesto zero,and in the following it is understoodthat the zero
modesof all the otherfields appearingupon gaugefixing (6.50) havebeendealtwith in asimilar
way. We will from now on ignore the harmonicmodesandconcentrateon the gauge symmetry
(6.50).

In the three-dimensional model S~(3, 1) = f B~dA1 the gaugesymmetry is irreducible,and the
quantumaction is simply

Sq(3,l) = f BIdA1 +irod*Bi +ëod*dco+ir~d*Ai +ë~d*dc~, (6.55)

with the obvious BRST symmetry. Integration over the ghost fields yields det
2A

0 (A1, is the
Laplacian on p-forms), while integration over the remaining (B,A, ir0, ir~)systemrequiresmore
care. To evaluate the determinant one squares the first order operator (which diagonalizesit),
readsoff the determinant,and takesthe squareroot. In this way onefinds the contribution to be
det”

2 4~det”2z1
0, giving for thepartition function

Z(3,1) = det”
2A

1det
312A

0 . (6.56)

One maywonderat this point what hashappenedto the allegedmetric independenceof Z. After
all, the Laplaciansdependon the metric,sodo their spectraandtheir determinants.But, as it turns
out, this particular combinationof determinantsis indeedmetric independent,equalling~ the
inverseof the Ray—Singertorsion.



D. Birminghamet al., Topologicalfield theory 265

Givena fiat vectorbundleE overa Riemannianmanifold (M, g) (dimM = n), the Ray—Singer
torsion is definedby

TM(E,g) = fldet(_1)~2Ak . (6.57)

Here Ak is the Laplaceoperatoron k-formswith values in E, depending on the metric g of M.
det4k is its determinant,definedvia c-function regularization,andpossiblezero modesof Ak are
excludedby defining

~k(S) = ~~ft tr(e Pk) , (6.58)

wherePk = lim
1~e1

4k is the orthogonalprojectoronto the spaceH” (M) of harmonicmodes.
The mostremarkablepropertyof TM is that it is independentof the metric g. It was put forward

by Ray and Singer as an analytic analogof the Reidemeister—Franztorsion TM (for a review cf.
ref. [6.146]), defined in terms of the simplicial complex of a smoothtriangulation of M, but
independentof the latter. As suchTM is, like TM, an invariantof the manifoldM. Rayand Singer
showedthat TM has many more propertiesin commonwith TM, andconjecturedthat they are
in fact equal, TM = TM. The proofof this was suppliedsometime later by Cheeger[6.147] and
Muller [6.148].

In three dimensionsthe Ray—Singertorsion T(3) [we write T(n) for the torsion of some n-
manifold wheneverthereis no needto emphasizewhich particularmanifold wearetalkingabout] is
T(3) = det~”2 A~det42 det3”243. Now by Hodgeduality, *Ak = Afl_k*, wehavedet4k = det4n~k,

andthereforeT(3) = det~312A
0det~

2A
1,which showsthat, as announced,Z(3, 1) =

Onemorething worth noting aboutthe result (6.56) is that it allows us to readoff directly that
the theory hasno degreesof freedomin the field theoreticsense:we regard the inversesquareroot
of the scalarLaplacian,det~”

2A
0,as representingonebosonicdegreeof freedom,and (solely for

countingpurposes)treat the Laplacian
4k as if it actson dimQk (M) copiesof Q°(M); thenthe

degreesof freedomdisplayedby the partition function Z (3, 1) are —3 + 3 = 0. This is of course
true quite generally,andwe will comeback to this below, after havingobtainedan expressionfor
the partition function Z(n,p).

The other action available in three dimensions, S(3, 0) = f B
0dA2, is our first exampleof a

reducibletheory. The BY ghost triangle (see appendix A) tells us that the additional fields we
need are: a ghost—anti-ghost—multipliertriplet (C1, ~, ir1) for the gauge fixing condition on A2, a
ghost-for-ghost triplet (c0, ~, iro) for the gaugefixing of c1, andfinally an anti-ghost—multiplierpair
(cs, ir~)for the gaugefixing of the anti-ghost ë~. Here c~is the famousextraghost,characteristicof
reducible theories. The quantumaction is then

Sq(
3,O) = f (B

0dA2 + 7r1d*A2—~1d*dc1+ ir0d*c1 —ë0d*dc0+ ~r~d*ë1—c~d*ir1)

(6.59)

which leadsto the partition function Z (3,0) = T(3).
As our last example we consider the four-dimensionaltheory S(4,2). The ghost structureof

B2 is identical to that of A2 above, and one finds the partition function to be Z (4,2) =
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det~4A
2det”

2A
1 det~

2zl
0.As expected,the numberof degreesof freedomis 3 — 4 + 1 = 0.

And, comparingwith the Ray—Singertorsion, which in four dimensionsis

T(4) = det’
2 4, detA

2det
31243 det2 44 = det24

0det~
2A

1detA2

we find Z(4,2) = T(4)’/
4, which againestablishesthe topologicalnatureof the model.

It is worth mentioningat this point that thereis avery elegant(andquicker) way of arriving at
Z(n,p), directly from the classical action, without having to determinethe quantumaction. This
is Schwarz’smethodof resolvents[6.1], invented (prior to the discoveryandunderstandingof
the ghost-for-ghostmechanismin the BRST framework) to makesenseof the partition function in
what is now known as reducibletheories.A comparisonof this method with the BRST method,
within the contextof BF theories,canbe found in ref. [6.122].

The general result, obtainablevia either of the above methods,is that the contribution to
Z (n, p) from the ghost triangle of An _~,t is ZA = ~ det~4k +p +1’ while B~contributes

= ~ def’k ~ wherev~= (—1 )k+ ‘(2k + 1)74.Thus the partition function of the Abelian
BF theorywith classicalaction (6.47) is

n—p—i p
Z(n,p) = [ det~A~~~÷ifJdet~AP_k . (6.60)

j=0 k=0

Comparing(6.60)with the definition (6.57) of theRay—Singertorsion,we obtainthe generalresult

(—i)~’(n—2_I)/n

Z(n,p) = T(n) , for n odd ; Z(n,p) = T(n) “ , for n even
Moreover, it canbe readoff from (6.60) that the numberof degreesof freedomof S (n, p), n ~ 2,
is zero in general. In view of the aboverelationsthis can alternativelybe deducedmore directly
from the fact that the number N of determinants of “bosonic” Laplacians in T( n) is

N = ~()kk (~)= 0

The first equality follows from the definition (6.57), the second from the x-derivative of the
binomial formula

(x + y)fl = ~xkyn_k (~)
We havealreadymentionedabovethat in evendimensionsTM = 1. This follows from the relations
amongthe non-zerospectraof 4k implied by dA = Ad, or, more explicitly, dkAk = 4k+ i dk. Now
the path integralencodesagreatdetail of informationaboutdeterminantsandeigenvalues,andas
an illustration of the fact that it is also aware of the above relation we will now show how to derive
the triviality of TM in even dimensions (this is theorem 2.3 of ref. [6.26]) from a simple scale
invariance of the quantum action of Abelian BF theories.

For instance in two dimensions, it is easy to see that detf(A
1) = det

2 f (Ao), where f is some
functionof the Laplacian [e.g.,f (A) = A 1. This is seen by considering the quantum action

Sq(2,O) = f BOdA,+itod*Ai +ëod*dco
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The actionis invariant underthe following scalingof the fields: A —p f (A ) A, B —+ f —‘ (A~) B, and
f — (~,i,) iro. SinceZ cannotbe changedby this transformation,its Jacobianmustbe equalto

one. This yields the desired result.
In odddimensions,this proceduredoesnot give usany information.Let us, for instance,consider

the three-dimensionalexample (6.55). The transformationthat leavesthe actioninvariant is

A—~f(A1)A, B—~f’(A,)B , —~f’(A0)ir~, mo—~f(Ao)~~o

whosetotal Jacobianis identically one.It is, however,preciselythis extrainformationthatwe have
at ourdisposalin evendimensions,which allows us to provethe triviality of !the Ray—Singertorsion
in that case.In two dimensions,

T(M2) = det~
2AidetA

2= det~
2A,detA

0= 1

as aconsequenceof duality andthe aboveresult. Generalizingtheseconsiderations,onefinds that
anyfunction of the determinantof the Laplaceoperatoron rn-forms (wheredimM = n = 2m)
can be expressedin termsof the determinantsof the Laplaceoperatoracting on lower rank forms
as

detf(Am) = ffdet~’~
2f(Am_ji) - (6.61)

To prove this onescalesB,, by a factorf (A,,) in the full BRST-extendedquantumactionSq(n,p);
this maybecompensatedin the first termof theaction (which isjustthe classicalaction)by scaling
~ by fi (A~_~_,).All otherfields thatappearcanthenalsobe scaledin suchaway thatone
returnsto the original action. The productof determinantsobtainedin this way mustthereforebe
equalto one.This implies

1 ~

xdet~~ , (6.62)

wherewe havecollectedthe contributions from the fields coming from the B andA triangle on
the first andsecondline, respectively.For n odd, (6.62) is identically satisfiedbecauseof Hodge
duality, whereasfor n eventhe two setsof termsdo not cancel,but rather addup upon using
duality. Collectingall the termsone thenarrivesat (6.61). Now in evendimensionsn = 2m, the
Ray—Singertorsion is

T(M) = [J~ (_i)~q/2~ = det~I~rnmt2Am[fdetm(_~Aq

which is indeedequalto oneby (6.61).
Before leaving theseresultsand turning our attentionto observablesin the next section,we

mentionone moreinterestingpropertyof the Ray—Singertorsion (which againhasits counterpart
for the Reidemeister—Franztorsion),namelythat [6.26]

-r rX(M2)

IM
1xM2 =

if M2 is simply connected[herex (M2) is the Eulernumberof M2]. It should clearlybe possible
to derive this from thepathintegral point of view as well, but presentlywe do not know how to
do that.
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6.2.2. Observables in Abe/ian BF theories
So far we haverestrictedour attentionexclusivelyto the partition functionofAbelian BF theories.

But, as in othertopologicalfield theories,more generalobservablesarea rich sourceof topological
invariants. We have seenthat in Witten type theoriesobservablesare related to the ghostzero
mode sectorof the theory,and that correlationfunctionsof thesetypically computeintersection
numbersof moduli spacesassociatedwith the “space—time”manifoldM. In Chern—Simonsgauge
theoryon the otherhand, the fundamentalobservables(Wilson loops) havenothingto do with the
ghostsectorandcomputetopological informationassociatedmore directly with M itself (namely,
invariantsof knotsembeddedin M). This is a featuresharedby all otherSchwarztype topological
gaugetheories,andin particularBF theories.

We will now show, that in Abelian BF theorieson M = l~” correlation functions of “Wilson
surfaces”associatedwith A andB computelinking andintersectionnumbersof manifoldsembedded
in M. That this is possibleis alreadysuggestedby Polyakov’s observation[6.54] that expectation
values of Wilson loops in Abelian Chern—Simonstheory in three dimensionsare relatedto the
classicalGausslinking number of loops. BF theoriesnot only allow us to generalizethis to any
dimension;thereis also the addedbenefit in n = 3 that thereis no necessityof framingthe loops
(as in ref. [6.2]) or regularizingthe self-linking numberin someotherway [6.54]; sincewe have
two fields (A andB) insteadof just one, the questionof framing simply doesnot appearin our
calculation,which is thereforefinite andunambiguousat all stages.

In order to generalizethe linking numberL(y, y’) of two loops in three dimensionsto higher
dimensions,we reinterpretit as the intersection number of a disc D boundedby y with the loop
y’, which is definedas follows (cf. ref. [6.149] for more information): since the dimensionof D
is equalto the codimensionof y’, thesewill genericallyintersecttransversallyat isolatedpointsXk

(seesection4.5.2).Having chosenorientationson R~,D, andy’, oneassignsto eachXk the number
+ 1 or —1, dependingon whetherthe orientationof (D, y’) at Xk coincideswith that of R3 or not.
The intersectionnumberof D and y’ is thendefinedas I(D, y’) = ±1.

To havean integral representationfor I, weintroducethe de Rhamcurrent~ [6.149], Poincaré
dual to the embeddingof y’ into M = ~ (cf. section4.5.2).A~is a deltafunction two-form whose
sole purposeis to restrict an integral overM to one over y’, i.e., which satisfiesfM A~,’c~

1= ~,, c~i

for all one-formsai E Q
1 (M). This allows us to rewrite the intersectionnumberas

I(D,y’) = JAy, = ~±l (6.63)

(here the relative signs are takencare of by the functional propertiesof the delta function). We
alsoacceptthisas the definition of the linking numberof y andy”; this amountsto fixing an overall
sign in the definition of the latter.

It is now clear how to generalizethis to higher dimensions.We let OX and OX’ be disjoint,
compact,orientedp- and (n — p — 1)-dimensionalboundariesof orientedsubmanifoldsX andX’
of M = R~We alsointroducethe de RhamcurrentsA~and AE, with the properties

f a~, /Ao~aP , Jcxp+i 14~P+1 , (6.64)

with analogousdefinitions for X’. We now definethe linking numberof OX andOX’ by

L(OX~OX’):=JAo~~. (6.65)
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It is clear that this integral will only receivecontributions (±1)from pointswhere X and OX’
intersect.

At the level of de Rhamcurrents,the dualitybetweenhomologyandcohomologyis expressedby

dA.~= ()n_PAör , (6.66)

as caneasilybe verified from (6.64). It follows that L(OX,OX’) andL(OX’,OX) are relatedby

L(OX’,OX) = ()diml9ldimoE’+iL(OX,OXI) . (6.67)

Sincethis is aknownpropertyof the linking number, (6.67) is ausefulcheckon the consistencyof
our sign conventions.L is a topologicalinvariantin the sensethat it is invariantunderhomotopies
of the embeddingsof OX and OX’ into M = R’~.

Fromthe point of view of BF theory, the aboveset-upappearsvery naturally,becauseit allows
us to definethe metric independentand gaugeinvariantobservables(Wilson surfaces)expf~~B
andexp~ A. Sinceit is easilyseenthat the expectationvalueof eitherone of these[with respect
to the actionS(n,p) J is equalto 1, the simplestnon-trivial correlatorto consideris

(ex~(isJB) exp (iaf A)) = Jd[A] d[BJ exp[~(JBdA + /IJB + afA)] (6.68)

(since we arecomputinga correlatorof gaugeinvariant operators,we haveignoredgaugefixing and
ghosttermsin the above).Ouraim is now to showthat this correlationfunction indeedcomputes
L(OX,OX’), the preciserelationbeing

lo~(exP(i/JIB) exp (iafA)) = (—)~iaflL(OX,OX’) . (6.69)

By now, variousproofs of this haveappearedin the literature [6.122, 6.136,6.137], the simplest
[6.1221being to computedirectly the Gaussianintegral (6.68). We use the de Rhamcurrents
introducedaboveto rewrite the “action” appearingin (6.68) as

S = J(BdA + flA~jB+ aAo~’A), (6.70)

which showsthat AoE and~ play the role of sourcescoupledto the gaugefields B andA. The

equationsof motion following from (6.70) are

dA = ~ , dB = (—)1,A~~-

Pluggingthis back into (6.70) andmaking repeateduseof the identities (6.64), (6.66) onefinds
that the first andthird termscancel,leavinga/i (— )P f~Aôi’, which establishes(6.69).

By using forms with values in a fiat vector bundle,and an exterior derivative with respectto
a non-trivial fiat backgroundconnection,it is also possibleto define generalizedlinking numbers
[6.136, 6.137]. The extensionto manifoldswith boundaryis treatedin ref. [6.150].

6.2.3. Classical aspects of non-Abe/ian BF theories
In this andthe following sectionswe shall studyin somedetail the non-Ab~lianBF action (6.48).

In addition to the ordinary Yang—Mills gauge symmetry (with B transf~rmingin the adjoint
representation),theaction (6.48) has (for n � 3) the p-form symmetry

—* B~_
2+ dAA~3 (6.71)
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which is on-shellreduciblefor n > 4, sincethe equationsof motion are

FA = 0 , dABfl2 = 0 - (6.72)

Denotingby Lx the Lie derivativealongthe vectorfield X, andusingthe fact that, on differential
forms, Lx = di~+ ixd, where i ~ is the operationof interior multiplication (or contraction),one
finds

LxA = ixFA + dAA(X) , L~gB= iXdAB + [B,A(X)] + dAA’(X) , (6.73)

whereA(X) = j~AandA’(X) = jxB. This showsthat, on shell, diffeomorphismsare equivalent
to the gaugeandp-form symmetriesof the action (6.48).

Due to the non-linearityof the actionthereis no analogof the harmonicshift symmetry (6.51)
in the non-Abeliancase.Anotherconsequenceof the non-linearityis that the spaceAl = Al (M, G)
of solutionsmodulogaugesymmetriesis in generalno longer a vectorspace.In two dimensionsfor
instance,with M = Xg a Riemannsurface,,V is (ignoringreducibleconnections)simply the moduli
spaceof fiat connections(cf. section5.4.3),sincethereareno non-trivial solutionsto the equation
of motion dABO = 0, i.e., ./V(Xg,G) = M (Xg,G). As in super-BFtheories, three dimensions
are particularly interestingin the presentcontext. Here, the equationdAB1 = 0 determinesthe
(co)tangentspaceto the moduli spaceM (M3, G) of fiat connections,so that

.Af(M3,G) = T*M(M3,G) . (6.74)

One way of understandingthis result is to note that the BF actionf B1F,.~for a group G is the
sameas aChern—Simonsactionfor the groupTG ~ Gx g; we expandaconnectionC for the latter
as C = 1J’aA” + PaB”, where (Ta, Pa) aregeneratorsfor the group TG with commutationrelations
[Ta, Tb] = ~ [Ta,Pbl = ~ and [Pa,Pb] = 0, andchoosethe invariant innerproductto be

(Ta,P6) = tr(TaTb) , (Ta,Tb) = (Pa,P6) = 0

then we find that indeed

~f(C,dC + ~[C,C]) = trfBFA - (6.75)

This is the non-supersymmetriccounterpartof the observationmadein ref. [6.48] andexplainedin
remark (iii) of section5.4.1, that the three-dimensionalsuper-BFaction is a super-Chern—Simons
action. It also immediately implies (6.74), since the phasespaceof Chern—Simonstheory with
gauge group TG is M(M3,TG) TM(M3,G).

Anotherconsequenceof (6.75) is that it providesuswith a potentially interestingandnon-trivial
observablefor 3D BF theory,namely the Wilson 1oop of the gaugefield C. Note that, althoughB
is aone-form,its Wilson loop is not a well definedobservable,since it is not invariant underthe
p-form symmetry (6.71). For the samereasonit is not clear if therearenon-trivial B-dependent
observablesin more than three dimensions.Broda [6.151] has recentlyconstructednon-Abelian
“Wilson surfaces”for BF theories,dependingon A andB, but it remainsto be seenif thesedefine
good observablesatthe quantumandgaugefixed level.

Equation (6.75) also shedssomelight on gravity in threedimensions:we haveseen in section
6.1.6 that the Einstein—Hilbertaction is equivalentto a Chern—Simonsactionwith gaugegroup
ISO(2,1); but ISO(2,1) = TSO(2, 1), so that we can alternativelywrite the action as f BFA,
whereA is now an SO(2,1) gaugefield andB is the dreibein [this is just equation (6.38)]. As
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such, A andB are the (2 + 1)-dimensional analogs [6.129, 6.152] of the Ashtekar variables for
(3 + 1)-dimensionalgravity [6.153], and it is the observationencodedin (6.75) which relatesthis
formulation to Witten’s.

In higher dimensions, there is less geometrical structure associated with BF theories, and all that
we can say in that generality is that the tangentspaceto Al (Mn, G) at a solution (A,B) is the
vectorspace

T(AB)Al(Mfl,G) = H)~(Mn,g)~H~2(Mn,g)

which is naturally symplecticif M~= XnI X D~.

6.2.4. Quantization of non-Abe/ian BF theories
Quantizationof theaction (6.48) in two andthreedimensionsis completelystraightforward,the

quantumactionSq(3), for instance,beingthe obviouscovariantnon-Abeliananalogof the Abelian
action (6.55). In addition,variousstudieshavebeenmadeof the one-loopeffectiveactionin these
cases[6.154,6.155].

The on-shellreducibility of (6.71) in morethanthreedimensionscomplicatesmatters,andupon
following the BY algorithm oneends up with a quantumactionhaving the following unpleasant
features[6.122, 6.139, 6.138]:

(i) the BRST operatoris nilpotent only on-shell,
(ii) the BRST operatoris metric dependent,
(iii) the quantumactiondoesnot differ from the classicalactiononly by a BRSTcommutator,
(iv) the quantum action contains cubic ghost interaction terms (which generally are metric

dependent).
This [and (ii), (iii) in particular] preventsus from using the standardargumentsto establish
metric independenceof the partition function.

Wewill now explain (in the case n = 4) step by step, why these features arise and how they can
in turn be eliminated again to establishthe topological natureof BF theories.This proof applies
equally well to n � 5, since the only non-genericproperty of the four-dimensionaltheory (the
metric independenceof the cubicghostterm) playsno role in our arguments.

(1) We startoff with the “naive” quantumactionS~(4), the non-Abeliananalogof the Abelian
action Sq(4,2),namely [cf. (6.59)]

S~(4) = f (B~FA+ ~,dA * B
2 — ë,dA* dAd + ~odA* c~— sodA * dAco

+1r~dA*~l—c~,dA*Jti) (6.76)

(we arenot concernedwith the ordinaryYang—Mills symmetryhere;sinceall thetermswe introduce
arecovariantwith respectto A, this field maybe gauge fixed at the endin the usualway). This is
not yet thecorrectquantumaction,since—dueto the reducibilityof the symthetry (6.71), expressed
by Qc1 = dAcO—theQ variation of S~(4) is non-zero,

QS~(4) = f [co,*dA.~,]FA-

(2) This term can be canceledby modifying the B variation QB = dAci to sB = (Q + R)B,
with RB = —[co, *dA~1]. But now sS~(4) picks up a term from R(lr,dA * B2) = co[dAë,,dAlrl]
(modulototal derivatives)-
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(3) This term in turn is Q-exactandthe completequantumactioninvariantunders = Q + R is

Sq(4) = S~,(4)+ ~Co[dAëi,dAë,] - (6.77)

We see that a cubic ghost interactionterm has appeared,and that the relevant BRST operator
s = Q + R is metric dependent;dueto the B equationof motion FA + *dAlrl = 0 and

s2B = [co,F~
4+ *dAlr,] , (6.78)

s is on-shell nilpotent (asit shouldbe),since~2 is (like Q
2) identically zeroon all the otherfields.

Moreover, the classicalaction is not s-invariant,and (6.78) showsthat Sq(4) cannotpossiblybe
of the form S~(4)+ {s,~P}.

(4) Now that we haveaccumulatedall thesecomplications,let ustry to get rid of them again—one
by one. As a first steptowardsproving that BF theoriesare indeedtopological,we now arguethat
the cubic ghostterm of (6.77) contributesneitherto the partition functionnor to the expectation
valueof any operatordependingonly on A andB. This follows from the observationthat onecan
assignchargesto the fields in such a way thatA andB and all the terms in 5q(4) apartfrom the
cubic term are chargesinglets (a possiblechoice is k + 1 for Ck and — (k + 1) for ~k’ giving the
cubic term charge—1). This essentiallyeliminatesobstacle(iv) from our list.

(5) It follows that—for the purposesof studying the partition function Z (4) and suitable
correlators—therelevantaction is S~(4), which is of the form

S~(4)= S~(4)+ {Q,W(4)} . (6.79)

SinceS~(4) is Q-invariantandQ is metric independent,this clearlysimplifies mattersconsiderably,
andis a satisfactorystateof affairs,providedthat we canshowthat Q is nilpotent (at leaston-shell).
Above, we have usedthe B equationof motion F,, + *d,,ir, = 0 to show this for s = Q + R, eq.
(6.78). But now we can onceagainmake useof the squaringargumentof sections3.1 and 5.4.2
(FA + *d

4,r1 = 0 implies F,, = 0) to concludethat, despiteappearance,Q (with Q
2B = [co,F.

4])
is on-shell nilpotent as well! This eliminatesproblems(ii) and (iii).

(6) It remainsto overcomethe problemthat for an on-shellnilpotent BRST operatorthe BRST
Ward identity is not ({Q, X}) = 0 (hereX is an arbitraryfunctional of the fields), which would
imply directly the metric independenceof Z(4) upon settingX = ôgW (4). Rather, in the caseat
handthis Ward identity receivesa correctionfrom the Q-variationof the actionand reads

({Q,X}) + ({Q
2,~P}X)= 0 - (6.80)

Now—providedthat we can integrateoverB (which enforcesQ2 = 0, as wehaveseenabove)in the
secondterm of (6.80)—thisWard identity reducesto the standardone.It canbechecked(usingthe
chargeassignmentsof above)that, for X = ö~Y~(4),the termsin {Q2, W(4)}X involving B do not
contribute,which finally establishesthat indeedôgZ(4) = 0. Likewise, the aboveargumentshows
thatexpectationvaluesof metric independentQ-invariantfunctionalsof A are metric independent.
In more than four dimensions,the completequantumactionSq(n) is also of the form “naive
quantumactionS~(n) plus cubic ghostterms”, and the chargeassignmentsto the ghostfields can
againbe chosenin sucha way that noneof the cubic termscontribute.Thenthe samesequenceof
argumentsas aboveestablishesthe topologicalnatureof BF theoriesin general.

The preceding, somewhattechnical, discussion shows that the BY algorithm can be over-
sophisticatedfor certainpurposes:it obscuresthe fact that it is really the naiveBRST operatorQ
(and not s = Q + R), andthe naive quantumactionS~,(n) [insteadof Sq(n)] which governthe
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fundamentalpropertiesof the theory.That this should be the case,canalso be understoodfrom
a different point of view. The guiding principle in the gauge fixing procedureshould be that the
expectationvalueof any gaugeinvariant operatoris not affectedby the introductionof the gauge
fixing andghostterms(up to a multiplicative groupvolume factor). But a classicallygaugeinvariant
functional (an observable)is not necessarilys-invariant,whereasit is certaii~lyQ-invariant.The R
term in s spoils this invariance,but it is the R term that is linked to the cubic ghostterms.For
our purposesit is thencorrect to demandthat good observablesbe Q-invariant, but this is only
legitimate if the ghost interactionsare ignorable.And this is indeedwhat we haveshown above.

The abovediscussionraisessomequestionsof a more generalnatureregardingthe construction
of quantumactions,suchas: is it possiblemoregenerallyto makesenseof quantumactionswhich
(like S~)are BRST invariant “in the path integral”? or, under what general conditionsdo the
quantumequationsof motion imply theclassical equationsof motion?

A supersymmetryof the four-dimensionalquantum action—analogousto that discoveredin
Chern—Simonstheory in the Landaugauge (cf. section8.4.6)—hasrecently been discussedin ref.
[6.156], whereit is also shownthat (in fiat space) the completequantumactioncan be written
as a BRST + supersymmetrycommutator.The consequencesof this observation—suggestinga
somewhatunexpectedlink betweenWitten andSchwarztype theories—remainto be workedout.

6.2.5. Nicolai mapsand Yang—Millstheory
Two of the observationswe have made in the previoussection will be of interestto us now:

that the partition function Z receivescontributionsonly from fiat connections,and that the cubic
ghosttermsuo not contributeto Z. Theseobservationstakentogetherimply that Z is abunchof
backgroundfield determinants,or, in otherwords, that the one-loopapproximationto Z is exact.
While familiar from Witten typetheories,this is asomewhatunexpectedresult for a Schwarztype
theory—andonewhich is certainlynot sharedby Chern—Simonstheory.As in Witten typetheories,
this result can alternativelybe understoodas a consequenceof the existenceof a Nicolai map: all
BF theorieshavea completenon-perturbativeNicolai map! We will comebackto this below.

Alreadyat this stage,however,it is possibleto be more preciseaboutwhat the partitionfunction
Z(n) will turn out to be. In section 6.2.1 we have seenthat the partition function of the Abelian
actionS(n,n — 2) = f B~_2dA1is the inverseof the Ray—Singertorsion T(n) of the de Rham
complex. Likewise, the partition function of the actionf B~_2dcA,(here C is a fiat background
connectionon some vector bundle) is the inverseof the Ray—Singertorsion T(n, C) of the de
Rhamcomplexwith coefficientsin thisvectorbundle.Thisactionis just of the form of the one-loop
approximationto the non-AbelianactionS(n).Parametrizingthe moduli spaceof fiat connections
by coordinates{)!~},A = A(2), we thereforeexpectZ (n) to be of the form

Z(n) =fdAT(n~A(#~)Y~. (6.81)

The Ray—Singertorsion thus providesus with a measureon the moduli spaceof fiat connections.
In (6.81) we have suppressedother zero mode integrations,and we adopt the attitude that—for
the purposesof calculatingZ—theseshould be gaugedaway. In support of this point of view we
mentionthat the B zero modeB~doesnot appearin the path integral [6.133]: we expandA and
B aboutclassicalsolutions,

AAc+Aq, F,,~=0; BBc+Bq, d,,0Bc0; (6.82)
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then the action is

S = fBcd~Aq+ Bq(d~~Aq+ ~[Aq,Aq]) + Bc4[Aq,Aq] ; (6.83)

by (6.82) the first term of (6.83) is zero; the path integral over Bq leads to a delta function
constraintdACAq + ~ [Aq,Aq] = 0, so that,againby (6.82), the last term of (6.83) vanishesas well;
thus B~doesnot enterat all, andwe will in the following set B~= 0. It is importantto note that
we arrivedat this resultby keepingall termsin (6.83) andnot just thosequadraticin the quantum
fields. It should alsobe bornein mind that the zero mode integralsmay still needto be performed
when one computesexpectationvaluesof observables.

After thesepreparatoryremarkswe returnto the subjectof Nicolai maps.In two dimensionsthe
completequantumaction is

Sq(2) = JBFA + mod~~*Aq+ ~od,,~*d,,co

andthe changeof variables

~(A) = F,, , i~(A)= d
4~*Aq (6.84)

trivializes the bosonicpartof the action,

Sq(
2) = fB~+ mo?7 + eod,,~* d,,c

0

This Nicolai map is similar to that usedin the calculationof the partition function of Donaldson
theory in section 5.2.5. The determinants arising from the ghost integrationand the Jacobianof
this changeof variablescombineto give Z(2) = T(2,Ac)~’= 1. The integral over the moduli
spaceof fiat connectionsarisesbecausethe zerosof (~,tj) are in one to one correspondencewith
pointsof M, andwe can thereforeusethis abovechangeof variablesto trivialize the pathintegral
over all but a finite dimensionalspaceof fields, and the remaining integral over M is still to be
performed.In the caseof isolatedfiat connections,this againgives us the interpretationof Z as
the winding numberof the Nicolai map.

It is also possibleto introducethe A zero modesinto the path integral directly [6.145,6.122]:
implicit in the split (6.82) is the assumptionthat Aq contains no fluctuationstangent to M,
and this can be mademore explicit via the harmonic BRST algebraof section 6.2.1.Associated
with the coordinates)~.“ of M we havetheir superpartnersa/~= Qh2k as well as anti-ghostso.k

andmultipliers 1k = Qho.k. The fiat connectionA~(2)then transformsas Q”A~(,~.)=
and the OkAc~L) spanthe tangentspaceto M at A~(A).It is now straightforwardto gauge fix
Aq to be orthogonalto thesefluctuations.One simply adds {Qh, f o.kokAc~)* Aq} to the action
[with QhAq = _akOkAc(2),so that QhA = 0]. Then everything runs as above, the B, r~,and
t integrationssetting Aq to zero, with the importantdifferencethat one is left with an explicit )~
integrationat the end, giving (6.81).

In threedimensionsthe quantumaction is

Sq(
3) = fBiF~+ m

0d,, * B1 + ë0d,, * d,,c0 + ~dA~* Aq + ~ * d,,c~

andthe slightly different changeof variables

~(A,iro) = F,, + *d4t0 , i7(A, it0) = d~~*Aq (6.85)
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trivializes the action in this case. Away from reducibleconnectionszerosof this mapare again
in one to onecorrespondencewith gaugeequivalenceclassesof fiat connections,and as in two
dimensionsthe Jacobianandghostdeterminantscombineto give T (3,Ac)— ~, and thus

Z(3) =fclAT(3,Ac(U)_1 . . (6.86)

However, it hasbeen shownin refs. [6.154, 6.155] that, if the Jacobianis regulatedin a gauge
invariant manner,then a Chern—Simonsterm is inducedat the one-loop level. In any case,one
could add the Chern—Simonsterm (with arbitrary integercoefficient) to the 3D BF action, and
retain all the symmetries.Certaingeneralizationsare alsopossible [6.3, 6.154, 6.157].

It shouldnow be clearthatessentiallythe sameprocedureas abovesufficesto trivialize the action
in any dimensionn; sincewe can ignore the cubic terms, the relevantactionis the naivequantum
actionS~,(n),for which a Nicolai map is (k = 1,2,...) [6.133]

~(A,it) _FA+*dAitn
3

= dJ~* ltn_2k_i ±*dAmn_2k_3 , (6.87)
1(A,it) d~~*Aq

(with it, = 0 for i <0).
An interestingspin-off of the aboveconsiderationsis the result that thereis a completeNicolai

map for Yang—Mills theory on any two-dimensionalsurface!This comesaboutas follows. In any
dimensionthe classicalBF actioncan be regardedas the zero couplinglimit of Yang—Mills theory
since

~fF~*F.4= fBn~F~~g
2B~_

2*B~_2 fBn_~F~. (6.88)

But, whereasfor n � 3 the B
2 term breaksthe p-form gaugeinvariance,this limit is non-singular

in two dimensionswhereboth theorieshaveno degreesof freedom.Yang—Mills theorycanthusbe
regardedas a kind of regularizationof BF theory [6.158]. This relation extendsto the complete
quantumaction, and evidently the changeof variables (6.84) trivializes the Yang—Mills action
(6.88) as well. In particular one seesthat the partition function of Yang—Mills theory on a
surfaceX receivescontributionsonly from the moduli spaceM (X, G) of flat connections.These
considerations[6.122], as well as the fact that the classicalphasespaceof Yang—Mills theory on a
Riemannsurfaceis independentof the metric [6.159], haveled to the suggestion[6.160, 6.138]
that Yang—Mills theory is, in acertainsense,a topological field theory in its own right. Thereare
alsosomeindicationsthat Yang—Mills theory is relatedto conformal field theory [6.160], but this
has not yet beenconfirmed by other methods.The above Nicolai maphasalreadyprovenuseful
(in conjunctionwith the non-AbelianStokestheorem)in the calculationof correlatorsof Wilson
loopsin fiat space[6.161].

6.2.6. The self-duality equations on a Riemann surface
In this sectionwe will takea look attwo, seeminglyunrelatedsetsof equationsin two dimensions:

the dimensionally reducedself-duality equations for the group S0(3) (known as the Hitchin
equations [6.140, 6.162]), and the equationsof motion of a PSL(2,R) EF theory. The latter
can be thought of as a theory of topologicalgravity, sinceone componentof the moduli space
M (Xg,PSL(2, R)) of flat connections(cf. sections5.4.3 and6.2.7 below) is TeichmüllerspaceT

5.
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On the otherhand,Hitchin hasshown that the moduli spaceM~= MH(Xg,SO(3)) of solutions
to the Hitchin equations containsM(X1,,PSL(2,R)) and 7~as (complex) submanifolds. It was
thereforesuggestedin ref. [6.163] to studythe dimensionalreductionof Donaldsontheory to two
dimensionsas a gaugetheory of topological gravity. Although we will not pursue this approach
directly, the relation betweentopologicalgravity andself-duality will be the underlyingthemein
the remainderof this chapter.

A priori this relation is far from obviousfrom the SO(3) self-duality point of view. One of the
reasonswhy we haveincludeda discussionof the Hitchin equationsin the presentcontextis thatBF
theoryprovidesuswith arathersimpleway of understandingthisresult, andin particularHitchin’s
constructionof constantnegativecurvaturemetricsfrom solutionsto the self-duality equations.In
fact, we will seethat in that sectorof MH the Higgs fields appearingin the dimensionallyreduced
self-dualityequationcan be interpretedas zweibeinson Xg,parametrizedby Beltrami differentials.
The BF or (equivalently) the self-duality equationsthen tell us directly that the corresponding
metric hasconstantnegativecurvature.

Another reasonfor including the Hitchin equationsis that this observationsuggestsa reformula-
tion of the PSL(2,R) topologicalgravity theory (andits Witten typecounterpart,to bediscussedin
section7) as a U (1) gaugetheorycoupledto matter (= Higgs fields), the zweibein.This hasobvi-
ous implicationsfor the cohomologicalaspectsof the theory and,to a certainextent,explainswhy
only the Lorentzghostsfor ghosts,andnot thoseassociatedwith translationsor diffeomorphisms,
are relevantfor the constructionof observablesin the Witten type models.

Upondimensionalreductionfrom four to two dimensions,theself-dualityequationson a principal
SO(3)-bundleon II~maybe written in a conformally invariant way to makesenseon an arbitrary
RiemannsurfaceXg, thus giving rise to Hitchin’s [6.140] self-duality equations on a Riemann
surface,

F4 = _[~,~*] , (6.89)

= 0 . (6.90)

Here the notation is the following: F4 is the curvatureof aconnectionA on a principal SO(3)
bundleon Xg, g> 2, 0,, = 0 + A~d±is the anti-holomorphicpart of d,, with respectto a given
complexstructureon Xg, and

~~P:dzEQ”°(Xg,adP®C)EQ ,

[Q = Q”°(Xg,g®C) in the notationof section5.1.2] arecomplexcombinationsof the three-and
four-componentsof the original four-dimensionalconnection.

Equation (6.90) says that ‘2~ is holomorphic with respect to the holomorphic structureon
adP®~K [K is the canonicalline bundle of (1,0)-forms] defined by the connection A on P
(cf. ref. [6.159]) and by the complex structureof Xg on K, whereas (6.89) can be regardedas
a unitarity condition. For our purposesthereis no compelling reasonfor using SO(3) insteadof
SU(2), since the connectionswe will be interestedin below comefrom principal SO(3) bundles
whosestructuregroup lifts to SU(2) [i.e. the secondStiefel—Whitneyclass w2(P) = 0], but for
simplicity we will stick to SO(3).

By an argumentanalogousto that sketchedin section5.1.4 for the moduli spaceof instantons
(basedon useof the Atiyah—Singerindex theorem,combinedwith vanishingand implicit function
theorems)Hitchin has shown that the moduli spaceMH C (A x Q )/~is a smooth 12(g — 1)
dimensionalmanifold (we apologizeto the readerfor once again ignoring the problemscaused
by the presenceof reducibleconnections—theseare treatedwith great care in ref. [6.140]). It is
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also known that M11 is anon-compact(in the “ci’ directions”) connectedandsimply connected
hyper-Kahlermanifold, i.e., thereare threesymplecticforms with compatiblecomplexstructures
I, J,K satisfyingthe quaternionrelationsIJ = K etc.

I comesfrom the naturalcomplexstructureon QeQ, wherewe haveidentified T,,A = Qi (Xg, g)
(cf. section5.1.2) with Q, so that T(A~)(A x Q) = Q EiQ. The isomorphism

a:AxQ-#Ax~, a(A,ci)=(O,,+~~,O,,+~),

togetherwith thenaturalcomplexstructureon A x A, gives rise to the secondcomplexstructure,J,
on A x Q, definedby (Ta)J = i(Ta), whereTa is the tangentmapof a. The standardmetric on
AxQ definesthe correspondingsymplectic(Kähler) forms w1 andWj (aswell as thatof K = IJ),
makingA xQ a hyper-Kählermanifold. As a consequenceof aquaternionicversion [6.164] of the
Marsden—Weinsteintheorem [6.151, theseKähler structurespassdown to MH [6.140] (a brief
explanationof this canalsobe found in ref. [6.66]).

Two furtherobservationswill be of interestto us in the following. The first is that the Hitchin
equations(6.89), (6.90) imply thatunderthe isomorphisma the PSL(2,C) connectionA + i’ + ~
is flat,

= 0 . (6.91)

For irreducible connectionsDonaldson [6.165] has establisheda converseto this result but, as
a consequenceof the presenceof reducibleconnections,(MH, J) is not the moduli spaceof fiat
PSL(2,C) connectionsbut ratheracoveringspacethereof.

The secondobservationconcernsthe existenceof a circle action (A, ci’) —~ (A, e’
0 ‘i’) and, in

particular,an involution (A, ci’) —f (A, —ci’) on AxQ, which—sinceit mapssolutionsto solutions—
passesdown to a circle action (involution) on M

11. As canbe checkedfrom the abovedefinitions,
this involution a is anti-holomorphicwith respectto J, i.e., (Ta)J = —J(Ta),and thus equips
(MH, J) with a real structure.The fixed pointsof a [the real pointsof (M11,J)] thensatisfy an
additional reality constraint.

A simpleexamplemay help to explain what is going on: considera two-dimensionalreal vector
spaceV, (x, y) E V; the identification V C, (x, y) -‘~ x + iy, equipsV with the complex structure
J(x,y) = (—y,x); the involution a(x,y) = (x,—y) satisfiesaJ = —Ja, andthe fixed pointsof a
arethe points (x, 0), correspondingto the standardreal line 01 c C under the aboveidentification.

If the pair (A, ci’) itself is fixed by a (and not only its gaugeequivalenceclass),thenobviously
= 0, and (6.89) then tells us that we are dealing with flat SO(3) connections[and SO(3)

is indeed a real form of PSL(2,C)]. Otherwisewe are dealingwith flat PSL(2,R) connections
(the other real form of PSL(2,C)). We will say more about the correspondingmoduli space
M(Xg,PSL(2,R))below. Herewejust notethat [6.140,Prop. 10.2] all but one of the components
of M(Xg,PSL(2,R)) are smoothsubmanifoldsof MH, which arein fact complexsubmanifoldsof
(MH,I), sincea is holomorphicwith respectto I, (Ta)I = +I(Ta).

Hitchin now goeson to showhow to constructconstantcurvaturemetrics from solutions(A, ci’)
in aparticular component(= T~)of the fixed point set of a (ascorollariesgiving new proofsof the
uniformizationtheoremandthe isomorphismTg C

3~3).For later referencewe sketchHitchin’s
argumenthere.

Considerthe complexrank 2 vectorbundleV = K’/2~K’/2.With respectto thisdecomposition,
any i’ of the form

cTi’(q) = (~~)EQ”°(X
5,End0V) (6.92)
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(herewe havereplacedadPby End0 V, the tracelessendomorphismsof V) will satisfy (6.90) for
reducibleconnectionswith

~ (~ 1) (6.93)

providedthatq eQ”°(Xg,Hom(K~I
2, K’1~))is holomorphic,i.e., q E H0(Xg,Hom(K~’/2,K”2)®

K) = H0(Xg,K2) is a (holomorphic)quadraticdifferential. An existencetheorem [basedon what
Hitchin calls the stability of a pair (V, ci’)] providesa uniquesolution AH (q) to (6.89). AH (q)
determinesa compatiblemetric g(q) on K andXg, from which Hitchin constructsa new metric
,~(q) with constantnegativecurvature.Insteadof explainingthis in more detail, we will now turn
our attentiontowardstopologicalgravity, whichwill leadus to an alternativeandless sophisticated
way of understandingpartsof the aboveconstruction.

6.2.7. Moduli spacesofflat connectionsII: PSL(2, 01)
As a preparationfor our discussionof topological gravity we summarizesomeresults on the

moduli spaceM(Xg,PSL(2,R)) [6.166]. Let usstart by clarifying the relationbetweenPSL(2,R)
and the groupsSL(2,R) and SO(2,1), which have alternativelybeen usedas gauge groupsfor
topological gravity. At the Lie algebra level theseare indistinguishable,but when dealing with
global objects like moduli spacesthe differencesare important. SL(2,R) is the non-trivial double
coveringof PSL(2,R).The Killing form of PSL(2,R)definesan ad-invariantindefinite quadratic
form on its Lie algebra.The adjoint representationthus embedsPSL(2,R) in SO(2,1), andunder
this embeddingPSL(2,O~)= SOo(2,1), the componentof the identity of SO(2,1). This alsogives
rise to the identification SL(2,R) = Spin(2, 1). Now that thereis no possibleconfusion,we will in
the remainderof this sectionlet G denotePSL(2,R) andM its moduli space.

The componentsof Hom(it,G) (cf. section5.4.3) areindexedby the Eulernumberx (E) of the
associatedRP1-bundle,and for a flat bundleone hasthe strict bound ix (E)I ~ Ix (Xg)i = 2g — 2,
so that the numberof componentsof M is 2(2g — 2) + 1 = 4g — 3. BundlesE, with evenx (E),
lift to real two-planebundlesE associatedto SL(2,R),and~(E)= 2X(E). In particulartherefore,
lxi < g — 1 for a flat SL(2,R)-bundle (this fact, discoveredby Milnor [6.167], provided the first
examplesof topologically non-trivial flat bundles).The componentsof the SL(2,R) moduli space
are, in contrastto thoseof M, not classifiedcompletelyby their Euler number. In genus2, for
instance,Hom(ir,G) hasfive components(lxi <2), while Hom(it,SL(2,R))has 33 components,
so that the situationtendsto get out of hand.

For all k ~ 0, Iki <2g — 2, the componentsM~of M arerealanalyticHausdorffmanifolds,and
sincetheycontainonly irreducibleconnections(a reducibleconnectionwould give a sectionof the
associatedbundleE andwould thereforeforcek = 0), the index formula (5.140) of section5.4.3
determinestheir dimensionto be (6g — 6).

We will be interestedprimarily in oneparticularcomponentof M, namelyM2g_2.The reasonfor
this is thatuniformizationof aRiemannsurface,Xg = H/Ps (H is the upperhalf planeandI~is a
discretesubgroupof Gactingon H by isometricsof the Poincarémetric), definesa representation
q~ofI~= it in PSL(2,R)which determinesa fiat RP’-bundleE withX(E) = X(Xg)I = 2g—2:
M2g_2 = Tg is Teichmüllerspace.The condition that q5 E Hom(it,G) be an isomorphismonto a
discretesubgroupof G (which singlesout M2g_2) will reappearin the next sectionin the form of
an invertibility condition for the zweibein.Since 2g — 2 is even, Tg can alternativelybe regarded
as one componentof the moduli spaceof fiat SL(2,R) connections,andthis is the reasonwhy we
could just as well haveworkedwith SU(2) insteadof SO(3) in the previoussection.
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6.2.8. Topological gravity and self-duality
Givenall this information,the constructionof a topologicalgravity theory is now straightforward.

We choosegenerators(J, P,,P2) of the Lie algebraof PSL(2,R) [or SO(2, 1)] with the commutation
relations

[Pa,Pb] = —PeabJ , [J,Pa] = na”Pb - (6.94)

Herep is apositivereal parameter,n,2 = 1, and indicesareraisedandlowered with the metric ôab.
By a rescalingof the generatorsPa, p canbe setto + 1, but sincein section7 we will be interested
in the p —~0 contractionof (6.94), the Lie algebraof ISO(2), it is more convenientto keepthe p
dependenceexplicit.

This algebra [with the field assignmentsas in (6.96)below] describesEuclideanquantumgravity
with anegativecosmologicalconstant.Had we chosenp to be negativeinstead,the abovealgebra
[now that of SO(3)] would havedescribedthe sametheory with apositive cosmologicalconstant
(i.e. atgenuszero). Lorentzianquantumgravity is obtainedby replacing~abby

tlab = diag(+1, —1).
In this basisfor PSL(2,R), the non-degenerateinvariant Killing—Cartan metric is

(J,J) = —l , (Pa,Pb) = Pöab , (6.95)

with signature(— + +), and allows us to write down a non-degenerategaugeinvariant BF actionin
the usualway. We will commentbelowon how that canalsobe achievedin the p —~ 0 limit, where
(6.95) obviouslybecomesdegenerate.We expandthe PSL(2,R)connectionA and the multiplier
B as

A = Jw + Pae” , B = JB°+ PaB” , (6.96)

wherethe coefficientscv and e” are of courseultimately to be identified with the spin connection

andzweibein, respectively.Under gaugetransformationsöÁ = dA)~theytransformas
ow = dA°— P&abe”)P , Oe” = di” + &‘(i~0e~’— 2bw) . (6.97)

The action

S =JBFA __f_B0(dw_ ~peabe”e”) + pOabB’~(de”_we”ce’~) (6.98)

leadsto the equationsof motion

dcv = p ~abe”e” , (6.99)

de’~ coca et’ , (6.100)
cl,,B =0 . (6.101)

In (6.100) we recognizethe no-torsionequationfor the spin connectionWa,, = _coea,,.Provided
thate is invertible,thereis auniquesolution w(e) to (6.100).With w = w(e), (6.99) is then the
statementthat the metric g

1,,~= Oabe,,ae~associatedto ehasconstantnegativescalarcurvature, in
our conventions

R(g) = —2p . (6.102)
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Conversely,of course,the flat PSL(2,~)connectionassociatedto g via uniformizationis A(g) =

Jw(e) + Paea. As mentioned above, the condition of invertibility singles out the component
= M2g_2 of the moduli spaceof flat connections(an explicit proof of this can be found

in ref. [6.168]). The above thenestablishesvery directly the relation betweenTeichmüllerspace
[definedin termsof PSL(2,R) connections]andthe spaceof Diff0 (Xg) classesof constantnegative
curvaturemetrics, since, as in Chern—Simonsgravity, diffeomorphismsare on shell equivalentto
the gaugetransformations(6.97).

It remainsto analyzethe third of the equationsof motion, d,,B = 0. Since, as mentionedin the
previoussection,the PSL(2,R) moduli spacesM~for k ~ 0 containonly irreducibleconnections,
thereare no non-trivial solutions to (6.101) in thesesectorsof the theory. In the gravity sector
M2g_2 = ~ wherethis assertioncan, in fact, easily beverified directly, this implies that the space
of solutionsto the completesetof equationsof motion (6.99)—(6.lOl) is simply Teichmüllerspace
T5 itself. If oneconsidersLorentziangravity andnon-compactsurfacesinstead,non-trivial solutions
to (6.101) will generallyexist.

The action (6.98) appearsto havebeenfirst written down in 1985 by FukuyamaandKamimura
[6.169] as a gauge theory descriptionof the Jackiw—Teitelboimmodel [6.170] of 2D gravity. In
the formulationof Jackiw, this gravity theory is governedby the action

SiT = f v~jN(R(g)— A) - (6.103)

Here N is an auxiliary field enforcingthe field equation (6.102) of the BF theory, in this context
also known as the Liouville equation. The S0(2,1) invarianceof this equationhad long been
recognized,andplayedan importantrole in earlyattemptsat quantizingLiouville theory (see,e.g.,
ref. [6.171]). Note also that, upon substitutionof cv by w(e), (6.98) reducesto (6.103) (with
B°= N).

The action (6.98) was subsequentlyrediscoveredandstudied,in the contextof topological field
theory,by variousgroups[6.121, 6.124,6.122].Ofcourse,all ourgeneralconsiderations,concerning
its quantization,the existenceof a Nicolai map,and the relation to the Ray—Singertorsion, are
equally valid in this particularcase.

Let us commentbriefly on the p —~ 0 contractionof the above. In that case,the Lie algebra
(6.94)reducesto thatof ISO(2), which hasno non-degenerateinvariant scalarproduct. In spiteof
this fact, it is possibleto constructan invariant BF action for this group This is accomplishedby
adoptingtransformationrules for B which are not the conventionalISO(2) transformations,but
which neverthelessarise quite naturally from the PSL(2,Ilfl transformationsvia contraction. The
latter are OR = [B,).], i.e.,

OB°= pe~,,)fiB” , OB’~= c”~~~°B
6_).bBO) . (6.104)

Naively takingthe limit p —~ 0 in eqs. (6.95), (6.97), (6.98) and(6.104),oneis led to the invariant,
but degenerateandquite boring, actionS = — f B0dco, with its invariancesOw = d).°, OB°= 0.
But if we rescaleB’~by p in (6.104) andthen takethe limit p —~ 0, we arriveat

OR°= Cab).0B~!~ , OB’~= c”~).°B6- (6.105)

It can now be checkedthat, with thesetransformationrules [and the conventionalISO(2) trans-

formationrulesfor A, the contractionof (6.97)], the action

S = f B°dw+ Oa~B”(deb_wcbcec) (6.106)
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is indeedinvariant. As it stands, (6.106) is not particularly useful, sincethe equationof motion
dcv = 0 obviously implies that we areworkingon the torus.But in section7 we will show,following
Yerlinde andVerlinde [6.172], how a clever modification of this action (or, rather, its super-BF
counterpart)candescribeWitten typetopologicalgravity on surfacesof anygenus.

We now returnto the self-dualityequations.Equippedwith all this information,the identification
betweenthe fields (AH, i’) appearingin the Hitchin equations,andthe connectionA = Jw + Pae”,
eq. (6.96), of our topologicalgravity theory, is now straightforward.Before proceeding,we should
perhapsemphasizethat, while this identification immediately implies that the Hitchin equation
(6.89) is a constantcurvaturecondition on a metric, the powerof Hitchin’s argument (sketched
at the endof section6.2.6) lies in the fact that it automaticallyprovidessolutionsto this equation.
This is somethingthe more simple-mindedBF approachcannotdo for us.

Let us introducethe following basis (with p = 1) of End0(K’!
2 + K’12):

(1 0\ (0 0’\ (0 dz\
= ~o —i) ‘ = ‘~\0Z o) , = ~o o) - (6.107)

With respectto this basis,the reducibleconnectionAH = AH(q), compatiblewith the metric g(q),

takesthe form AH = Jw [cf. eq. (6.93)]. Expandingthe Higgs fields ci’(q), eq. (6.92), and ci’*(q)
as

ti’~(q)dz + ci’;(q)d~ = P~ci”(q)

onefinds [writing q = q~~(dz)2]

+ g~t~d~, ci’2(q) = q~~dz+ g~~d±- (6.108)

We thusseethat the Higgs fields ‘~i’(q)and i’*(q) can be interpretedas zweibeinson Xg. In terms
of Beltrami differentials ~ relatedto the quadraticdifferentials qzz via ji~ = gZ±~~, these take
the more familiar form

- (6.109)

As (A~(q),ci’(q)) is a solutionto the Hitchin equations,

AH + cii(q) + ~*(q) = Jco+ Pae’~(ii)

is flat, eq. (6.91), and thereforedefines a solution of topological gravity in the ~ sector. In
particular, the Hitchin equationF,,~= — [i’ (q), cp* (q)] is thennothing other thanthe statement
that the metric

,~‘(~u)=e’(u)®e2(u) ~ (6.110)

hasconstantnegativecurvature.This is preciselythe metric constructedby Hitchin—in the short-

handnotation of ref. [6.140,Theorem11.2],

Theseobservationson the relation betweentopological gravity and the Hitchin equationsmay
have some interestingconsequences.They suggest,for instance,that topo~ogicalgravity can be
formulatedas a U(1) gauge theory,coupledto matter (Higgs) fields whith can be interpreted
as zweibeinson a Riemannsurfacein a particular phaseof that theory. In this phasethe metric
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emergesas a composite matter field. Moreover, the above suggeststhat relevant cohomological
informationaboutthe theory is encodedonly in the U(l) part of the connection(6.96), andthat
the translationor (in otherformulations)diffeomorphismsectorsdo not contributenon-trivially to
observablesin the correspondingWitten typetheory. This conclusionis supportedby the fact that
MH containsthe cotangentbundleof the moduli spaceof stablevector bundlesas an open dense
set, the topologically trivial fiber directionsbeingspannedessentiallyby the Higgs fields ci’.

7. Topological gravity

7. 1. Introduction

Quantumgravity in two dimensionsis asubjectthathasreceivedconsiderableattentionrecently.
String theory, in its first quantizedform, as formulated by Polyakov [7.1, 7.2], is the study of
two-dimensionalgravity coupled to d bosonic fields. There is a critical dimension,d = 26, in
which this theory is easily analyzed,while for other values of d there havebeen,andstill are,
great conceptualand computationaldifficulties to surmount. In an attempt to move away from
this critical dimension,Polyakov,Knizhnik andZamolodchikov[7.3, 7.4] quantizedthe quantum
gravity andmatteraction in a light conegauge.In this gauge,it is possibleto completelysolve the
theory whend < 1. The reasonfor this is that thereis a residualSL(2,R) symmetry that may be
employedto determinethe anomalousdimensionsof all conformalfield theoryoperatorsthathave
the correctconformal weight.

Distler andKawai [7.5] andDavid [7.6] havereproducedtheseresultsin the conformalgauge.
The significanceof this approachis that it allows for an extensionto higher genussurfaces,a
possibilitynot directly availablein the light conegauge.Thecritical exponentswerestraightforwardly
calculatedandthe partition functionas a functionof the areawas determined.But this is not the
completestory yet, sincethereare some assumptionsin thesederivationsthat, although natural,
are non-trivial to check,and we refer to the recentwork of D’Hoker [7.7] for a discussionanda
resolutionof someof the problemsinvolved.

The approachesoutlined aboveare basedon continuum field theory on Riemannsurfaces.An
alternativethat hasbeendevelopedis to replacethe two-dimensionalsurfacewith a triangulation
of it. The dynamicsof the geometryis then encodedinto the sum over all triangulations,which
replacesthe path integral over the metric. The weightings assignedto the verticesand edgesare
determinedby the requirementsof a fixed area—tobe integratedover at the end—andcorrect
Euler number.Technically, this is achievedby consideringthe dual lattice,and treatingit as being
generatedby a i’~matrix theoryof N xN Hermitianmatrices.Thesediscretetheoriesare,somewhat
surprisingly,easierto dealwith, andthe resultsobtainedagreewith their continuumcounterparts.
The advantagesof thesemethodsarethat they yield non-perturbativeinformation.This hasbeen
mademanifest in the remarkableexact solutionsof Brézin and Kazakov, Douglasand Shenker,
andGrossandMigdal [7.8—7.10]. Theseauthorswere ableto turn the problemof determiningthe
matrix model partition function into one of solving aparticular differential equation.With these
developments,onehasthe prospectof finding nonperturbativegroundstatesin string theory (albeit
still with d < 1).

In a seeminglydifferentdirection,Labastida,Pernici andWitten [7.11] constructeda topological
field theory (of Witten type) for gravity in two dimensions.Theirs is a metric approachto
topologicalgravity. A gaugetheory version,having someadvantagesover the metric formulation,
was put forward in ref. [7.12]. The naturalobservablesin this context, suggestedin ref. [7.11],
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are relatedto the socalled Mumford classes[7.13—7.15].This identification was furtherpursued
in refs. [7.12, 7.16]. Soon after, Witten [7.17] and Distler [7.18] establishedthat particular
observablesin topologicalgravity correspondto the correlation functions of the k = 1 matrix
models, the evaluation of the topological observables agreeingwith the values obtainedin ref.
[7.10]. Distler arrived at this result by firstly identifying d = —2 matter coupledto quantum
gravity as the topologicalgravity model of Labastida,Pernici andWitten. Using the propertiesof
this topological field theory and repeatedbosonizationhe was able to determinethe correlation
functionsof the arbitraryk matrix modelson the sphere.Witten’s approachdoesnot rely on any
particularLagrangian.Instead,correlationfunctionsarerelatedrecursively,n + 1-point functionsto
n-point funtions, usinggeneralpropertiesof topological field theory on Riemannsurfaces,as well
as additional information provided by the structure of the compactified moduli space of Riemann
surfaces.In this way, all the correlationfunctionson the spherecould be determined,and in ref.
[7.19] theseconsiderationswere extendedto genusg = 1 as well as to the highermatrix models.
The explicit formulaeon higher genussurfacesare difficult to arrive at in this very generalsetting.
Verlinde andYerlinde [7.20] were able, using a particular gauge theoreticaction for topological
gravity, to derive recursionrelationson arbitrary genussurfaces.Togetherwith the resultsof ref.
[7.21], this establishedthe equivalenceof pure topological gravity and the k = 1 matrix model.
Basedon this andotherevidenceit is nowgenerallybelievedthatminimal conformalmattercoupled
to two-dimensionalgravity is equivalentto topologicalgravity coupledto certaintopologicalmatter.

We cannotdo justiceto all of the abovetopics in a short space.Reviewingconformalfield theory
andmatrix models would take us too far afield, so in this sectionwe have settled for the more
modestaim of establishingthe connectionbetweenthe various formulationsof topologicalgravity
in etwo dimensionsmentionedabove.

7.2. Two-dimensionalgravity

The moduli spaceof interestin two-dimensionalgravity is the moduli spaceMg of Riemann
surfacesof genusg. As we havealreadyalluded to in section2, severaldifferent, but equivalent,
definitionsof Mg arepossible.Quitegenerally,we will taketopologicalgravity to be afield theoretic
realization of any of these classical descriptions.

Let us then formally define Mg to be the spaceof metrics on a (compact,oriented) surface
Xg with g handles,quotientedby the action of the group Diff(Xg) of orientationpreserving
diffeomorphismsof Xg, and the Weyl group W (Xg) of conformal rescalingsof the metric. The
finite-dimensionalspace Mg is not quite a smooth manifold but if, instead of Diff(Xg), one
takesthe group Diff0 (Xg) of diffeomorphismsconnectedto the identity, one obtainsTeichmüller
space

Tg, which is smooth. Mg is then the orbifold quotient of Tg by the modular (or mapping
class)group it

0 (Diff (Ig)) = Diff (Xg ) / Diff0 (Xg). Since largediffeomorphisms(like large gauge
transformations)are difficult to implementat the level of Lagrangians,the topological theorieswe
will discussbelowappearto give usonly a descriptionof Tg (which is topologically trivial). But,
provided that the action and the observablesare modular invariant, this is sufficient to describe
the topologically non-trivial moduli spaceMg.

The first approach to topological gravity, suggestedby this definition of Mg, will thenbe based
on the fact that two metrics on Xg can only differ from eachother by diffeomorphisms,Weyl
rescalings,and finite deformations.It is thereforepossible,using the shift, diffeomorphismand
scaling symmetries,to descenddirectly to Mg by demandingthat the dynamicalmetric (i.e., the
one to be integratedover in the path integral) be equalto a given fixed metric on Eg, perhaps
up to termsthatparametrizethe moduli space(e.g.,Beltrami or quadraticdifferentials).Even so,
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therearestill somechoicesto be madein the gaugefixing. In section7.3 we will chooseonegauge,
studiedby Labastida,Pernici andWitten [7.11], which retainsconformal invarianceof the action
with respectto the metric that is singledout on the manifold. The BRST symmetryof this actionis
not the supersymmetryusedby Distler [7.18] in his approachto topologicalgravity, and in order
to makecontactwith his work (section7.4), we explainthe existenceof this secondsupersymmetry
and, directly relatedto that, the equivariantnatureof the Labastida—Pernici—Wittenaction. Another
“metric” constructionof topologicalgravity could be basedon the field equationR = A = const.,
togetherwith diffeomorphisminvariance,but we will not pursuethis here.

In sections6.2.7 and 6.2.8 we have already seen that a gauge theoreticdescriptionof ~ is
possible. In this casethe spin connection and the zweibein are (initially) treatedon an equal
footing—asindependentcomponentsof a gauge field. This theory is an exampleof the super-BF
theoriesdiscussedin section5.4, andwas introducedin ref. [7.12]. Heretoo, thereis somelatitude
in the possiblegaugechoices(andgaugegroups),andwe shall concentrateon an economicaland
efficient formulationdueto Verlinde andVerlinde [7.20].

Thereis anotherdescriptionof Tg andMg which we havenot yet mentioned,in termsof complex
structureson the surfaceXg. In two dimensions,acomplexstructureJ is equivalentto a conformal
equivalenceclassof metrics. Teichmüllerspacemay thenbe identified with the spaceof complex
structuresquotientedby Diff

0 (Xg). In this way of dealingwith the theory,the Weyl invarianceis
an irrelevant concept.Oneshouldthenget athird descriptionof topologicalgravity following these
lines. Again wedo not pursuethis here.However, for an applicationto stringtheoryseeref. [7.22].

The variouspossibilitiesof describingthemoduli spaceof interestencourageoneto believethat it
is possibleto dispensewith the actionaltogether.Indeed,topologicalgravity shouldperhaps(like all
otherWitten type theories)most fundamentallybe regardedas being intersectiontheoryon moduli
space.The relevanceof a field theoreticrealization should neverthelessnot be underestimated.A
judiciouschoiceof startingaction, combinedwith standardfield theoreticmanipulations,can lead
to considerableconceptualclarity andpowerof computation.

7.3. The Labastida—Pernici—Witten action

In this sectionwe will outline an alternativeto the usual methodof constructinga topological
field theoreticdescriptionof moduli spaces.Our constructionsso far havebeenbasedon the useof
definingequations(field equations)for the moduli space.It is, however,alsopossibleto constrain
the fields purely algebraicallyto lie “in the moduli space”. In the caseof the moduli spaceof
Riemannsurfacesthis amountsto requiring

g,,p = g(y)(,p , (7.1)

where g(y)afl representsthe metrics on Xg that parametrizethe moduli space; the Teichmüller
parametersy can, for instance,be chosento be Beltrami differentials.The usual shift invariance
is, of course, large enoughto guaranteethat this is possible. In the context of Donaldsontheory
the analogousconditionwould be that the gaugefield is set to oneparametrizedby the moduli of
self-dual instantons.

Though in (7.1) we have indicated that the metric is fixed to lie on the moduli space,it is
possibleto imposethe strongercondition that the metric is restrictedto be a preferred (fixed)
metric on Xg,

= g~?p , (7.2)

andwe shall follow this alternativein the sequel.
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It mayseemunlikely atfirst thatbothgaugechoicesdescribethe moduli space;nevertheless,this
is indeedthe case.With the first condition, obviouslydescribingthe moduli space,the topological
field theory action, in a simplified form, is that of the diffeomorphismghostsand their BRST
partners.In this action the ghostshave no zero modesand the moduli already appearin g(y).
The secondcondition leadsto a formally similar ghostaction. In this instance,however, thereare
anti-ghostzero modesto parametrizethe moduli, eventhoughthe metric g° is fixed. This will be
exhibitedbelow.

The field contentand (nilpotent) transformationrules adoptedby Labastida,Pernici andWitten
are (L is the Lie derivative)

{Q, g,~p} = — pg~p + L~(gyp) , {Q, çi’~,p} = —C,,, (g,~p) — L~(~‘(kp) — pi,u,,,~ + rg,,p

{Q,c”} = ~L~(c”) + ç~” , {Q,~’}= L~(ç~)— L~(c”)

{Q,b”~} = ~ {Q,d”~} = 0

{Q,p} = L~(p)+ r , {Q,r} = L~(r)—L,~(p)

{Q,B~~}= Dap , {Q,D”fl} = 0 - (7.3)

Thetransformationsfor the metric aredecomposedinto the shift symmetry,conformaltransforma-
tions anddiffeomorphisms.The ghostfields parametrizingtheseall haveghostnumberone. The
otherfields (~, ‘r, B~I’,D”~’,~ dofi) haveghostnumber (2,2,—2,—l,—l,0), respectively.The
tensorsB, D, yi, b andd are symmetric.

The action is takento be

S=f~~{Q,[b~(gQfl_g~0p)+B”~Wafl]} - (7.4)

Beforeexpandingthis out, let us notethat thereis asecondsymmetryin this theory.The integrand
is clearly invariant underthe transformations

sg,~p= ~ , sw~= 0 , sB”~= b” , sb”~= 0 , (7.5)

and the actionmay indeedbe rewritten as

s = J ~/~{Q,s[B”~(g~fl - g2~)]}. (7.6)

Thes symmetryis of coursethe usualshift symmetryandsodiffers from Q by the diffeomorphisms
andconformalscalings.They satisfythe algebra

= {Q,Q} = {Q,s} = 0 , (7.7)

which determinesthe transformationrulesunders for the restof the fields.
The importanceof the observationthat the actionhastwo invarianceslies in the fact that one

may work “equivariantly”. The two symmetriesallow for a good descriptionof the observablesin
topologicalgravity quite generally[7.20, 7.23]. However,for the moment,let uscontinuewith our
analysisof the action. Expanding,we find

S = J ~ [d’~”(g~p — gyp) + D””’~~p— b”” (L~(g~p)+ W~p—

+B~P(Lc(W~p)_pWap)Bafl(L~(gap)_tgap)}. (7.8)
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Mattersare greatly simplified by integratingout the multiplier fields d andD, sincethen the
constraint (7.2) is imposedand çti is set to zero. On performingthe p andr integrals,the trace
parts, with respectto the metric g°, of b and B are also set to zero. The action now has the
particularlysimple form

s = f ~ (b”flv~c~+ B”flv~~), (7.9)

wherethe covariantderivativeV0 is with respectto the backgroundmetric andthe labelson q~and
c havebeenloweredwith that metric.b andB satisfy the tracelessnessconditionsg~pb~fl= 0 and
g,~~B”13= 0. In complexnotationthis actiontakesthe morefamiliar form S = f~.b~c+ B0q~+ c.c.
of a supersymmetricb—c system[7.24].

After all thesemanipulationsonemay wonderwhich of the symmetriessurvive. In fact, sincewe
are only using algebraicequationsof motion to eliminate fields, we maintainall the symmetries
(seesection3.3.1).We notethat the s symmetryremainsmanifest.It is straightforwardto seethat
the actionof Q on the remainingfields equalsthatof s up to diffeomorphisms.

We now have the action and the symmetries,and it only remainsto interpret the theory. The
Riemann—Rochtheoremgives us the numberof zero modesof the tracelesssymmetrictensorB
(b) minusthe numberof zeromodesof ~ (c). On the spherethereareno B (b) zero modes,while
on the torus thereis one. Let us concentrateon genusg > 2. We have6g — 6 B andb zero modes,
whereasthereare no zero modesof 4 or c. Now, dimTg = 6g — 6, and the tracelesssymmetric
B zero modes (equivalently,holomorphicquadraticdifferentials) parametrizeTeichmüllerspace.
Moreover,dueto sB = b, the anti-commutingb zeromodesmaybe consideredas one-formson ‘Tg,
with s acting as the exteriorderivative.In accordancewith the argumentsof section5.3.2 andthe
general structure of Witten type theories, the complete BRSToperator Q alsoreducesto the exterior
derivativeon 7~andMg, becauselocal diffeomorphismsareinoperativethere. The identification
of the B zero modesas local coordinateson Teichmüllerspaceandthe b zeromodesas differentials
is strengthenedby the fact that, when the moduli are explicitly parametrizedin the metric (7.1),
thereare preciselyenoughdegreesof freedomgeneratedso as to be able to enforcethat the B
andb zero modesare set to zero [7.11]. Such a cancellationpreventsan over-representationof
Teichmüllerspace.

7.4. Relationshipwith quantumgravity andmatrix models

Distler [7.18] hasderivedthe modelof the previoussectionfrom a totally differentpoint of view.
Considera theory of d bosonscoupledin the normal way to quantumgravity in two dimensions.
Onemay gaugefix the quantummetric to the conformal gauge*)

= e”g~0p - (7.10)

Naive conformal invariancewould seemto indicate that the theory is, in fact, independentof a.

However, as is well known, the conformalanomalypreventsthis from beingtrue. It can be shown

‘) We havechosento beconsistentin usingthe symbol ~ to denotethe ghostassociatedwith the shift field ~, throughout
this report;henceour useof ri to denotethe Liouville field. Ournotationthereforediffers slightly from thatof the papers
we aredescribing.
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that an effective theory of “inducedgravity” is generated,with the action [7.5, 7.6]

S = ~ ~qR0a_2~ue~(~)+ ~ - (7.11)

The constantsthat appearare

q = ~(25 - d)/3, a = -(l/VT~) [~/(2s -d) - ~/(1 _d)] , (7.12)

and R°is the curvaturescalarof the metric g°. Notice that the ghostsappearin exactly the same
way as in (7.9). This is becausethecondition (7.2) matches(7.10), whenthe a field is scaledout
(as it is).

The following first orderaction, with anticommutingfields, gives a d = —2 [7.24] contribution
to the action (7.1l)*),

~ ~ ~2g0af0~iip) . (7.13)

By bosonization,(7.13) plus the first two termson the right handsideof (7.11) (with d = —2),
maybe representedby abosonicsystemof commutingfields,

- (7.14)

Equation(7.11),withoutthe cosmologicalterm,combinedwith (7.13)maythereforeberepresented
by the sameactionas derivedpreviously (7.9),

S = !fd2xV’~(baflV~cfl + B”flV~~) - (7.15)

Within this approachthe cosmologicalconstantterm is treatedas aperturbation.
The symmetry that Distler attributesto this action is the one that we have designateds. It is

independentlyinvariantunder the usual BRST diffeomorphisms.It is possibleto establish(when
= 5~2)that correlationfunctionscalculatedwith this actionagreewith thoseobtainedfor the k

matrix modelsin ref. [7.10]. From the topological field theorypoint of view, the constructionof
observables,using the basicset of fields (7.3), is not obvious. On the reducedset, that is those
appearingin (7.15), thereare some,moreor lessobvious,candidatesthatarisefrom the conformal
field theory point of view. One suchoperatoris

0, = ~(B2~q~ + bzzcz)(B~c/~+ b±~cz), (7.16)

which is to be integratedover the sphere.Beforeevaluatingthis we needto deal with the problem
of c andq~zeromodeson the sphere.Therearethreeof each,correspondingto the threeconformal
Killing vector fields on the sphere.Following the proceduresoutlined in sections3.9.1 and 6.2.1

*) By making useof the resultsof section6.2 it is easyto seethat this action hasd = —2. The first term is gauge
invariantandmetricindependent,gaugefixing representedby the secondterm spoils the metncindependence.However,
the ghoststhat onewould generatewould restorethe metric independence.In this case therearetwo commutingghosts
giving d = 2, overall d = 0, andthe result follows.
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we could parametrizethesemodesand,in fact, set them to zero. We do thisdirectly by settingthe
valueof the ghostsat threepreferredpointsx, to zero.This is done in a manifestlyBRST invariant
fashion, whencenothingdependson the particularpointschosen.Let O~,and i~,be constantfields
transformingas

{Q,o~}= , {Q,~}= 0 . (7.17)

Now add to the action (7.15) the following term:

= ~[r~c”(x~) + a~’~(x,)+ c~(x,)0pc”(x,)] , (7.18)

which on integratingoverthe o. and i~yields the following insertionin the path integral:

3 3

[Ic:(x,)c:(xj)O(~(x,))O(~(xj)) ~[Icc~O(cbz)o(1x)(x,) . (7.19)

Theseinsertionswill reappearas punctureoperatorsin our discussionof observablesin section7.5.
We would like to calculate

(ex~(~foi)flczc±O(~)O(~)(xi)), (7.20)

wherethe expectationvalueis takenwith respectto the action (7.15) andthe zero modeinsertions
(7.19) areincluded. The quarticterm in the actionmay be turnedinto a cubic term with the help
of multiplier fields. Specifically one replaces). fs2 0, by

+ b:cz)X~+ ~ + b~c)L—4E-X~]. (7.21)

With the introductionof thisterm into the actiononerecognizesthe theoryas a Thirring typemodel
(the fields, however,having exotic statistics).Sucha model hasbeenanalyzedbefore [7.25] and
onemay call on this work to completethe evaluation.Onefinds that (7.20) is equalto 1/(1 —).)

in agreementwith the resultof GrossandMigdal [7.10] for the k = 1 matrix modelon the sphere.

7.5. A gaugetheoryof topologicalgravity

The problem of constructingand interpreting observablesmay be overcomein a Witten type
gaugetheory formulationof topologicalgravity. Sucha description,for genusg � 2 as a (P) SL (2,R)
super-BF theory,hasfirst beengiven by MontanoandSonnenschein[7.12]. At this pointwe remind
the readerof section6.2.8,where we showedthat the condition F~,= 0, for A = Jw + Pae’~,is
equivalentto the statementthat the spin connectioncv is torsion free and hasconstantnegative
curvature,providedthat the zweibeinis invertible.If one imposestheseequations,oneremovesthe
Liouville field (the scalefactor of the zweibein) from the dynamics;the theory is thendescribed
entirely in termsof the ghost action. With a conventionalcovariantgaugefixing condition, the
latter is a secondorderaction.

In the following, we shalldescribetopologicalgravity in a way which differs in threeimportant
aspectsfrom the above scenario.Firstly, instead of a covariantgauge fixing of the Yang—Mills
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symmetry,we will impose algebraicgaugeconditions on the zweibein,somewhatin line with the
conditionsimposedon the metric in section7.3. Upon elimination of the Liouville sectorone is
then left with a first order ghostactionwhich, not too surprisingly, turns out to be precisely the
Labastida—Pernici—Wittenactiondiscussedin section7.3. This hasbeenshown by Li [7.26] and
will alsofollow from our considerationsbelow. Secondly,we will not eliminatethe Liouville sector,
sinceit hasbeennoticed [7.20] that keepingit considerablysimplifies the subsequentanalysisof
the theory. Another important observation made in ref. [7.20] is that, insteadof using a constant
curvatureconstraintto describethe moduli space,onecan profitably constrainthe curvatureto
vanisheverywhereexceptat certain isolated points. The resulting gauge fixed theory is then a
free,conformally invariant field theory,consistingof a Liouville sector,the first order (b—c) ghost
system,and their superpartners.This modification essentiallyamountsto replacingPSL(2,R)by
ISO(2), andwe shall therefore,thirdly, choosethis to be our gaugegroup.

In section 6.2.8 we already discussedthe contractionof PSL(2,R) to ISO(2), andwe briefly
summarizethe relevantequationshere.

Undera gaugetransformation,A = ~“Pa + ).°J,the componentsof the connectiontransformas

Oe’~= d).~+ e”b~0e”—)Pw) , Ow = d).°, (7.22)

andthe J andPa componentsof the curvatureare

F°= dw , F’~= de’~— wc~~,,eb- (7.23)

The gaugetransformations(7.22) arereadily seento be equivalentto Lorentz transformationsand
diffeomorphismson-shell (Fcz = 0), the argumentbeing the sameas in sections6.1.6 and 6.2.3.
Thisalsoimplies that the field equationsF°= F’~= 0 themselvesareLorentzanddiffeomorphism
invariant. The modified contractedB transformations,which allow us to write down a non-
degenerategaugeinvariantaction, despitethe fact that an invariant trace existsonly on the U (1)
subalgebra of ISO(2), are (B

0 = —B°,Ba = B~,with analogousconventionsfor the J and Pa
componentsof otherfields)

0B0 = ~a~).°B” , OBa = 6a~’).
0Bb. (7.24)

As in any super-BFtheory,we introduce ghostsca andc
0 for the gaugetransformations,their ghost

for ghostsçl/~andc~o,superpartnersyja andWo of e’~andw [transformingas the supervariationof
(7.22)], as well as “anti-ghosts”Xa andXo (transformingas their superpartnersBa andBo).

As theystand,eq. (7.23) andthe putativeactionS = JBFA +xdAw are obviouslyunacceptable
for a theory of topologicalgravity on surfacesof genusg ~ 1, sinceF°= 0 saysneitherthat the
curvatureis constantnorthat it is concentratedat isolatedpoints, but thatit vanishes.In ref. [7.20]
this problemwas overcomeby noting that, in order to obtain non-vanishingamplitudesin this
theory, it is necessaryto insert operators~~iBo(~\~i), which screenthe backgroundchargeproduced
by the curvatureof theRiemannsurface.Integratingover B0 one sees that these insertions generate
0-function singularitiesin the curvature,

dw(z) = >q10(z_xt) (7.25)

(herethe 0’s are two-forms, cf. section 6.2.2). This leadsto the correctequation

~fvniR(g) = 2—2g X(
1g) (7.26)
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(and hence to non-vanishing amplitudes) provided that (1/it) >, q
1 = 2g — 2. Instead of using the

screeningoperators,we can equivalently modify the flatnessconditions (on which we build the
super-BFaction) directly to read

de’~— we~2,,eb= 0 , dw(z) = ~q,0(z — x) . (7.27)

The priceone thenhasto pay in eitherapproachfor the introductionof the delta function singu-
larities is that theseequationsare no longer gaugeinvariant at the point singularitiesthemselves.
The equationsare invariantunderthe U(1), local Lorentz,transformationsbut break the inhomo-
geneouspart of the ISO(2) algebra, which corresponds to diffeomorphisms. The gauge invariance
of the flatnessconditionsmust be given up for us to move away from the torus. However, this
turns out to bea reasonableway to proceed.The shift symmetryallows oneto have“overall” gauge
invarianceof the action.

Nevertheless,weshould point out that if wehadtried to write this theoryas a modified (Schwarz
type) BF model, then we would only havehad gauge invariancefor thosegauge transformations
which vanish at the point singularities. As thesegauge transformationscorrespondon-shell to
diffeomorphisms,thenwe would be consideringdiffeomorphismsthat leave those points fixed.
This leadsus to the notion of a puncturedRiemann surface.A puncturedRiemann surfaceis
a Riemannsurfacetogetherwith somepreferredpoints (these pointsare not deletedbut rather
“marked”). The moduli spaceM(g,s) of a compactRiemannsurfaceof genusg ands punctures
ariseson consideringthe spaceof metricson the genusg Riemannsurfaceandfactoringout by the
diffeomorphismsthat leave the s “punctures”fixed. The gaugetheorywe haveconstructedis thus
seento describepreciselyM(g,s). The puncturedRiemannsurfaceplaysan importantrole also in
the Witten type super-BFtheory,to whoseconstructionwe return.

We seethat, evenwithin thisrestrictedframeworkof an ISO(2) gaugetheory,we haveseveralop-
tions available.We canuseeitherthe original or themodified flatnessconditions,andwecan declare
our symmetriesto be either gauge symmetriesor Lorentz transformationsand diffeomorphisms.
At least for our purposes,all theseapproachesare equivalent.We will use the modified flatness
condition andthe diffeomorphismghostsfor the abovesymmetries,so that 20 c” = e~c~’e”.c,
while the local Lorentz transformationbecomes,2 —p c0. The transformationruleswe adopt for the
spin connectionarethereforethe usual ISO(2) transformationrules augmentedwith the shift

{Q,w} = dc0 + Wo , {Q,i,ivo} = d~0, {Q,co} = c~o, {Q,t~~} = 0 . (7.28)

On the other hand, the transformationrulesthatare adoptedin the zweibeinsectorare

{Q,ea} = Wa — d(ea.c) + �abweb.c+ Eabebco

{Q Wa} = ~ + �°6e~0+ d(ea4)— �0,,web.~— d(~°.c)+ ca,,~oebc+ ca,,w~b.c

{Q,c”} = q~”+ c”’Opc” , {Q,~”}= c”’Op/fi — ~0pc” , (7.29)

andwhile thesehavethe form of the ISO(2) transformations,the BRST operatoris nilpotent only
when the no-torsion equationis used.The reasonfor the failure of the algebrato close off-shell
lies in the fact that, eventhough the transformationscanbe madenilpotent off-shell in the gauge
theory setting (after all, this is then just a two dimensionalversion of Donaldsontheory), the
equivalencewith diffeomorphismsholds only on shell. We should thereforeexpectthat the gauge
algebrawill closeonly on shell,when the diffeomorphismghostsareadoptedandwe insist that the
diffeomorphismghosttransformationsagreewith thosegiven in eq. (7.3).
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At this point it is convenientto switch to complexand (internal) light conenotation,

= (l/v”~)(e’±ie2)=e~dz+e~d±

so that (with the substitution cv —~ iw) the no-torsionconditionsand their super(shift)partners

read
De± de±~ we±= 0 , Dyi± dt,i±±Woe±~ wyí+ = 0 -

As the algebraicgaugeconditionson the zweibeinand its superpartnerwe choose

(7.30)

to fix the)~symmetry,and

= e , = W~_ (7.31)

to fix the ).0 symmetry. The remaining component e~> 0 of the zweibein may thenbe written
as e~= e’~, so that g~±= e2~’ and w~= ec W~wherew is the superpartner of the Liouville field
a. This exhaustsall the gauge symmetries,so that the spin connectionand its superpartnerare
unconstrained.In order to imposethesegauge conditionswe introducethe anti-ghostsc~,i~and
ë

0 for the zweibeins, and ~ ~ and ~ for the w’s, as well as their multipliers (the notation used
here is precisely that of Donaldsontheory andits offsprings,as in sections5.2—5.4).

The action is

S =fd2z{Q,x(dw_ ~~q10(z—x,)) +x÷De~+X_De

(7.32)

Rather thanexpandingthis out immediately,we can simplify mattersconsiderablyby imposing
the algebraicconstraintsdirectly, which amountsto integratingout the correspondingmultipliers.
The last simplification thatwe makeat this point is to imposethe no-torsionconstraintandits Q
variation

Dyi’ = ~qj*e±.c0
2(z_xj)

Thesecombinedwith the other constraintsallow us to solve for the spin connection and its
superpartner,

w=—*da , yjo=*d~+*c~q~02(z—x~)- (7.33)

Thenthe variationof the first equationof (7.31) yields

= (Ozcz + czOza— 0~cz— cz8~a), (7.34)

which ariseson integratingout ~ andmaybe usedto eliminatec
0. Likewise, the variation of the

secondequationof (7.31) gives an algebraiccondition on ~ (and ariseson integratingout ~‘o),
namely

= (0~~+ cb
20

2a + ~ + ~q,c~c~0(z—x,) - (7.35)
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We havebeenabit sloppyin this discussionas thedeltafunctionconstraintsthat ariseareactually
of the form e~c0 = ... and ea~o = ~ However, the determinantsthat one gets in factoring out
the Liouville field cancelbetweenthe two deltafunctions.

Taking all of theseidentifications into accountallows us to express(7.32) in the particularly
simpleform

S=fd2zV~[B(4a_~qi0(z_xi))+xAw

—~q1O
2(z_xj)(czOz + czO±)X+ b”~V~c~+ B”flV?~~] . (7.36)

The anti fields ~,,and~,,havebeen replacedby the symmetrictracelesstensorsb”’ andB’°’; for
example,bz; = ~ We see that, upon elimination of the Liouville sectorand its superpartner,
this actionagreeswith the Labastida—Pernici—Wittenaction (7.15), confirmingthe observationby
Li [7.26] mentionedabove.Actually, one could have startedwith the formalism of section 7.3,
dropped the conformal terms in the transformation rules (7.3), i.e., set p = = 0, and imposed
insteadthe conditionsgzz = g~ = 0 , Wzz = = 0 and ~/g~R(g) = >,q,02(z — x,) (andits
shift variation) to arrive preciselyat (7.36)*)~ We seemto have gained nothing by considering
the model as a gaugetheory. The differencesbetweenthe two formalismslie in the fact that from
the gaugetheory point of view we naturally haveextrafields, namely the spin connectionandits
associatedghosts.It is with thesefields thatwe may createobservables.

7.6. Gaugetheory observables

The invariantpolynomialsof section5.2.7 arethe obviouscandidatesfor observables.Thereare,
however,someproblems that we needto overcome.Firstly, the invariant polynomialsaredefined
with the help of an invariant trace. We haveseenthat no such trace exists for ISO(2) in general,
but havealso observedthat thereis an invariant U(1) trace.This meansthat as long as we only
consider the fields in the geometricsectorof the theory, the invariants that one can form come
only from the U(1) part of the algebra.The seconddifficulty is that, as we explainedin section
7.3, we wish to work equivariantly,so that the “descentequations”are producedby acting with
d + s ratherthand + Q, with the actionof the shift symmetryon the U(1) geometricfields being
[cf. (7.5)],

SW= Wo , syi
0 = 0 , Sc0= c~o, s~o= 0 - (7.37)

It is quite straightforwardto determinetheform of the relevantpolynomialsfrom the knownonesof
section5.2.7. In the U(1) sector,the invariant polynomialsassociatedwith Q are (dcv + Wo+ ~oY’.
If we substitute Wo —~ = Wo + dc0 in (7.37) then s becomesQ on this set of fields. Then
substitutingw~for Wo in the polynomialsmakesthem s invariant. In equationsthis meansthat we
are interestedin the operators

~ -

‘) Incidentallythis showsthat it is indeedsafe to usethe groupISO(2) in the gaugetheorysettingto describethemoduli
of highergenusRiemannsurfaces.
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In this expressionthe termsare orderedaccordingto their form degree,which is indicatedby the
value of the superscript.Then the equivariantBianchi identity

(d + s)(dw+ Wo + dc0 + cboY = 0

becomesthe descentequation

~_ 0 ,j 0_ 1 ,j l_ 2 d 2_0 (7
— sa~, a~— sa~, a~— sa~, a~—

Recall the discussionon the triviality of observablesin section5.3.3. The argumentwe havegiven
hereis essentiallya runningbackwardsof observation(ii) [7.27] madetherc.

The setof operatorsah form the basicobservablesin topologicalgravity. The fields out of which
they are constructed,however, were eliminatedfrom the functional integral, by their algebraic
equationsof motion,andsodo not appearin the reducedaction (7.36).The basicsetof observables
in the reducedtheory arethenmadeup of the abovepolynomials,but with the fields cv, Wo, c0 and
~oeliminatedin favor of their equationsof motion.

In sections5.2 and 5.3, we identified thebuilding blocksof the observablesof Donaldsontheory
as the characteristicclassesof the Atiyah—SingeruniversalbundleQby showing that the zeromode
sectorof Donaldsontheorydescribespreciselythe geometryof Q. This estabjishedthe equivalence
betweenthe field theoreticand topological definition of the correlation functionsof Donaldson
theory. In ref. [7.17] Witten hasgiven a purely topologicaldefinitionof correlationfunctionsin 2D
gravity, in termsof certainline bundlesL,, i = 1, .. - , s, on the moduli spacesM (g,s) of punctured
Riemannsurfaces,and in the following we shall sketch how, similarly, a?(x1) = Q~o(x,) can be
identified as a representativeof c,(L,).

Thus let M (g,s) be the moduli spaceof Riemannsurfacesof genusg with s punctures.The
dimensionof M(g,s) is 6g — 6 + 2s, i.e., 6g — 6 for the Riemannsurfaceand 2 for the location of
the puncture x. The fibre K~,= T~”

0~Xg is a complex one-dimensional vector space,and as one
movesin M (g,s) the K~,vary holomorphicallyto form a holomorphicline bundleL, overM (g,s)

Sucha line bundlehasa first Chernclassc, (L,), which canbe representedrationally by a two-form
a’ on M(g,s) and the topologicaldefinition of the amplitudesis

(afl(x,)..aflk(xk)) = f a7’ ~ , (7.39)
M(g.s)

where>., 2n
1 = 6g —6 + 2s, i.e., >~.., (n, — 1) = 3g —3.

For anyholomorphicline bundleL with asmoothHermitian norm , c, (L) canbe represented
by the (1,1)-form a = ~0 log Is 2, wheres is a locally trivializing sectionof L. If L = K, the Chern
(monopole) number of L is

= deg(K) = 2g—2 - (7.40)

In particular,choosings to be ameromorphicsectionof K with only simplezerosor polesat points
z, onerecoversthe definition of the degreeof K as the degreedegD(s) ~p, of the divisor
D(s) = ~,p,z, of s [Pt = +1(—l) if z, is apole (zero) of s], since

0OlogIsI
2(z) = 2iti>pkO(z_zk) (7.41)

k
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in that case.
Comparing(7.41) with the equationof motion (or vacuumexpectationvalue)

4a(z) = >qkO(z_xk) (7.42)

following from the action (7.36), andrecalling the discussionfollowing (7.25) we seethatwe can
identify a (up to an irrelevant scaling—thiswill normalize the amplitudesby a factor depending
only on the dimensionof M(g,s)) with logIsI2 for somesectionsof K. Almost tautologically, any
sections of K gives rise to a sectionof L, which, by abuseof notation,we shall denoteby 5(x,),
and a possible choiceof a, is then a, = 8M0M log Is (x, ) 2; the problem of identifying Q~oas a
representativeof c, (L,) is then reducedto the more concretetaskof showingthat ~o = OMOMa.

We now recall that on M (g,s) both the shift operators and the BRST operatorQ reduceto
the exterior derivativedM = OM + ~M. Since sa = w and, on shell,A~= 0 *) so that we can
locally write w(z,z) = w(z) + ~ we identify OMa = w(z) andOMa = ~(fl. The last step,
showingthatQ(w — ~) = ~o,follows from the transformationlaws (7.29)for w andthe constraint
(7.35) for ~o•This finally completesthe identificationof ~ (x,) as arepresentativeof c

1 (L,), and
whence the equivalence of the topological and field theoreticdefinitionsof correlationfunctionsin
topologicalgravity—moduloone subtlety,which we will now address.

The observableswe havediscussedare defined on puncturedRiemannsurfaces.Recall that the
act of “puncturing” is to quotient only by those diffeomorphismsthat leave the markedpoints
fixed. This would seemto imply that we shouldreconsiderthe constructionof the BRST operator
andorganizefor it to leavethe chosenpointsfixed. Ratherthantamperingwith Q, we can insert an
operatorat somepreferredpointswhoseonly effect is that thereis no actionof the diffeomorphisms
there.An operatorthat doesjust this was introducedin section7.4 [seethe discussionjust before
equation (7.17),and the equationsfollowing that one].This puncture operator is

P(x,) = c~c~0(~)0(~)(x,)- (7.43)

It doesnot spoil any of the symmetries,andthe new compositeobservables

a~°P(x,)= (0~—~)~P(x~)

areBRST invariant.In the courseof the abovediscussionwe havealreadychosenthe singularpoints
x, of the curvature [cf. (7.25)] to coincidewith thosepointsat which the observablesareplaced.
As there are now also punctureoperatorsat the singularities,the fact that the diffeomorphism
andgaugesymmetrieswerebrokenoriginallyat thosepointscausesno technicaldifficulties, as the
diffeomorphismsare now restrictednot to act atthesepoints.

The evaluationof the observablesrequiresspecialcareon two points. The first, which is by now
familiar, is a correct handling of the zeromodesin the theory.Thesituationhereis somewhatmore
involved due to the fact that the punctureoperatorsintroduceextrazero modesin the anti-field
sector.This comesaboutas eachpunctureoperatorfixes oneof theghostmodesto zeroso that that
modedoesnot appear in the action;the correspondinganti-ghostmodeis thennot matchedandso
also doesnot appearin the action. However, the anti-ghostmodestill needsto be integratedover
andit is not weighted.The secondfeaturethat requiresspecialcare is the treatmentof productsof
observables.The observablesnow involve deltafunctionsandwhenoperatorscomeinto “contact”

*) This equationobviously holdsaway from the deltafunction singularities.It also holds at the singularpointswhen the
ghost fields C2 andc~areput to zerothere, asthey will be shortly.
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acorrect analysisof the resultingsingularitiesmust be made.The proper treatmentof thesetwo
points is spelled out in detail in ref. [7.20].

Correlationfunctionsmaybe determinedvia asequenceofWard andSchwinger—Dysonequations;
theserelaten-point functionsto (n — 1)-point functions. The two identities, called the “dilaton”
and “puncture” equations,are

(aif~an)= (2~_2+s)(f~an) (7.44)

and

(PHan) =~(anj..iflan) , (7.45)
g ~1 g

respectively. The subscript g indicatesthe genusof the surfaceX ands is the numberof punctures.
Theseand more general relations (relating amplitudesin different genera)are derived in refs.
[7.20, 7.23] andare generalizationsandextensionsof the equationsderivedby Witten [7.17] and
Dijkgraaf andWitten [7.19]. Theseequationshavebeen employedby Home [7.28] to determine
the genus 3 and 4 intersection numbersof the stably compactifiedmoduli spaceof Riemann
surfaces.This is an impressiveachievementas thesenumbersare very difficult to computefrom
the algebra-geometricpoint of view. In particular, the genus4 intersectionnumbershadnot been
knownbefore.

The actual derivationof theseidentities requiresconsiderationof the contactterms alluded to
above.For example, in the dilaton equationone would expectthat, as a1 is essentiallyf~dcv, the
factor on the right handside would be (2g — 2). The extras contributioncomesfrom the contact
terms. Geometrically this is indeed the correct answer as (2g — 2 + s) is the Euler characterof
the puncturedRiemannsurfaceand dw should be thought of as a two-form there. A complete
expositionmay be found in the literature [7.17, 7.19, 7.20, 7.23].

Further reading
The study of dynamically triangulated random surface models was initiated in refs. [7.29—7.31],

the relation to matrix modelsfollowing from the classicalwork [7.32] of Brézin, Itzykson, Parisi
and Zuber. The link with 2D gravity was first suggestedin refs. [7.33, 7.34], and subsequent
analytical andnumericalstudieswere performed,e.g., in refs. [7.35—7.41](for a review see ref.
[7.42]). The discovery of the so-calleddouble scaling limit in random matrix models [7.8—7.10,
7.43], a careful continuum limit for surfacesof all genera at the sametime, has led to a vast
number of paperson 2D quantumgravity, non-critical strings andmatrix modelsduring the past
year.Insteadof giving a, necessarilyincomplete,list of referenceson the subject,we refer the reader
to the reviewtalks [7.44—7.48]and the referencestherein.

Topological gravity as a subjectbegan with the work of Witten [7.49], where a descriptionof
self-dual Weyl gravitational instantons in four dimensionswas given.Therewereproblems,however,
with regardsto the conformalsymmetry in this description.LabastidaandPernici [7.50], usinga
Langevinapproach,were ableto get aroundthis difficulty. In morethantwo dimensions,however,
there is considerablefreedom (and henceambiguity) in the choice of moduli space.Moreover,
the constructionof observableshadbeen,and still is somewhat,problematic.While this is not a
difficulty, as we haveseen, in two dimensions,the generalconstructionof observablesin other
dimensionsremainsan open problem. Some progressin this direction has beenmadeby Myers



296 D. Birminghamet al, Topologicalfield theory

andPeriwal [7.51—7.53].For otherwork on topologicalgravity in four dimensionssee refs. [7.54,
7.55] and the interestingsuggestionsin ref. [7.56].

The topological investigation of the multi-matrix models [7.19] suggestedits equivalencewith
topological gravity coupled to some topological matter theory. Li [7.57] proposedthat the ap-
propriate topological theoriesare the twisted N = 2 superconformalmodelsof Eguchi andYang
[7.58] andprovidedsubstantialcircumstantialevidencein favor of this proposal.The correctness
of this suggestionhasbeen confirmed by Dijkgraaf, Verlinde andYerlinde [7.59] by comparison
with the resultsof Douglas [7.60] on the correlationfunctions of the multi-matrix models. The
contactalgebraand recursionrelationsin theseandother modelshavebeen investigatedin refs.
[7.61—7.63].A ratherthoroughaccountof the possibledescriptionsof the moduli spaceof Riemann
surfacesand the relevantsymmetrygroupsmay be found in ref. [7.64]. Theseauthorsgive yet
anothertopologicalfield theorydescriptionof the moduli space.

SL(n,R) super-BFtheoriesin two dimensions,the original candidatesfor the “missingmatter” in
multi-matrix models [7.65], havebeenshownby Li to be interestingin their own right, describing
what mayrightfully be called topologicalW~gravity [7.26, 7.66], the topologicalcounterpartof W,,
gravity [7.67—7.70](for an updateon W geometryand W gravity seeref. [7.71]).

8. Renormalization

8.1. Introduction

We wouldnow like to addressthe issueof renormalizationin topologicalfield theories.The most
importantquestionwhich arisesis whetherthe topologicalnatureof thesemodelsis preservedby
the renormalizationprocedure.This is crucial from the mathematicalpoint of view; however, in
addition questions of how and why symmetries may be broken in topological field theories are of
physical relevanceif thesemodelsare to correspondto unbrokenphasesof physicalsystems.

Now, since a topological field theory is in essencea finite dimensionalquantummechanical
system,one may wonderas to the relevanceof a renormalizationdiscussion.The main point to
be stressedhere,however, is that the quantummechanicalsystemof interest is simply encodedin
a true local quantum field theory. From the field theory point of view divergencescan certainly
occur [8.1—8.3];it is only when the theory is restrictedto the appropriatemoduli spacethat the
finitenessof the model is manifest [8.4—8.6].However, as we have seenfor the caseof Witten
type theories, this restriction to a finite dimensional moduli space is simply a gaugechoice,viz, the
delta function gauge.Hence,thesetheoriesare indeedfinite. In the caseof Schwarztype theories
(e.g. Chern—Simonstheory [8.7, 8.8]), onecan establishthe finitenesssimply from the fact that
the spaceof solutionsto the field equations,modulo the gaugesymmetries,is finite dimensional.

As our first example,we shallexamineDonaldsontheory [8.9], in severaldifferent gauges.The
gaugesthat we arereferringto herecorrespondto the gaugefixing of the topologicalshift symmetry,
as describedin section5.2. Choosinga Feynmantype gauge,one finds both a one-loopdivergence
and a non-zero fl-function [8.1, 8.2]. However, in a Landau type gaugeboth of theseare absent
[8.4, 8.5]. Onethusseesthata non-zerofl-function is really agaugeartifact,andthat one’sintuition
regardingthe finitenessof a topological field theory is indeedborne out. It is perhapsworthwhile
recalling that the nomenclature“gauge dependence”is meantto refer to gaugechoicedependence,
in otherwords, the choiceof the gaugefixing parameter.Following this, we studythe sameissue
in topological sigma models [8.10], and obtain similar results [8.3, 8.6].

The renormalization issue in the Schwarztype theoriesis of a more subtle nature, and as an
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examplewe studythe pureChern—Simonstheory [8.2, 8.11—8.26]. Here the primary issue is the
presenceof a phasein a one-loopdeterminant,as we saw in section6.1.3. We evaluatethis phase
usinga momentumexpansion[8.18,8.19],anddiscussits physicalrelevancein section8.4.5.There
is the relatedissue of a peculiar supersymmetrywhich is presentwhen the theory is quantizedin
the Landaugauge [8.2, 8.27—8.29].The Ward identitieswhich ensuefrom this supersymmetry,as
well as a potentialanomaly(connectedwith the abovephase),are studied.

8.2. Donaldsontheory at oneloop

Let us beginwith the completequantumactionin the form

Sq = fd4x tr{Q,x~(F~—~aBap)+ q~DaWa+ ~[Da(Ac)(A~~A~) — ~a’b]} . (8.1)

Here, a anda’ are the gauge fixing parameters,and we should note the distinction betweenthe
full covariantderivativeDa = aa + [Aa, ], andthatdefinedwith respectto the backgroundgauge
field A~,Da (Ar) = 8,~+ [Aca, ]. This is because,for the purposesof a one-loopcalculation, we
will be decomposingthe Yang—Mills field A into abackgroundplus a quantumpart,

AAc+Aq. (8.2)

First, we expandthe action (8.1)

Sq = f d’~xtr{B~(F~— ~aBap) — 2Xa~DaWp— ~a~{X~,Xap} + t~DW

—~(D2~— {Wa, w~}+ {c, D• w})

+b[Da(Ac)(AA~)~aFb]~Da(Ac)(Du1~C+Wa)}. (8.3)

Our first calculation involves choosingthe Feynmangaugea = a’ = 1 [8.2]. Upon integrating
out the multiplier fields Bap and b, we find that the actionwhich is secondorder in the quantum
fields is given by

~~2) = fd4x tr{—.~A~[D2(A~)5~+ 2[F~(A~),]]A~—?D2(A~)c

~2XaPDa(Ac)Wp— q5D2(A~)~— ~ ~)D~(A~)Wa} , (8.4)

where only the Yang—Mills field is given abackgroundcomponent,all other fields being purely
quantum.Upon making the simplefield redefinition

2~’=~—ij, (8.5)

(8.4) reducesto

= fd4x tr{_~Aa(D25ap+ 2F,~~)A~D2C2X~DaWp 2~’DaW D2~}. (8.6)

Forsimplicity of notation,wehavenow omittedthe quantumlabel q on A, aswell as the indication
that all covariantderivativesare with respectto the backgroundA~.

The one-loopcorrectionto the effectiveactioncannowbe representedas a ratio ofdeterminants.
First we note that the determinantsarisingfrom the & andq5~systemscancelagainsteachother,
while the AA systemyields det”2 (—D2&p — 2E~p).
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The x—~—wsystemrequiresa little more care. We notice that this systemdefinesa linear map

T:Q’—*Q~+Q°. (8.7)

Here Q~,Q~andQ°are the spacesof one-forms,self-dual two-forms and zero-forms,and are
representedby w~xand i~, respectively.The difficulty hereis that the operatorT is not a map
from a spaceinto itself, andso the definition of its determinantrequiresa little care. However,
following Schwarz [8.30], we considerthe adjoint operator

T*:Q~+QO_+Ql , (8.8)

andthen form the product

T*T:QI __~Ql (8.9)

In this case,the determinantof T* T canbe defined,andonetakes

detTEdet~2(T*T). (8.10)

Onefinds

(T*T)(,p = (D2ôap— 2F~) . (8.11)

Alternatively, this can be verified, for example, by writing T as

( / Oi\ ( D
0 D1 ‘\ f’,,,~ 8 12

~ X ~ k~—D~ D0ô11 — �jjkDk) ~ , ( . )

wherewe haveusedthe self-dualityof Xafi to eliminatethe Xii components.
The effective actionto one-looporder is now given by

/det(—D
2ôap— 2F)\

F(A~) = S(A~)— log (\det(_D2öap _2Fap)) (8.13)

We should note that we havebeen assumingthat the map T hasno zero modes,which is true if
we restrictour attentionto the caseof isolatedinstantons(i.e. zero-dimensionalmoduli space).

We can regularizethesedeterminantsby using, for example,the proper time representation.The
one-loopcontributionto F canbe written as

~Trf f{exp [ +t(D2&p + 2F~)]— exp[ +t(D2&p + 2~p) ]} , (8.14)

where� is a regularizationparameter,the limit � —f 0 beingtaken. In evaluating(8.14) we find a
divergentterm proportionalto 11�,andwe can computeit usingthe Schwinger—DeWittexpansion
for the heatkernel. The coefficientsin this expansionhavebeengiven by Gilkey [8.31] for general
operatorsof the form —D2 + X. The relevantcoefficient hereis the a

2 coefficient,which is given
by

a2 = -~trF
2+ ~trX2 — ~trD2X . (8.15)

Combiningthe a
2 coefficientsfrom the two operatorsin (8.14),we find the divergentterm hasthe

structure[8.2]

�‘ tr(F~)2 . (8.16)
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The coefficientof this divergentcontributionis the fl-function, andthe readercan checkthat it
hasthe usual N = 2 super-Yang—Millsvalue [8.1, 8.32]. The importantpoint to notehereis that
it is (F + ) 2 which is renormalized,ratherthanF2, as in the caseof conventionalsuper-Yang—Mills
theory. This is essentialin preservingthe topological natureof the model, as it is the former
quantitywhich appearsin the treelevel action. Thus the one-loopeffectiveaction remainsaBRST
commutator,guaranteeingmetric independenceof the partition function.

In ref. [8.1], the fl-function was computedusingdimensionalregularization.Althoughthe same
numericalcoefficientwas obtained,it was foundthat only F2 was renormalized.This discrepancy
canbe tracedto thefact that dimensionalregularizationis amomentumspaceprocedure,andthus
local surfacetermsare discarded[F2 and (F + )2 differ by such a term,namelyFF1.

A naturalquestionto ask at this point is: sincea topological field theory is a theory with no
local excitations,i.e., its phasespaceis finite dimensional,why is therea divergenceat one loop?
The answerto this questionis in fact quite simpleand is as follows: we first notethat the infinity
mentionedaboveis an off-shell divergence;on-shell,however, i.e., when F4 = 0, we find that the
theory is finite. In fact there is no one-loopcorrectionto the effective action, since the ratio of
determinantsin (8.13) cancelon-shell (whenF = F). This is exactlyas wewould haveexpected,
sinceon-shell in this caseis definedto meana restriction of the theory to the instantonmoduli
space,which is certainlyfinite dimensional.

A nice way to seethis result immediately,without generatingthe off-shell divergence,is to choose
the ô-function gauge. This is defined by choosinga = a’ = 0 in (8.3). Since the action now
containsa term of the form BaPF

0•~we can integrateover the multiplier B to enforcea delta
functionconstraintin the pathintegral. Thisensuresthat only instantonconfigurationsarecounted,
andhenceno divergencewill appear.

More explicitly, let usexaminethe theory to one-looporderwithin the backgroundfield method,
in the Landaugaugea = a’ = 0 [8.4, 8.5]. Proceedingfrom (8.3), rescalingb andusing (8.5) we
find the quadraticaction

~(2) = Jd4x tr{2BaPDa(Ac)A~ + 2bD~(A~)A~~D
2(A~)c

— 2?l’Da(Ac) — ~D2(A~)~} . (8.17)

As before, the ?c and ~ determinantscancel. However,we now note that in addition to the
Grassmannodd X—~—Wsystem,we have an evenB—b—A system.Both of thesedefine the linear
map T, given in (8.7).Thus, irrespectiveof how we chooseto definethe determinant,we seethat
the correspondingratio of determinantsis equal to I. We thus obtain the result that the entire
one-loopcorrectionto the effective actionvanishes,the theory is finite andthe fl-function is zero.

It is importantto studyfor a momentthe dependenceof theseresultson the gaugechosen.We
havejust foundthat in the Landaugauge(a = a’ = 0), thereis no one-looprenormalization.This
agreeswith ourargumentsconcerningthe fact that the deltafunctiongaugetestrictsus immediately
to the appropriatefinite dimensionalmoduli space,therebyensuringthe absenceof divergences.
However, if we choosethe Feynmangauge (a = a’ = 1), thenwe obtainthe resultgiven in (8.16).
In this casethereis aone-loopdivergence,of the form �_‘ (F+ )2~If we now go back to (8.3), and
integrateout the B field, we obtain a term in the actionof the form a1 (F4 )2• Choosinga =

meansthat_thekinetic term for the A field is the usual Yang—Mills action, F2, plus the instanton
numberFF (which doesnot affect the equationsof motion). Thus when we usethe background
field methodwe will be expandingabouta solution of the Yang—Mills equations.It is therefore
not surprisingthat in this casewe do generatea divergence,as it is only when the backgroundis



300 D. Birminghamet a!. Topological,fie!d theory

further restrictedto be an instantonthat this divergencecancels.
We can interpretthe aboveresultsas affecting the renormalizationof the gaugeparametera, as

follows. In the Landaugauge there is no renormalizationof a. However, in an arbitrary a ~ 0
gauge,we haveseenthat the a— (F + 2 term getsrenormalizedby � ~(F4 )2; thiscorrespondsto a
renormalizationof a. This situationis analogousto the onethat arisesin QCD for the conventional
Yang—Mills gauge fixing parametera’. In the latter caseone finds that only in the Landaugauge
(a’ = 0) doesthe parametera’ receive no renormalization,see,for example,ref. [8.33].

Furthermore,one should also note that we can identify the gauge fixing parametera with the
couplingconstantof the theoryg2. In particularthen,sincethe theory is independentof the choice
of a, it is also coupling constantindependent.One-loop results (and indeed classicalresults) are
valid to all ordersof perturbationtheory, anda legitimate gauge choice is a = 0, or equivalently
g- = 0.

Given the aboveanalysis,it is naturalto ask: what is the uniquevalueof the fl-function within
the Vilkovisky—DeWitt [8.34, 8.35] effective actionprogram?For thosereadersunfamiliar with
this subjectwe refer to the reviews [8.36]. We shall also illustrate this techniquein section8.4.4
in relationto Chern—Simonstheory.

To implementa Vilkovisky—DeWitt construction,one must begin with the full set of classical
fields and their local symmetry transformations.The difficulty here is that the symmetriesof
the classical action are reducible (i.e., they possesszero modes). The usual Vilkovisky—DeWitt
constructionis not suitable in this case.It is, however, reasonableto conjecturethat a modified
Vilkovisky—DeWitt procedurewill yield a vanishingfl-function as the gaugeindependentvalue.

We saw in section 5.2.4 that Donaldsontheorycan be obtainedby twisting conventionalN = 2
super-Yang—Millstheory. In the latter case,it was known [8.37] that the fl-function was exactat
one-looporder.Sucha propertycanbe seento possiblyhaveits origin in thefact that thereexistsa
twisted (i.e. topological) version of the theory (seesectionalso 4.4.6). Indeed,the questionarises
as to which propertiesare left invariant undersuch a twisting procedure.As we noted in section
3.6, the different interpretationsof a theory lie in the physical state conditions imposed. For a
study of someof theseissues,we refer to ref. [8.381.

8.3. Topologicalsigma modelsat one loop

To further illustratethe featuresof the delta functiongauge,let usexaminethe two dimensional
sigma modelsof section4 within this gauge [8.6]. The one-loopanalysisin this caserequiresuse
of the backgroundcovariantcoordinateexpansionsthat were usedin the studyof the Nicolai map
for thesetheories(seesection4.4.3).

Recall from (4.48) that the sigmamodel actionin the deltafunction gaugeis simply

Sq = I d2a{BaiP~’pja~u’+ ~aj[D~5ij + ~�Qp(DkJhi)8Pu1]Ck} . (8.18)

To perform a one-loop calculation we write u’ —~ U’ + I~’, where u’ is an isolated classical
background,and ~‘ is the quantumfluctuation. We thenexpandthe action to secondorder in
the quantumfields, bearingin mind that the ghost,anti-ghost,andmultiplier arepurely quantum.
Thus, we only needto expandPf~’p~a~u~to first order in ce’. From (4.57) we have

+ P~’~~D13~’+ ~ . (8.19)
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The quadraticaction is then

~(2) = f d2a{B(,i [D’ö’~ + ~�(~p(DiJ’k )liP uk1~+ ~,i (D’~ô’
1+ ~ (DIJ’k )OPuk )C~}

(8.20)

Integratingover the quantumfields, we see thatwe havea ratio of determinantswhich is equal
to I. Eachsystem defines amapfrom the spaceof vectors~‘ or C’ to the spaceof self-dualtensors
Bat or C(/1. Irrespectiveof how we chooseto regularizethesedeterminants,we havethe result that
the entire one-loopcorrectionto the effectiveactionvanishes.Thereareno divergences,the theory
is finite, andthe fl-function vanishes.

The renormalizationof the sigmamodel actionin the a = 1 gaugehasbeenstudiedin ref. [8.3].
While the result in that caseis quite tediousto obtain, it was found that the fl-function for both the
target spacemetric andcomplex structurewere equalandnon-zero.This guaranteesthe one-loop
preservationof the topologicalpropertiesof the theory,since,with thesevalues for the fl-functions,
it is P~,PJ13,,u’ li,,~u

1 which is renormalized,ratherthan simply h”~gjj lia u’ lip u’ as in conventional
supersymmetricsigma models.

We have illustrated that by usingthe freedomto choosea delta functiongauge, onecan prove
that the entire one-loopcorrectionto the effective actionvanishesfor bothDonaldsontheory and
topological sigma models.This resultcanbe seento hold for all Witten type field theories,as it is
in thesecasesthat the gauge fixing of a topologicalshift symmetry is performed.Thus, for these
modelsa non-zerofl-function is really a gaugeartifact.

8.4. Renormalizationin Chern—Simonstheory

In section6.1, the pureChern—Simonstheory in threedimensionswas discussedandthe salient
topological featuresof the model were explored.Of necessity,one-loopquantumcorrectionswere
included at this point as they entera properdiscussionof the framing issue,but the approach
takentherewas to appealto generalresultsin index theory.Oneneedonly recall that the phasein
the one-looppartition function was obtainedby an applicationof the Atiyah—Patodi—Singerindex
theorem.

Here, we would like to readdressthe entire issue of quantumcorrectionsin this model from a
more pedestrianpoint of view. By regularizingdeterminantsof operators,the one-loop resultscan
be calculatedin a simpleanddirect fashion. As in our discussionof Donaldsontheory,wewill then
deal with off-shell correctionsto the effective action, within the context of the Vilkovisky—DeWitt
program.The physical relevanceof theseresultswill thenbe examined,andfinally, weclosewith a
sectiondescribinga peculiartype of supersymmetrywhich is presentwhenthe theory is quantized
in the Landaugauge (on a flat three-manifold),andexaminethe potentially anomalousnatureof
this symmetry.

8.4.1. Regularizationofdeterminants
The backgroundfield methodis a powerful tool for computingcorrelationfunctionsin quantum

field theory,and we havealready applied this techniquein the previoussubsection.In order to
gain a better understandingof the subtle phasethat arises in a one-loop analysisof the pure
Chern—Simonstheory, it is usefulto first review how determinantsof operatorsencodethe lowest
orderquantumcorrections.

In a path integral formulation of any quantum field theory, one is confrontedwith formal
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expressionslike

z = fdq~e1f~ . (8.21)

Here ~ is agenericfield, andthe functional integralover all physicallydistinct field configurations
needsto be mademore precise.H is an elliptic Hermitian operatorwhich may dependon the
backgroundfields andwe will assumethat thetheory is formulatedon somecompactmanifold, so
that the spectrumof H will be real anddiscrete.Althoughacompactspace—timemaybe unnatural
in a truly physical theory, it is the caseof greatestinterest from the topological point of view
andconvenientlycircumventspotential infrared problems.In the aboveexpression,we could, for
example,be consideringan integral overthe fermionicdegreesof freedomin QCD, whereH = .0

(Dirac operatorcoupledto a Yang—Mills potential). In the presentcaseH is a twisted Dirac
operator[8.7].

Onestandardapproachto definingZ [8.39] is to decomposethe fields q~into eigenfunctionsof
H,

q~(x)= ~afl~fl(x) , Hçb,,(x) = )Lflç~fl(x) . (8.22)

The measured~is takento be fJ,, da~/~/i,andwith the eigenfunctionsappropriatelynormalized
(cf’,,, c5,~,)= &,,,~,,Z becomes

I ~ = 1 ~(i,~/4)sign(A,) (823)
fi_ocv/~ flI\/~

Such ah expressionneedsto be regulatedand the standardprocedureis to first define the zeta
andeta functionsof a first orderoperatorH [8.40,8.41],

~H(S) ~l’~flI , (8.24)

~ . (8.25)

Many propertiesof thesefunctions arewell known for the type of operatorswe are considering
[8.40, 8.42], and they have well defined analytic continuationsin s. Other referencesto the ~-

function in the physicsliterature can be found in ref. [8.43]. A natural regulateddefinition of Z
becomes

Zreg = ~ = (detHY’12 . (8.26)

It is the it-function which measuresthe spectralasymmetryof an operator—thepossiblemismatch
of positiveandnegativeeigenvalues—andis importantfor theorieswith first orderoperators.This
analysishasassumedthat the original fields j arebosonic,but onecan likewise treatthe fermionic
case.

For the purposesof calculation,it is most convenientto begin with integral representationsof ~
and~j; thesearegiven by

~H(5) = To fdttTre , (8.27)
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— 1 fdtt~1I2Tr He~2~) (828)

0

The aboveexpressionfor ~H (s) is valid when H is a positive operator,i.e., all its eigenvalues
aregreaterthanzero. Although this is not the casefor the first orderoperatorwe are considering,
we canevaluate~0) in theform KH2(0) 1/21. Onecaneasilycheckthat the aboverepresentations
reproducethe defining equations (8.24), (8.25) by computing the trace in a diagonalbasisof
H and using standardF-function relations. From (8.25) or (8.28) we see that, if two operators
differ by aconstantfactor, their ,~(0) values differ only by the sign of that factor. For the caseof
Chern—Simonstheory this is the sign of k.

In caseswhere H has a zero mode, it is possible to make senseof the above expressionby
insertingan extraregulatingfactore_E( in the aboveintegrals,taking the limit e —+ 0 at the endof
the calculation [8.42].

Beforedirectly trying to attackthe problemof evaluatingthe integralexpressionsfor the ~ and~
functions, it is very convenientto first makesome simpleobservations.The first point is that we
only needthe behaviorof thesefunctionsnears = 0, and indeed, this will makethe calculations
tractable.The standardtrick [8.42] in evaluatingqH(O) is to first introducea one-parameterfamily
of operatorsH~L)such that H(l) = H and such thatH(0) is an operatorwhosetracekernel can
easily be evaluated.By differentiatingthe aboveexpression(8.28) one obtains

dnH(A)(s) — —s Ydtt~_1v2Tr (dH(2) e_tH2~ (829)
dA F((s+l)/2)J \~ cIA )

0

showingthat the lim~.o~H (s) is givenby integrating(j~°dA) the residueof the s = 0 pole of the
t-integral. As for computing~~(0), we just note that

= ~ 1) Jdtts_1Tre_H1 , (8.30)

sinceF(s + 1) = sF(s).
Thereareat leasttwo standardmethodsfor proceedingwith the calculationfor a given operator.

The mostpowerful techniqueis to employ the Schwinger—DeWittexpansion,which is an asymptotic
expressionfor the kernel Tre_Ht [8.42], andappliesto operatorson curvedmanifolds.We took
this path in section8.2 whencomputingthe fl-function in Donaldsontheory.Anotherprocedureis
to computethe trace kernelsin momentumspace(we arenow on R” or T~)andthis correspondsto
an operatorregularizationschemeof McKeon andSherry [8.44]. We will illustratethis technique
by computing ~H (0) for the relevantfirst orderoperatorin Chern—Simonsfield theory.

8.4.2. Chern—Simons theory at one loop
We haveseenthat the pureChern—Simonsfield theory is generatedby the classicalaction

S(A)=~-ftr(AAdA+4AAAAA)~kI(A) , (8.31)

whereA = A’1 T~ is a connectionform on someprincipal bundleover a closed three-manifoldM
and T’1 is arepresentationof the structuregroup G. The field configurationswhich are extremaof
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this action are flat connections,

F4 = dA + [A,A] = 0 . (8.32)

The quantum theory of this classical system is constructed in the usual way, and one considers

the partition function

z = fdA e1S~ , (8.33)

wherethe functional integral is over all gaugeequivalenceclassesof connections.
A perturbativeanalysisof this theory begins by making a backgroundfield expansionof the

connectionAa —+ A~,+ B(,, into aclassicalbackgroundA andaquantumfield B. BRST quantization
proceedsas in anygardenvariety Yang—Mills theory,andit is convenientto choosethe background
field gauge~ = 0, whereD~= + Aefach is the covariantderivativewith respectto the
backgroundfield A.

The one-loopcontributionto the partition function is simply given by

ZEAl = e~k~(
4)f dBdbd~dce’~2~, (8.34)

with

= /d3x tr(�4~’BaDpB?— 2bD B + ?D2c) , (8.35)

where we have resealed the quantum fields to obtain a more convenient normalization, and kept
only terms quadratic in the quantum fields. The b field is the multiplier which enforces the gauge
condition,and~, c are the usual ghosts. In ourconventions,the structureconstantsofthe semi-simple
Lie algebraare real andcompletelyanti-symmetricwith [Ta, Tb] = fabcT’~.For the fundamental
representationof SU(n), the matricesT’~areskew-hermitianand we take trT”T~’= ~ôab, while
the quadraticCasimiris definedby ~ facdfbcd =

Following the precedingdiscussion,the one-loopcorrectedpartition functioncanbe represented
as a combinationof determinants,

Z[A] = e~’~’”det(—D2)/’/detH, (8.36)

whereH is the operatorwhich appearssandwichedbetweenthe B andb fields in the action

f d3x(B~ ba)(~~~’~’ D)’1b(B~) . (8.37)

SinceH is a first orderoperator,thereis the possibilityof the ti-function phase,namely

(det HY172 = (det H2) 1/4~ , (8.38)

and thus the partition function takesthe form

Z [A] = e14~’~~~ det(—D2)/(detH2)”4 . (8.39)

8.4.3. Evaluationofthe phase
As we have seen in the precedingsection,the one-loop correctionsto the effective action are

encodedin three pieces:det(—D2), det(H2), and~H(O). Computingthe first two determinants
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is relatively straightforward,since the operatorsare positive definite—one need only evaluate
‘(O)—and the essentialtechniquesare well describedin the physics literature [8.45]. Here we

shall concentrateon the computationof the i-function phaseusinga momentumspaceprocedure
[8.18], which is in the spirit of an “operatorregularization”schemeof McKeon andSherry [8.44].
In effect, it extendstheir regularizationprocedureto the caseof first order operators,wherethe
potential for generatinga phaseexists.This procedurehasthe advantageof beingbothsimple and
direct, but is limited to the caseof flat space—timesOR” or Ta). Althoughmore powerfultechniques
existwhich apply without this restriction [8.42] thereis no needto enterinto this discussionhere.

We wish to calculate~H(O) for the operatorH given in (8.37), when the theory is definedon
R3. The momentum space techniquethat we will employ appliesequally well to the caseof the
three-torus;one needonly write Fourierseriesin place of Fourier integrals.The definition of the
it-function (8.28) instructsus to evaluatethe traceof a certainoperator,and it is this trace that
we shallevaluatein momentumspace.For a generaloperator0, Tr(0) is definedby

Tr(0) = f (2m)~(pIOIp) = 1(2)3d3xd3y(p~x)(x~0~y)(y~p). (8.40)

[Note that we take (plx) = ~ A~(p)= fd3x eiP.VA,,(x), and fd3xö(x) = f(2mY3d3p~(p)
= 1.] If 0 has, in addition, any discretelabels, thenone mustaugmentthe aboveformulawith an
additional traceover theselabels.Written as amatrix elementin coordinatespace,the operatorH
is defined by

—�“~~D ~ ab
(x,a,alHIy,b,fl) = ( DP 0 ) ö(x—y) . (8.41)

For the purposesof our calculation,we decomposeH = H

0 + H1 into a “free part” H0, which
doesnot contain the backgroundfield A~(x),anda part H~which is proportionalto this field. In
momentumspace,we have

ab - (~avflp pa\(p,a,aIHolq,b,fl) = ió ô(p—q) ~ 0 ) (8.42)

ffaypAc(fl~~ _Acas’n_n~\
(p,a,aIHiIq,b,fl) = f’1’~ -~ y” ~‘ “ .‘‘ ) . (8.43)

A (p—q) 0

We are now in a position to evaluatethe i-function in the form (8.29), by taking H(A) =

H0 + ).H1. If we explicitly integrateover 2, we have

~/H(5) — 71H0(s) = F(s +1/2) fdtt~ l)/
2Tr(HetH(A)) . (8.44)

Now notethat ~H

0 (s) = 0, sincethereis alwaysaone-to-onecorrespondencebetweenpositiveand
negativeeigenvaluesof H0. We can now compute~H(5) orderby order in thebackgroundfield A~
by expanding the exponential term usingthe Schwinger—DeWittexpansion[8.46, 8.44]. For any
operatorM = M0 + M1, this expansiontakesthe form
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eMt = e_M0t —tf du e_M01~_t~tM~e_M0~~t

+t2fudufdv e_M0~_~tMie_M0~_~tMie_Mo~t+ ... , (8.45)

where we haveexplicitly written only thosetermswhich are essentialto the caseat hand.
At this point, it may appearthat there is no end to the numberof terms we must calculate;

(8.45) is an infinite series.Thiswould be the caseif we wishedto calculate~ for agenericvalue
of s, but a one-loopanalysisonly requiresknowledgeat s = 0. A glance at (8.44) showsthat this
seriescan be nippedin the bud; we only needto find those terms in the aboveexpansionwhich
give a poleat s = 0, after the t-integral is performed,andthesefortunatelyturn out to be finite in
number. A generalanalysishasbeengiven in ref. [8.19], whereit was arguedthat only terms up
to orderA

3 havea chanceof contributingto 1)11(0). Here, we will be contentwith illustrating the
techniqueby evaluatingthe lowest orderpiece,which is orderA2.

Our tasknow is to compute1)H(O), keepingonly two powersof the interactionH
1. At this order,

(8.44) reducesto

2F((s ±l)/2) fdtt(5+1)I2Tr (Hi Idu e_ 1_U)1{HoH}e_H~ut) , (8.46)
wherewe havealreadycarriedout the 2 integral. The first step is to evaluatethe trace,and this
is most convenientlycarriedout in momentumspace.Using the aboveexpressionsfor H0 and
H1, it is straightforwardto show that Tr(H1 e_~~o~1u)t{Ho,Hi}e_Ho~l4t)hasthe momentumspace
representation

4ifdac.rcbdf (~~3 (~~3 e~
2(1~1P2ut~flPYA’1~(p— q)(q —p)pA~(q—p) . (8.47)

If we now shift the q variableto q + p andthencompletethe squarein the exponential,this trace
reducesto

4i(_c~o’1b)f e_P21f (~3 e_~2l_t�aPA~(q)qpA~(q) . (8.48)

Notice thatwehavefactoredout an elementaryintegraloverp, f(2irY3d3p e~~2’= (4~Y3~2t312,

and have usedour conventionfacdfbcd = c~ô’1’~’for the quadraticCasimir. The t-integral is now
easyto evaluate,giving

- (4 )
3/2cV~(( l)/2) [u(1 - u)]_5/2f (p

2)-s12�aflYAa(p)pAa(p) , (8.49)

for the order A2 contribution to 1)H(s). The remaining integral over the u-parameter‘can be
evaluatedwith thegeneralrelation

fduua_b(l —u)~’ = F(a)F(fl)/F(a + fi) , (8.50)
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andwe obtainthe final expressionin momentumspace,

—icr F(1 + s/2) F(1 —s/2)2 f d3p ~ 2)-~/2�”~~A’1( ) A’1(p) (851)

2ir3/2F((s+ 1)/2) F(2—s) J ~ P a P Pp ~

Notice that this is anon-localexpressionwhen s is different from zero. At s = 0, it reducesto

_icvfd;PapyAa~Aa() , (8.52)

or equivalentlyin coordinatespace,

£/4fd3xtr(�aPYAalipA~) , (8.53)

wherewe haverestoredthe traceover the fundamentalrepresentation(tr T’1 Tb = — ~~ab~ In this
form, we easily recognizethis structureas the first term in the Chern—Simonsaction. Had we
carriedout the entirecalculation,wheretermsof orderA3 areretained,we would havefoundthat
the completeansweris [8.19]

‘111(0) = £?!_fd3xeaPv tr(A D~A~+ 4Ac~ApAy). (8.54)

The readerwho wishesto carry out theexerciseofcomputingthisA3 contributionshouldbe warned
that the calculationis only tractableat s = 0; i.e., one doesnot get asimpleexpressionfor ‘1H(s)
whens is different from zero.

As remarkedafter (8.28), the value of ‘1H(O) dependson the sign of k; from (8.39) we thus
havethe result

Z [A] = e1~’~’~~ det(—D2)/(detH2)’/4 . (8.55)

To complete the one-loop analysis, we need only evaluatethe two determinantsdet(—D2)
and det(H2). As we havepreviously remarked,this is nothing more than a standardc-function
calculation, andcan be carriedout in a manneridenticalto the one we haveoutlined here;one
just evaluatesa slightly simpler tracekernel. Before quotingthe result, a few remarksarein order.
First, if we look at the operator H2,

H2 — (_ö~p1)2— F~p ~�~~
1F’~’\ (8 56)

— \,. _~�pcyrF’1r —D
2 ,)

we immediatelyseethat it is proportionalto D2, whenthe backgroundfield is on-shell~ = 0, and
in fact the ratio det(—D2)/(det(H2))’14is identically onein thislimit. If we areonly interestedin
the on-shellcorrections,thereis nothingfurther to do. Away from F = 0, on the otherhand,these
determinantsno longer cancel,andonefinds that

ln = .Eu_f (p2)_I/2p~p(..p)EaaP(p), (8.57)

for the lowestordercorrection [8.19,8.17].Therewill in generalbefurtherhigherordercorrections
proportionalto powersof the curvatureF, but thesehavenot beencomputed.However, we note
that the effective action is of the form iCS + F2, wherethe imaginary unit is crucial. Thus, flat
connectionsremainas the stationarypoints. It is worth making some clarifying remarkson this
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point: The topologicalnatureof Chern—Simonstheoryarisesessentiallybecauseof the fact that the
spaceof solutionsto the equationsof motion modulothe gaugesymmetriesis a finite dimensional
space,in this casethe moduli spaceof flat connections.Fromthe path integral point of view, one
canestablishthe topologicalnatureof the theoryby performing, for example,a one-loopanalysis.
This one-loopanalysisis performedby expandingaboutflat connections.As shown in section6.1.3,
this leadsto a ratio of determinantsdefinedwith respectto the flat backgroundconnection,called
the Ray—Singertorsion.The Ray—Singertorsionis ametric independentobject;andits definition is
in termsof determinantsof a flat connection.In (8.57) we haveexaminedthis ratio for an off-shell
(non-flat) background;and we have seenthat F2-like terms appear.The fact that such termsare
metric dependentis not a problem,sincein theoff-shell casethisratio of determinantsis no longer
the Ray—Singertorsion. A discussionofF2 termshasalso beengiven in ref. [8.201.

8.4.4. Gaugedependenceofthe effectiveaction
A natural issue that arises in the study of any quantumfield theory is the dependenceof a

particular calculation on the way in which the fields have beenparametrized;and in the case
of gauge theories,there is the further issue of gaugedependence.We have alreadyseenthat the
fl-function in Donaldsontheory dependson the way in which the topologicalshift symmetry is
gauge fixed; one gaugeyielded a fl-function equal to that of N = 2 super-Yang—Mills, while the
fl-function vanishedin the delta function gauge.In the precedingsection,we computedone-loop
correctionsto Chern—Simonstheory—in particularthe quantummechanicalphaseshift—and it is
naturalto posethe samequestionhere.Theansweris that the ‘1-function phasedoesin factdepend
on the gaugechoice, andexplicit calculations [8.19] have beencarriedout to verify this. What
then is the significanceof acalculationperformedin a specificgauge?

Oneway to addressthis issue of gaugeandparametrizationdependencewas usedin refs. [8.34,
8.35], where the authorsbegan by observingthat theseissueswere, in a sense,a failure in the
original definition of the effective action. The usual definition of the effective action is manifestly
not a naturalgeometricalobject on the spaceof field configurations.One can seethis easilyat one
loop, wherethe backgroundfield method instructs us to computethe determinantof the Hessian
S,~,whereS is the gaugefixed actionand the condensedindex notation meansthat we are taking
derivativeswith respectto the ith and jth field coordinate [if i labels the field ‘I” (x), then by
S,~we meanô2S/ö1’(y)c51’(x)]. If we demandthat S is a scalarfunction on the spaceof field
configurations,then,althoughS,~is a vector,S~is not a rank-2 tensor.To constructa tensor,one
needsacovariantderivativeon this infinite dimensionalspace,andthe simplestsolution is to take
the Christoffel connectionof somemetric. The generalprogramhasbeenformulatedin ref. [8.35]
to all loop orders;at one loop the resultof this procedureis to replacedetS,

1~by det(S,,1— f~S,k).
This latterquantity can be shownto be sensitiveto the gauge andparametrizationissuesraised
above.We will now review this constructionwithin the contextof Chern—Simonstheory.

We have seenthat the quantizedtheory can be describedin termsof the fields A~(x),b’1(x),
ëa(x) c”(x). whereA~(x)is aconnectionform, ba(x) is agaugefixing multiplier field, and (l~,c)
arethe usual ghosts.To avoid any issueinvolving the geometryof the multiplier space,we proceed
in the standardway by introducingan ab

2 term in (8.35), andthen integratingover b. This leads
to the usual —a1 (D~B)2gaugefixing term;the Landaugaugeis then recoveredin the a —~0 limit.
Our first step is to selecta metric on the spaceof physically distinct field configurations.For the
~, c fields this is trivial, sincewe cantake the constantunit metric

~ = o~~bo(x— v) . (8.58)

As this metric is field independent(i.e. constant),the Christoffel connectionin this direction is
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trivial. The ghostdeterminantthat we usedbefore,det(—D2), remainsunchangedin this program.
Defining a metric on the spaceA/~is more subtle. We begin by selectinga metric on the full

spaceof connectionsA. Since this spaceis topologically trivial we might as well select the unit
metric as above,

GA~(X)Ab(y)= ~ , (8.59)

whereg,,,. is a backgroundspace—timemetric.It is not difficult to definea rne~ricon A whichignores
tangentvectorsalong the group flow of g. In condensednotation, the gauge transformationof a
field 2~’is givenby ~I’ = R~,�”.For example,when ck’ = A’1,~(x),we haveR~= (D~,)~ô(x—y)
andthe gaugeparameteris �‘ = �b(y). We now considerthe metric [see (5.90)]

— k I ..iaP

Y,j — — a /i~ ki Ii ,

with Nap defined as the inverseof Nap = R~”aR1pGkl.It is now a simple matter to show that
YijR’a = 0, i.e., vectorstangentto the group flow are ignored, and so y,~can be consideredas a
metric on thequotient spaceA/c. We remark thatonecould moregenerallyconsiderother metrics
on A; the only constraintis thatone requiresthe gaugetransformationsto b~Killing vectorson A,

DjRja + DjRia = 0. Here D is the covariantderivativegeneratedby the metric G~.In our case,
this is automaticallysatisfied.

The Christoffel symbol of the metric on A/~ is now given in the usual way by

?kIF,~= ~(Yik,j + Y~k,i— YiJ,k) . (8.61)

Solving for the coefficients F/~is complicatedby the fact that we are really only interestedin
directionstangentto A/Q, that is, Yii is only invertible on this submanifold.Thereis a trick which
greatly simplifies this task [8.36]. If we multiply bothsidesof this equationby Gmk, then we have

(of, — GmkRkaRlpNap)I~ = ~Gmk [G,k,
1 + Gik,j — Gii,k

— (Ric,RkpN”~),j — (RjaRkpN~),i + (RjaRjpN~),k] . (8.62)

Now usingthe two identities

Rp,1 — Rip,, = DjRjp — DRjp

N~~
1= _NaYNP~N~~,

1= _2Na(YNb)PD(~RJ)bRJ?, (8.63)

onecanrewrite (8.62) as

F’ — 7” ‘ri— ‘~k+ ‘ik +
1ta11ik , (8.64)

where

7~jk = -2B~Dk)R~+ R~DIR~B~JB~)

BJ~’ = NaPRkP , Rkp = GkIR~

H,~ = B~FI~— N~P(D(,RJ)p — Npy,(jB~)) . (8.65)

We are using the notation that .t’J
1, representsthe Christoffel symbol of the metric G1, and that

roundbracketsrepresentsymmetrizationoverindices,so that T(ab) = ~ (Tab + Tba). It is important
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to note that these gyrationshave not produceda solution for I’~ a glance shows that I~ is
also embeddedin the right handside of (8.64). The key point, however, is that the term in I’~~

proportionalto R~,is irrelevant; we needto computef~Skin the effective action, but R~S,4= 0

by virtue of gaugeinvariance. Furthermore,we have notedthat = 0 for the caseat hand, so
the entire constructionof a connectionon A/~ simply reducesto computingthe

1~jk symbol.
The point now is that the Vilkovisky—DeWitt correction term vanishesin preciselythe gauge

we have chosen, namely the Landau gauge. This can be seen as follows: we observe that the
Vilkovisky—DeWitt correctionterm appearsin the combination T/~S,k~J’~,wherec~J~is the set
of quantumfluctuationsaroundthe classical J~’backgrounds.A glance at the structureof T/~in
(8.65) revealsthat the correctionterm vanishesif

B7.1~= 0 , all a. (8.66)

Using the definitionsgiven in (8.65), we seethat an equivalentstatementis

GjjRYJ~L4= 0 , all a. (8.67)

Now in the presentcasecP’ = A~(x); the correspondingquantumfield is thus cP~= B~Ox). In
addition, thereis a singlegaugegenerator~ = �c(z). Using the metric (8.59) and the definition
of the gaugegeneratorR~,,it is easyto establishthat (8.67) implies D,

2B
11 = 0. Thus, from this

point of view we havethe a priori knowledge that the Landaugauge providesthe uniqueresult
within the Vilkovisky—DeWitt framework. However, one is free to chooseothergauges,and it is
an illuminating exerciseto actually implement the Vilkovisky—DeWitt procedure.The readeris
referredto ref. [8.19] for details.

8.4.5. Physicalrelevanceofthe results
At this point we wish to discussthe physical relevanceof the resultsobtainedin the previous

sections.Therehasbeen some controversyin the literature regardingthe existenceandphysical
meaningof the shift in k derivedin (8.55); it is thus usefulto presentsome (hopefully) clarifying
remarks.A recentreviewarticle [8.47] maybe useful in this regard.

First of all, our calculationshave dealt solely with the off-shell effective action at one loop
on R3. We haveuseda specific gaugeinvariant regularizationscheme,and haveshown that the
1)-function of the Chern—Simonsoperator,definedwith respectto this off-shell background,is non-
zero. Furthermore,the ‘1-function is proportionalto the Chern—Simonsactionof the background
connection,with a proportionalitycoefficientgivenby c~sign(k). Sucha calculationhasa relevance
in its own right, sinceit providesa meansof checkingfor anomaliesat one-looporder.As wehave
seen, the integer natureof the Chern—Simonscoupling k is required for invarianceunder large
gaugetransformations.Despitethe finitenessof the model, it remainsto checkwhether,if a shift
doesoccur, it is by an integeramount.

We havethenaddressedthe questionas to the meaningof the valueof thecoefficient,within this
particular regularizationscheme.The result, as we have shown, is that indeedthe value depends
on the gauge choice. Using a different gauge, but the sameregulator, yields a different value.
However, the Vilkovisky—DeWitt effective actionprogram assignsa meaningto the notion of a
unique off-shell effective action. Including the appropriateVilkovisky—DeWitt correction shows
that the uniquevalue for the ‘1-phaseis providedby the Landaugaugeresult (which is the gauge
originally usedby Witten [8.7] in the calculationsketchedin section6.1.3).

The most important question,however,is: what is the significanceof acalculationperformed
with a particular regularizationscheme?The aim is to makeregularizationindependentstatements;
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it is thesewhich havetrue physicalmeaning.To performa given calculation, onemay selectany
desiredregularizationscheme.At the endof the day,however,we must all agreewhen discussing
physicalquantities.The controversyhas arisenoverwhetheror not such ashift hasany physical
significance.We shall briefly discussthe two points of view which have beenadvancedon this
issue.

Recall that the classicalChern—Simonsactioncomesequippedwith an integercoupling k; let us
call this the barecoupling anddenote it by kB. We assume,for convenience,that kB is positive.
This integerappearsin two separateguises [8.7, 8.15]. Firstly, it appearsin the centralextension
of the associatedKaë—Moody algebra,as shownin section6.1.5.Secondly,in the computationof
Wilson line expectationvalues,a naturalvariableappears;this variable is called the monodromy
parameter,which we denoteby q. Knot and link invariantscan be expressedas polynomialsin q,
andq dependson kB (seesection6.1.4).

Now, it is well knownfrom the conformalfield theorypoint of view that, if the centralextension
of the current algebra is equal to 1 (so that we are dealingwith, for example, a level 1 WZW
model [8.48]), then the monodromyparameterq is given as an expansionin powersof I + c~by
q = e2~/(l+c,,)~The questionis: do we see this shift in Chern—Simonstheory,andif so, how?

Let us first discussthe argumentdue to Alvarez-Gauméet al. [8.15]. The claim is that it
is physically meaningful to computeboth the central extensionand the monodromyparameter
as functions of the bare coupling. Both are gauge invariant quantitiesand, furthermore, it is
also meaningful to computetheir difference. Using a gauge invariant regulator, these authors
necessarilyensurethat the current algebrarelationsare satisfied,with a centralextensiongiven by
kB. Computingone-loopcorrectionsto the two-point and three-pointfunctions (AA) and (AAA),
yields the result that the barecoupling receivesthe famous shift. Furtherwork [8.49] claims to
establishthat acomputationof the monodromyparameterto two-loop orderyields an expansion
for q in powersof k

8 + c~.Therefore,the final result hereis that, purely from the perturbative
Chern—Simonspoint of view, one doesseea relativeshift.

On the other side of the coin, Guadagniniet al. [8.11, 8.50], using a different regularization
scheme,havenoticedthat the (AA) and (AAA) functionsremainbareat oneloop; the barecoupling
is not shifted in this scheme.Furthercomputationsto two-looporder show that the monodromy
parameterq is an expansionin powersof kB [8.50].

To makephysicalstatementswe shouldexpressall our resultsin termsof a renormalizedcoupling,
which we denoteby kR; it is then possibleto compareresults, and hopefully we all agree.The
questionto askat thispoint is: how do the centralextensionandmonodromyparametersdependon
kR. In the schemeof refs. [8.12,8.15], the renormalizedcouplingis definedby kR = kB + c~.The
monodromyparameteris thenan expansionin kR, while the centralextensionis kR — c~.This can,
andshouldbe, regardedas the true physical informationextractedfrom their regularizationscheme.
In termsof aWZW model, for example,one can then identify the level as being kR — c,~.From
the resultsof [8.11, 8.50], we see that the renormalizedcoupling is kR = kB; thus, q is againan
expansionin powersof kR, in agreementwith the resultsof refs. [8. 12, 8.15]. We would therefore
expectthat the centralextensionis againkR — c~,which in termsof this regularizationschemeis
equivalentlykB — c~.The point to notehereis that, sincethe regulatoris gaugenon-invariant,the
currentsarenot conserved;therefore,morework is requiredto establishthe level of the algebrain
termsof kR. Sucha calculationhasnot yet beenperformed,but clearly the expectationis thatone
will find a level kR — c~currentalgebra.However,weshould pointout that thisis not the viewpoint
expressedin refs. [8.50, 8.51].

We concludewith a remark: working purely from the two-dimensionalWZW point of view, one
is given a current algebraat a certain level I, the monodromyparameteris then an expansion
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in 1 + c1. To see this result from the pure Chern—Simonspoint of view, one must define the
level and the monodromyparametersolely in termsof a renormalizedcoupling. In this way, one
establishesthe fact that a relativeshift doesoccur, and such a statementshouldbe regularization
independent.However, it could also be the casethat different regularizationsdefine inequivalent
quantumtheories.

8.4.6. Chern—Simons supersymmetry
We closewith adiscussionof a peculiar supersymmetrywhich is presentwhenthe Chern—Simons

theory is quantizedin the Landaugauge.The actionunderstudy is

Sq = ~ fd3x tr[�~’ (AalipAy + ~Aa [Ap, Ay]) — 2bli . A — 2~li‘Dc] , (8.68)

whereD(, is the covariantderivativewith respectto the connectionAa and the normalizationof
the action is chosenso as to makethe transformationrules more pleasant.This actionpossesses
the usual Yang—Mills gaugeinvariance,namely

= �Dac , Oc = ~�{c,c} , 0? = �b , Ob = 0 . (8.69)

Here, � is a constantGrassmannodd parameter.However, in addition to this symmetry,it is also

straightforwardto verify that the following setof transformationsleave the actioninvariant [8.2]:
= �

1~e,
1p~lfi’c, 0? = �~‘A~,, Oc = 0 , Ob = �~‘Dac , (8.70)

where �a is a Grassmannoddvectorparameter.
Following this, otherstudiesof this supersymmetrywere made[8.27—8.29].This supersymmetry

is reminiscentof the usual super-Yang—Millstransformations,only here it is the bosonicfield A

whichhasfirst orderfield equations,while theclassicalequationsfor the Grassmannoddfields?and
c areof secondorder.Since thereareno spinorsin this theory,one is led to considerinfinitesimal
transformationswith an odd vector parameter.In the presentcase,however,the anticommutator
of two supersymmetrychargesvanishes(i.e., the supersymmetryalgebra is Abelian); indeedone
can easily checkthat

[O(�~’),O(e~)](A,,,?,c,b) = 0 . (8.71)

The importanceof this supersymmetrycanbe seenby examiningthe associatedWard identities.

Oneproceedsin the standardfashionby supplementingthe actionwith the following sourceterms:

Sq~~qSq+fd3xtr(JaAa+M?+Nc+QbSaDac+V~{c,c}) . (8.72)

Thenotationhereis the following: (Ja, M, N, Q) arethe usualsourcetermsfor the fields (Aa,?,c,b)
with Grassmannparity and ghost number assignmentsgiven by 0+, —, —, +) and (0, 1, —1,0),
respectively.Sa and V are the compositesourcesfor the non-lineartransformationsOA and Oc.
Theyare (odd,even)with ghostnumbers(—1, —2), respectively.We cannowdefinethe unconnected
andconnectedgeneratingfunctionalsZ and W by

Z[J, ,Q;Sa,V] = fdI~ exp(—~q)= exp(—W[Ja,...,Q;Sa,V]) , (8.73)
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wherewe havedenotedthe collectivefield contentby i~.The 1 -P1 generatingfunctional is then
definedvia the Legendretransformof W as

W[Ja,...,Q;Sa,V] F[Aa,...,bSa,V] +fd3xtrJaAa+...+Qb , (8.74)

where we note that the composite sources do not undergo a Legendre transform.
We first presentthe BRST Ward identity, which takesthe form

1 ~ I OF OF OF OFOF\
0 = j d x tr -~--~-~ + -~b + -~—~-~). (8.75)

In a similarway, we find that the Ward identity encodingthe supersymmetryis given by

[3 / OF OF OFOF OF\
0 = j d x tr t~~,�apyTA~~li)’c+ ~ — — �aPvS”O~~) . (8.76)

Upon differentiating (8.76) with respectto A,
4 and c, setting the fields to zero and using the

transversalityof the A field inverse propagatorand the b equationof motion, we obtain the
following relation:

O~F[0] — (0~a~a.~’\ 0
2F[0] (877)

~

1WA xoAa(x)oAb(y) — “ O;~) Oc”(x)O?
t’(y)

This canbe rewrittenas
.~2rrni ,c~x ~2rrni
U 1 L’~’J — ~vAA (‘ ~ L”J (8 78)

OA’1,4(x)OA~(y)— ~9x2oca(x)O?h’(y)

We thus see that the supersymmetryWard identity fixes the Lorentz tensorstructureof the A

field inversepropagator.However, it shouldbe emphasizedthat the supersymmetrydiscussedhere
is valid only in flat space.For our considerationsto be valid on a curved manifold, we needa
parameter~a which is covariantlyconstant,i.e., Da�p = 0. This leads to an integrability constraint
which is satisfiedwhen the Riemanncurvaturevanishes,or haszero modes.

Givensucha peculiarsymmetry,oneis naturally led to askif it is potentiallyanomalous.Oneway
to checkthis is to look for violationsof the Ward identity (8.76). However, sinceChern—Simons
theory is finite, one may wonder how it is possible to generateanomalies.The situationwhich
arisesis the following: let us first restrict our attentionto R3, wherethe supersymmetryis valid.
At the classicallevel, we have a systemwhich is invariant under both gauge andsupersymmetry
transformations.The questionis whetheror not we havean effective actionat the quantumlevel
which is invariant under both thesesymmetries.If we can find a regulatorwhich preservesboth
symmetries,then we can concludethat thereare no anomalies.The question remains:doessuch
a regulatorexist?The most convenientWard identity to study in this regard is (8.78), as it is a
combinedBRST andsupersymmetryWard identity.

It is certainly possible to find regulatorswhich manifestlypreservegaugeinvariance,see, e.g.,
refs. [8.12, 8.16, 8.18, 8.20, 8.21]. In all of thesecases,the resultof a one-loopcomputationhas
led to the result that the two-point (AA) function receivesacorrectionterm which hasthe effect
of shifting the barecouplingby sign0kB)c~.Furthercomputations[8.12] haveshownthat the two-
point ghostfunction remainsbareat the one-looplevel. Again one must define the renormalized
coupling,within this regularizationscheme,to be kR = kB + sign(k~)cV.However,sincethe original
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barecouplingmultiplies the entiregaugeandghostaction [see(8.68)], thereis now a discrepancy
betweenthe renormalizedcouplingsmultiplying the gauge andghostparts. As a result, the Ward
identity (8.78) is broken.

On the other hand, a different regularizationschemehasbeen usedin ref. [8.11], where it is
found that all two- andthree-pointfunctionsremainbareup to two-loop order. In this scheme, the
renormalizedcouplingis the sameas the barecoupling.As pointedout in ref. [8.12], this regulator
is not gaugeinvariant; nevertheless,no gaugebreakingterms are generatedup to two-loop order
for the two- and three-point functions. As such,within this regularizationschemeboth the gauge
and supersymmetryinvariancesare maintained.This appearssomewhatstrangesince, with this
regulator,we can establishthe fact that thereare no gaugeor supersymmetryanomalies.However,
if this is really the case,thenone should alsobe ableto establishthis fact with the regularization
schemeof ref. [8.12]. But in the latter caseit is clear that the supersymmetryis broken (that is, if
one decides that the usual freedomto add finite local countertermsis forbiddenin this topological
situation). Indeed,as remarkedabove,the supersymmetryin only valid for flat spaces,andhence
defining a quantumtheory to satisfy both the gaugeand supersymmetryWard identities is not
possiblefor an arbitrarythree-manifold.At this point we shall leave the discussion,and invite the
readerwho hasreachedthusfar in the report to resolvethis issue!

Before concluding,however, let us remark on some work in refs. [8.14, 8.23, 8.24] on the
usefulnessof this particularsupersymmetry.In ref. [8.14] the authorsestablish,with an essential
useof the supersymmetry,the finitenessof Chern—Simonstheory. It hasbeenshown in ref. [8.23]
that, assumingthe absenceof anomalies,onecan usethe supersymmetryto prove that the two-point
gaugeandghostfunctionsremainbareto all ordersof perturbationtheory. It is thenshown [8.24]
that including the anomalyterm, as presentin the schemeof ref. [8.12], simply addsan extraterm
to the Ward identity. Whetheror not this symmetry is anomalous,its usefulnessis clear.
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Appendix A. The Batalin—Vilkovisky quantization procedure

Here we will briefly sketch the relevantconceptualandcomputationalfeaturesof the Batalin—
Vilkovisky prescription,for the caseof first stage reduciblesystemsandsystemswith open gauge
algebras[A. 1]. Thiswill allow us to constructthecompletequantumactionfor the modelsdiscussed
in sections3—5. In addition, we explainthe constructionof the Batalin—Vilkovisky triangleswhich
are necessaryto performthe quantizationof the reducible(super-)BFsystemsof sections5 and6.
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One is first presentedwith a classicalactionS,~(1’), which dependson somefields, generically
denotedby ‘1’, togetherwith the local symmetrytransformations

= Ry~)fa . (A.l)

Here,e~denotesthelocal infinitesimalparameters.We shouldpoint out that we areusingcondensed
notationhere,in otherwords,~ and�~ could representseveraldifferentfields andtransformation
parameters;and in addition a repeatedindex indicatesboth a sum over discretelabelsand an
integration over continuouslabels. If 0k’ = 0 for some non-zero �~, then the transformations
(A. 1) are said to be first stage reducible; one also saysthat the gauge algebra (A. 1) contains
zero modes.It is then clearthat if one gaugefixed the theory accordingto Faddeev—Popov,the
resultingdeterminantwould have zero modes.This manifestsitself as a residualgaugesymmetry
in the ghostaction. The necessityfor furthergaugefixing is thenclear, andthis leadsto the ghost-
for-ghost phenomenon.To correctly incorporateall of theseterms it is possible to resort to the
Batalin—Vilkovisky machinery,which is guaranteedto producea BRST invariant quantumaction,
together with an on-shell nilpotent BRST chargeQ. It should be notedthat in many casesthe
abovementionedzero modesare on-shell zero modes,i.e., OJ~’= 0 when the classicalequations
of motion are used.It is for this reasonthat the nilpotencyof Q is achievedonly on-shell.

It mayalsoturn out that the residualgaugesymmetryof the ghostactionhasa zero mode;if this
is the case,the theory is said to be secondstage reducible,andso on. Examplesof this caseare
providedby the higher dimensional(super-)BF systemswhich were treatedin sections5 and 6.

The othercomplicationwhich can arise,andwhich requiresuseof this procedure,is when the
gaugealgebrafor (A. 1) closesonly on-shell. Again an on-shellnilpotent Q is thengenerated.

Beforeproceeding,it is usefulto makesomegeneralremarksaboutthis quantizationprescription.
Firstly, if the theory is non-Abelianand first stage reduciblethenone is guaranteedto generate
cubic ghostcoupling terms; if the theory hasan on-shell closed gaugealgebra,then quartic ghost
interactionsare generated.Furthermore,when the zero modesand closureare on-shell, Q2 = 0
only upon usingthe quantumversionsof theseequations.

Giventhis knowledge,it appearssomewhatobviousthat the topologicalactionsof Witten (which
containcubic andquartic ghostterms) could indeed be obtainedas the BRST quantizationof a
simpler gaugetheory.

We now describe the procedure.To each of the parameters�“ we assigna ghost field C”,
of opposite Grassmanncharacter.When the transformationsare reducible, the R~which are
enumeratedby the label a are not linearly independent;in other words there are zero mode
eigenvectors,denotedby Z,~andenumeratedby a, satisfyingR’~Z~”= 0. More generally, one may
find that R’aZ”a = 0 when the equationsof motion areused [see(A.4) below]. Such a situation
correspondsto an on-shellreducibletheory.

One now introducesGrassmanneven ghostfields, denotedby n”, anddefines the minimal set
of fields to be ~ = (~‘, C”, ~ The next step is to introduce a set of anti-fields b~mjn =

~ ~), andlook for asolution to the “masterequation”

55OrSli1S OrS
5FSO

— D~A8~ O~A*O~A — . (A.2)

HereDr and8, denoteright andleft derivatives,respectively.
The solution Sexistsas an expansionin powersof anti-fields, andthe minimal solution is given

by
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S(’Pmin,~jn)= 5mm

= S~+ 17R,C” + C,~~ 7/a + T~,C~‘ C~)

+ ~I~I3’(B~’1)’
4 + E~C~C’~)+ ... , (A.3)

wherewe haveexplicitly written only those termswhich are neededfor the casesof interest in

sections 3—5. The coefficients in (A.3) are determined by solving the following equations:

~ = 0 , (A.4)

a~R:,C”R~d + R~T~C~Ca — ~ C~C~(—1 )“ — 0 (A 5)

+ 2T~~CPZ~’1a+ ZgA~~CP
1)’1= 0 , (A.6)

where �, = (0, 1) denotes the (even, odd) Grassmann parity of the ith field. —

In addition to the minimal set of fields, we introducethe anti-ghostsandmultipliers Ca, ~ and
11(~,7ra, andconsiderthe solution

S =
5mmn + C*(~Ha+ ir’1xa , (A.7)

where~‘~‘ and~ arethe anti-fields for the anti-ghosts.We shouldstressthat to eachfield thereis
acorrespondinganti-field; thus, for example,theghostCa hasananti-field C*c~,while the anti-ghost
for Ce,, denotedby Ca, is alsoassignedananti-field, namelyC*a. The termsanti-ghostandanti-field
shouldnot be confused.The gaugefixing is performedby choosinga “gauge-fermion”

= CaF”(’I~) + ~aW~C” , (A.8)

andthe completequantumactionthenbecomes
= ~ = 8~P/O~) . (A.9)

Equation(A.8) enforcesthe gaugeconstraintsFa(i) = 0 andW’1aC” = 0. For algebras with closure
problems,we will only needthe first constraint, the secondbeing presentfor first stage reducible
theories.One can now checkthat this action is invariant under the BRST transformations,which
aregiven by

= �8rS/D’l~lø~=~pio~j,, (A.l0)

where � is a constant Grassmann odd parameter. Weshould remark here that we are following the
conventionsof ref. [A.l] by introducinge in the transformations(A.lO). This ensuresthat the 0
operator commutes with all fields. To translate to the notation used in the main body of the report,
we simply write 0 = —�{Q, }, where {Q, } now denotesthe actionof the gradedBRST operator
Q which (anti-)commutes with Grassmann Oodd) even fields.

It is also important to make the following observation:As we havenoted in section 3, certain
factorsof i arerequiredin the definition of the quantumaction.Thesefactorsarenecessaryin order
to ensure,for example, that integrationover a multiplier field will indeed yield a delta function
constraint,viz., f dx eIPx = 0(p). It turns out thatthe Batalin—Vilkovisky algorithmis not sensitive
to these factors; however, theyare neededin order to properly definethe quantumaction. In this
appendix,andin the othersectionsof the report,we havechosento omit thesei factors; the reader
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should feel free to explicitly includethem wherenecessary.In essence,one simply needsto rescale
variousmultiplier andanti-ghostfields by i.

A.). Donaldsontheory

As our first example, and as a means of gaining some familiarity with the procedure,let us treat
the quantizationof Donaldsontheory from the Labastida—Pernicipoint of view [A.2]. The classical
action is

= ~fd4xtr(G,,p_F~p)2 , (A.ll)

with the local symmetrytransformations

OA~= D~�+ ~ , OG,4v = [f,G,4v] + D
1~�~1+ ~�,4~apD� . (A.12)

Here 1’ = (A~,G~~)and ~a = (~a,%~a),and D[~�~]= ~.(D,4�v — DV�,4). We shall adopt for
convenience the normalization tr(T’1 Tb) = 0ab~Having obtainedthe final quantumaction (A.20)
or (A.26), respectively, we are free to introduce a more conventionalnormalization,such as that
employedin sections6 and 8.

If we now set e = —A and �,4 = D,4A, we see that bothvariations (A. 12) are zero, upon using
the G equationof motion. In otherwords,the transformations(A. 12) havean on-shellzeromode.
To apply the Batalin—Vilkovisky algorithm, we only needto readoff the R andZ coefficients,and
solveeqs. (A.4)—(A.6) for T,A,B andE. We have

R(A(’~)fb = D~ , R(A~)~b= 0ab0 , R(G~)fb= fabcGc

R(G~~)1b= ~D~Op~— ~D~0pp + ~ , (A.13)

and

Z ~ — s~ab ,‘ a~ ab~f /~4b — —u , ~�,4/Ab = /4

We point out thatwe shouldreally write the gaugegeneratorsas, for example,

R(A~0X))fb(,,) = D~O(x—y), R(A~(X))fb(3,) = O”O~pO(x—y)

However, sinceall quantitiesare diagonal in the continuousindices, we take the generatorsas

given. ChoosingE = 0, we find the non-zerocoefficients T,A, B,
B(GaP’1,G~V)A~= .....~faCbOp4Oa,,, TJ~C7CP= ~.{c,c}b , 7~C~C~= {~~,c}’1

= _[c,~]b (A.15)
wherewe haveintroduced the ghostfields C” = (c’1, ~i’,~) and ~‘1 = ~ On apoint of notation:
by {c, ~‘,,}‘1 we meanf ccbWc; alternatively,we candenotethis by the graded(accordingto ghost
number) commutator[c, Wa]’1, the latter being used in eqs. (5.44) and (5.52) of section 5.2, for
example.

The minimal solution now takesthe form
5mm = Sc + fd4x tr{A~D”c + w”) + G~(—[c,G~]+ D[/4Wu] +

+~(D~~+ {~~,c})+ c*(_~+ ~{c,c}) — q5~[c,~]— .~{G~~,G*/4t~}4}. (A.l6)



318 D. Birminghamet a!., Topologicalfield theory

We augmentthis solutionwith the anti-ghostsandmultipliers,

S =
5mmn + fd4x tr(X~pB”’~— ~*b + ~*7/) , (A.l7)

andtakethe gaugefermionto be

= _fd4x tr(X”~G~p+ ~OaA” + q~D~yi”). OA.l8)

To obtainthe quantumactionwe choosethe anti-fieldsto lie on the gaugesurface~P* = 8W/li cIi,

andwe find

A~ = _?ali/4 — ~bfbac c , G*,4V~=

= ~j;bDba , = liaA°’ , =

= _Gap , ~ = c* = ‘1* = = 0 . (A.l9)

The quantumactionis given by

Sq = s~+ fd4x tr{—?(li •Dc + 8~w) + ~{~“,Dac + ~a}X/4v([c,G,4v] + 2D,,w~)

+ Da{~”,c}) — ~{X ,X,4v}~G”~°B~,p+ bli .A + 77D y/} . (A.20)

The BRST transformationsare

OA~= �(Dac+ w~), Oy.’a = �(D~,~+ {c,wa})

= —� (—i,{c, c} + q~’) , 0q~= � [c, ~] , 0X~p= ~ , OB,’,p = 0

= �([c,G~~]—D[,4yi~] — ~f/
4VapDW + [‘~‘,X,4v])

O?=—�b, Ob=0, Oq~=—�~, O’1=O. (A.21)

At this point we have usedthe Batalin—Vilkovisky algorithm to determinethe quantumaction
togetherwith the BRST transformations.However, recall that thesetransformationsare nilpotent
only on-shell; one needsto usethe quantumG equationof motion. As we describedin section2,
Witten typetheoriesareclassifiedby aquantumactionwhich is a BRST commutator,with respect
to an off-shell nilpotent BRST charge.To showthat the abovesystemcan be written in this way,
we simply needto integrateout the G field. We proceedas follows: Considerthe following terms
in (A.20)

~(Gap — F~~)
2+ {X”1~,c}G~p— G~pB’°’P. (A.22)

Define

~ = G~p~Fa~p , ~ = —B~p+ {X~p,c} . (A.23)

Equation (A.22) can now be written as

+ Bap(G”~+ F~”~). OA.24)
The G’ equationof motion tells us that G~= Bap, andhence(A.24) gives —~ (B~p)2 + B”PFa~P~

with the modified BRSTtransformations

0Xafl = �(Bap{c,xap}) , OBap = �([c,Bap] + EX~p,’~]), (A.25)
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wherewe haveusedOB = —OG’ = OF+ — 0G. The quantumactioncannow be written as a BRST
commutator,

Sq = fd4x tr{Q,X”~(F~— ~aB~p) + c8~A”+ q~D~~”}, OA.26)

wherea is an arbitrarygaugefixing parameter,and Q is now an off-shell nilpotent BRST charge.
We can recoverthe (F+ )2 form of the action in (A.20) by choosinga = 1, and integratingover
B. Finally, we note that we can redefine the fields so that the transformations are again0x = B

and OB = 0. In (A.25) both fields transformcovariantlywith respectto the Yang—Mills gauge
symmetry, the [X~p,~] term in the B transformation is then present to achieve nilpotency. Upon
writing 0 = —E{Q, }, we see that the Q obtainedhere coincides precisely with that used in section
5.

A. 2. Supersym metric quantum mechanics

The classicalactionis [A.3]

Sc = ~fdtg
1~(cb)K’K’ , K’ = G’—çb’—g’

18
1V(çb) . (A.27)

The symmetriesof the actionare

= �‘ , OG’ = ~‘ + Oj(gilliiv)ei —FJ,~KJ�”. (A.28)

The subtlety which arises in the quantization of this system is the fact that the abovegaugealgebra
only closeson-shell (upon usingthe G equationof motion). As such, we expect to generate quartic
ghostcouplingterms in the final quantumaction,with a BRST chargewhich is nilpotent whenthe
quantum version of the G equationof motion is used.The R coefficientsare

R(u’)~~ =O~, R(G’)~~= (d/dz)0J+li~(g”O1V)—F~K” . (A.29)

Wehave only one other non-zero coefficient, namely

E(G’,G’)~.,,~,= ~gIr(...a~I7J —F,~~F,~’). (A.30)

The solution to the master equation is

S =Sc+fdt~wl+G7[~1+aig1kokvwJ_~K1wk]

+ ~G7Gj*Rh1mlYJmY/~!+ ~7*iB~ , (A.31)

andour conventionsfor the Christoffel connectionandRiemanncurvatureare

= 3~g”(8JgIk+
8kg!j — ‘9~g~~), R’lik = liiFl~— ~9jcF,)+ T7,,,F~’— Fk’mFI7’ . (A.32)

The gaugefermion is chosento be

W = —fdrW~G’ . (A.33)

This leadsto the following valuesof the anti-fields on the constraintsurface:

= 0 , G~= —~7~, = 0 , = —G’ , BF*~= 0 . (A.34)
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The quantumaction is now

Sq = 5c_fdT{~
1[~’ ~ i~1RhJm,WmWI+BGl} . (A.35)

The BRST transformationsare

= —�W’ , O~it’= 0

= —�[~‘ + 8j(g1~~a~v)~J —J7~K’yi”] +

= �B~ , 0B = 0 . (A.36)

It is straightforwardto checkthat the correspondingBRST chargeis on-shellnilpotent.The off-shell

nilpotent BRST chargeis constructedas before,and the modified transformationsare

0~Ji =_�OBe_ii.7~F/,~yi”)

0B~~ , (A.37)

whereB, = —B’ + ~if~wk, andthe quantumactioncanbe expressedas

Sq = fdr{Q,~,(~’ + g’
18

1V— ~aB’)} . (A.38)

Writing 0 = —�{Q, }, we again recoverthe transformationrules as usedin section3. In order to
recoverthe preciseform of the actionas usedthere,we simply needto rescaleboth B’ andi

1i~by
a factor of i, as explainedat the beginningof this appendix.

A.3. Topologicalsigma models

The classicalactionis [A.3]

Sc = f d2ah~pg~~KaiK~, Ka, = G~,— ~(O”u’ + �“pJ’jO~u’) . (A.39)

The symmetriesare

Ou’ =�‘

= 1�(~~�J (D~J,~)Kpk— j-~!�JKak+ P~’p
1[D~�~ + ~�fly�~ (DIJJk)&uk

+~C”p�~(DjJ’k)P+~yl8~U’~ . (A.40)

As for the caseof quantummechanics,the gauge algebrahere suffersfrom closureproblems.The

R coefficientsare
= 0’j

R(G”’)11 = ~�ap(DiJ1k)KPk _I~,.~Ic~k+ P4~.”p1DP + P~’pi~�~,(DiJ’k)li’u’<

+ ~ (DiJ’k )p/3k 8?u/ — pi pak 8~u~. (A.4l)

The only non-zeroE coefficient is

E(G$J,Ga1)�,~ = ~gJk[...~aP3~pj~ + h”’~F/,F~— ~h”~(DsJ’l)(DrJ
1k)

— ~�“~oD~J’
1).f~ — ~�“~F/c(DrJ’k)1 . (A.42)



D. Birmingham et a!., Topologicalfield theory 321

The solutionto the masterequationis

S = S~+ I d2cG~
1R(G”’)~C~+ u~R(u’)~C~

+G~jG~jE(G~1,G~X1)rsCSCT+ r”’B~~. (A.43)

The gaugefermionis takento be

W = fd2a~~aiG~~1. (A.44)

The anti-fieldson the gaugesurfacearethen

G~1= ~‘ai , u~= 0 , CI = 0 = G”’ , BF*ai = 0 . (A.45)

The quantumactionis now

Sq 5c + fd
2a~~i[D’1Ci+ ‘1p(DjJik)(liPUk)CJ _F~

1G’1kCu]+ G”~B~1

+~‘~““RmkjrCJCT + ~~air””(DiJ”)(DrJlk)CC’ . (A.46)

A point worth noting hereis the fact that the term ~E°’p(DJJ’k)G~”C~,which is presentin (A.41),

does not contribute to the action, since it multiplies the self-dual field ~ a: while it itself is
anti-self-dual.The BRST transformationsare

Ou’ = —cC’ , OC’ = 0

OCaj �[B~,~+ ~�a’~(likJi~)~’sJC”] , ~ =

= —c[~c”p(D~J,)G~C~—F~G”’C~]

—� 3(oiio’1p + J’3�”~)[D’~C~+ ~

_~RmJsrCsC1~— ~~(D~J1m)(DrJiJ)CsChi . (A.47)

The off-shell nilpotentBRST transformationsaregiven by

= � (B~1+ ~f) (DkJ?)~p~C”+ f~C~kC~)

= ~fC”C”(RkI’t + RklrsJ’~J~t)~”
t— ~cf”p(DkJ’J)C’~B~~

+~f(CkDkJ1s)(CtDlJts)~’1t + �FJ,~CJB”” , (A.48)

where

B~,= B,~,
1— ~(4,~0/ + Efi Jk)~plCi , (A.49)

andthe quantumactioncanbe expressedas

Sq = _fd2a{Q,Cai(&ui — ~ciB”)} . (A.50)
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A.4. Batalin—Vilkovisky triangles

As our final example of the Batalin—Vilkovisky procedure, we considerthe super-BFsystems
(for n > 3) of section 5.4. The quantization of these reducible models is facilitated by the use of
the so-calledBatalin—Vilkovisky triangles.Theseserveas a useful bookkeepingdevice, and allow
oneto keeptrack of the proliferatingplethoraof ghostandmultiplier fields requiredto effect the
quantization.For the purposesof illustration, we shalldeal solely with the triangle for the B part
of the super-BFsystem.The applicationto the x field, and also to similar fields in the BF models
of section6.2, follows by analogy.

Considerthe super-BFsystemwith n> 3. In n dimensionsB is an On — 2)-form, andwe denote
by .�, (~= 0,...,n — 2; ~~n—2= B) collectively B andits hierarchyof ghosts,andghosts-for-ghosts.
The Batalin—Vilkovisky triangle for the I systemtakesthe form:

rO

n—2

/

L.1 0
fl—3 n—3

/ /

~2
rI 0

n—4 n—4 n—4
/ / /

X3 2 1 rO
fl—5 fl—5 fl—5 fl—5

/ / / /

In_2 ~n-1 ~

In order to simplify notation we have introduced the collective label If (i, I = 0, ..., n — 2)
to denoteall fields in the triangle. The lower index indicatesthe form rank (with respectto the
manifold M) of the field, while the upper index labels the various NW—SE diagonal ledges.An
explanationof this structureis as follows:

(i) The horizontal lines containall the ghosts which arise at eachstageof reducibility of the
system.

(ii) The right handledge(j = 0) containsthe original reduciblegaugefield (In..2 in this case),
togetherwith its ghostandghost-for-ghosts.

(iii) Giventhe jth ledge,the rangeof i is i = 0,...,n — 2 — j.
(iv) Theghostnumbersof thej = 0 ledgeare specified as (I~ = (n—2— i)); the ghostnumbers

of all the remainingfields (including the multipliers) are now fixed.
(v) The j = 1 ledgecontainsthe anti-ghostsfor the j = 0 ledge; to eacharrowconnectingthe

two ledges,therecorrespondsa gaugefixing condition.
(vi) The fields on the j = 2 ledgearecalled extraghosts; theyare simply the anti-ghostsfor the

I = 1 ledge,andsoon.
(vii) To perform the quantizationwe must introducea total of >~I~(n — 2 — j) gaugefixing

conditions, one for each arrow in the triangle. In this way, one ensures that all the reducible
symmetrieshavebeencorrectly accountedfor.

(viii) Each gauge fixing condition requiresa multiplier field; one thus has a corresponding
multiplier triangle 11/, where j = 1, ...,n ~— 2.
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Appendix B. Conventions

In this appendixwe stateour conventionsregardinggradedforms and presentthe properties
which are necessaryfor our calculationsin sections5 and 6. We introduce Lie algebravalued
differential forms [e Q* (M x A/c, ad Q)] on M xA/c, which carry a naturalbigrading,a (Pi ,P2)-
form referringto aPi -form on M anda p2-formon A/c. ThePi label thereforerefers to the usual
exterior form degree,while the P2 label is the ghostnumberof the form. A (p~,P2)-form is then
calleda gradedform of degreePi + P2 andis denotedby X,,, wherep = p~+ P2. The following are
the generalpropertiesof gradedforms:

XpYq = (l)~YqXp . (B.l)

The usualgradedcommutatoris definedas

[Xp,Yq] = XpYq (l)
1~YqXp . (B.2)

Thus if p or q is even we obtain the commutator,while if p and q are odd we get the anti-
commutator.We remarkthatwe havealsousedthenotationSq = {Q, V} for the gradedcommutator
of Q with V whenexpressingthe quantumactionas a BRST commutator.We next notethat the
usual exteriorderivatived andthe BRST operator0 aregradedderivations,with bigradings(1,0)
and (0, 1) , respectively.The standardresult for the exterior derivative acting on a product of
formsalso holdsin this casefor bothderivationsd and0, for example,

OXpYq = (OXp)Yq+ (IYXpOYq . (B.3)

Givenapureghostform Xi,,, i.e., wherep = (0,p), togetherwith an arbitrary q-form Yq, we have
the following importantresult:

*(XpYq)Xp*Yq . (B.4)

From this we can derivethe properties

*(YqXp) = (1)””’(*Yq)Xp , (B.5)

*[c,Yq] = [c,*Yq] , (B.6)

wheredimM = n, c is the (0,1)-ghostform, and * is the Hodge staroperator.(B.5) also tells us
that the BRST operatorcommuteswith the Hodgestaroperator,

*(OYq) 0*Yq , ffl.7)

since0 is apureghostone-form.Otherpropertiesto note arethe traceformulaeandJacobiidentity,

TrXpYq = (—l)”~TrYqXp, (B.8)

TrXp[Yq,Zr] = Tr[Xp,Yq]Zr , (B.9)
[Xv, [Yq,Zrl] = [Xp,Yq],ZrI + (lY~[Yq, [Xp,Zr]1 , (B.l0)

whereX, Y,Z are arbitrarydegreeforms.The integrationby partsformula is

fXpdYq= (l) lX~7+I)/YqdXp
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If eitherp or q is odd we get a + sign, while if bothp andq areevenwe get a — sign. Our final
result refers to the inner productrule betweenX~and Yq, wherep = Cvi ,P2) andq = Cvi, —P2),

definedby

(X~,Y~)=ftr(Xp*Yp) , (B.l2)

which satisfies

(X~,Y~)= (_l)P2(Y~,X~). (B.l3)

Giventheserules, it is straightforwardto translate,for example,the transformationrulesof section
5.2.2 to bigradednotation.
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