Solutions to Assignments 05

1. It is useful to first recall how this works in the case of classical mechanics (i.e. a $0+1$ dimensional "field theory"). Consider a Lagrangian $L(q, \dot{q} ; t)$ that is a total time-derivative, i.e.

$$
\begin{equation*}
L(q, \dot{q} ; t)=\frac{d}{d t} F(q ; t)=\frac{\partial F}{\partial t}+\frac{\partial F}{\partial q(t)} \dot{q}(t) . \tag{1}
\end{equation*}
$$

Then one has

$$
\begin{equation*}
\frac{\partial L}{\partial q(t)}=\frac{\partial^{2} F}{\partial q(t) \partial t}+\frac{\partial^{2} F}{\partial q(t)^{2}} \dot{q}(t) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial L}{\partial \dot{q}(t)}=\frac{\partial F}{\partial q(t)} \quad \Rightarrow \quad \frac{d}{d t} \frac{\partial L}{\partial \dot{q}(t)}=\frac{\partial^{2} F}{\partial t \partial q(t)}+\frac{\partial^{2} F}{\partial q(t)^{2}} \dot{q}(t) \tag{3}
\end{equation*}
$$

Therefore one has

$$
\begin{equation*}
\frac{\partial L}{\partial q(t)}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}(t)} \quad \text { identically } \tag{4}
\end{equation*}
$$

Now we consider the field theory case. We define

$$
\begin{align*}
L:=\frac{d}{d x^{\alpha}} W^{\alpha}(\phi ; x) & =\frac{\partial W^{\alpha}}{\partial x^{\alpha}}+\frac{\partial W^{\alpha}}{\partial \phi(x)} \frac{\partial \phi(x)}{\partial x^{\alpha}} \\
& =\partial_{\alpha} W^{\alpha}+\partial_{\phi} W^{\alpha} \partial_{\alpha} \phi \tag{5}
\end{align*}
$$

to compute the Euler-Lagrange equations for it. One gets

$$
\begin{align*}
\frac{\partial L}{\partial \phi} & =\partial_{\phi} \partial_{\alpha} W^{\alpha}+\partial_{\phi}^{2} W^{\alpha} \partial_{\alpha} \phi \tag{6}\\
\frac{d}{d x^{\beta}} \frac{\partial L}{\partial\left(\partial_{\beta} \phi\right)} & =\frac{d}{d x^{\beta}}\left(\partial_{\phi} W^{\alpha} \delta_{\alpha}^{\beta}\right) \\
& =\partial_{\beta} \partial_{\phi} W^{\beta}+\partial_{\phi}^{2} W^{\beta} \partial_{\beta} \phi \tag{7}
\end{align*}
$$

Thus (since partial derivatives commute) the Euler-Lagrange equations are satisfied identically.

Remark: One can also show the converse: if a Lagrangian L gives rise to EulerLagrange equations that are identically satisfied then (locally) the Lagrangian is a total derivative. The proof is simple. Assume that $L(q, \dot{q} ; t)$ satisfies

$$
\begin{equation*}
\frac{\partial L}{\partial q} \equiv \frac{d}{d t} \frac{\partial L}{\partial \dot{q}} \tag{8}
\end{equation*}
$$

identically. The left-hand side does evidently not depend on the acceleration \ddot{q}. The right-hand side, on the other hand, will in general depend on \ddot{q} - unless L is at most linear in \dot{q}. Thus a necessary condition for L to give rise to identically satisfied Euler-Lagrange equations is that it is of the form

$$
\begin{equation*}
L(q, \dot{q} ; t)=L^{0}(q ; t)+L^{1}(q ; t) \dot{q} . \tag{9}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}=\frac{d}{d t} L^{1}=\frac{\partial L^{1}}{\partial t}+\frac{\partial L^{1}}{\partial q} \dot{q} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial L}{\partial q}=\frac{\partial L^{0}}{\partial q}+\frac{\partial L^{1}}{\partial q} \dot{q} . \tag{11}
\end{equation*}
$$

Noting that the 2 nd terms of the previous two equations are equal, the EulerLagrange equations thus reduce to the condition

$$
\begin{equation*}
\frac{\partial L^{1}}{\partial t}=\frac{\partial L^{0}}{\partial q} . \tag{12}
\end{equation*}
$$

This means that locally there is a function $F(q ; t)$ such that

$$
\begin{equation*}
L^{0}=\partial_{t} F \quad, \quad L^{1}=\partial_{q} F \tag{13}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
L=L^{0}+L^{1} \dot{q}=\partial_{t} F+\partial_{q} F \dot{q}=\frac{d}{d t} F \tag{14}
\end{equation*}
$$

as was to be shown. (Proof in the field theory case is analogous)
2. Complex Scalar Field I: Action and Equations of Motion

The action is

$$
\begin{align*}
S[\Phi] & =\int d^{4} x\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \Phi \partial_{\beta} \Phi^{*}-W\left(\Phi, \Phi^{*}\right)\right) \\
& =\int d^{4} x\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \phi_{1} \partial_{\beta} \phi_{1}-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \phi_{2} \partial_{\beta} \phi_{2}-V\left(\phi_{1}, \phi_{2}\right)\right) \tag{15}
\end{align*}
$$

(a) Varying ϕ_{1} in the 2nd line, while keeping ϕ_{2} fixed, one finds

$$
\begin{equation*}
\delta S=\int d^{4} x\left(-\eta^{\alpha \beta} \partial_{\alpha} \phi_{1} \partial_{\beta} \delta \phi_{1}-\left(\partial V / \partial \phi_{1}\right) \delta \phi_{1}\right) \tag{16}
\end{equation*}
$$

Integrating by parts the first term, and dropping the boundary term, one finds the Euler-Lagrange equation $\square \phi_{1}=\partial V / \partial \phi_{1}$. Analogous for ϕ_{2}.
(b) Using

$$
\begin{align*}
& \partial V / \partial \phi_{1}=(\partial W / \partial \Phi)\left(\partial \Phi / \partial \phi_{1}\right)+\left(\partial W / \partial \Phi^{*}\right)\left(\partial \Phi^{*} / \partial \phi_{1}\right)=(\partial W / \partial \Phi)+\left(\partial W / \partial \Phi^{*}\right) \\
& \partial V / \partial \phi_{2}=(\partial W / \partial \Phi)\left(\partial \Phi / \partial \phi_{2}\right)+\left(\partial W / \partial \Phi^{*}\right)\left(\partial \Phi^{*} / \partial \phi_{2}\right)=i(\partial W / \partial \Phi)-i\left(\partial W / \partial \Phi^{*}\right) \tag{17}
\end{align*}
$$

one finds

$$
\begin{align*}
& \square \Phi=\square \phi_{1}+i \square \phi_{2}=\partial V / \partial \phi_{1}+i \partial V / \partial \phi_{2}=2 \partial W / \partial \Phi^{*} \\
& \square \Phi^{*}=\square \phi_{1}-i \square \phi_{2}=\partial V / \partial \phi_{1}-i \partial V / \partial \phi_{2}=2 \partial W / \partial \Phi \tag{18}
\end{align*}
$$

(c) Varying only Φ^{*} in the first line of the action, while keeping Φ fixed, one finds

$$
\begin{equation*}
\delta S=\int d^{4} x\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \Phi \partial_{\beta} \delta \Phi^{*}-\left(\partial W / \partial \Phi^{*}\right) \delta \Phi^{*}\right) . \tag{19}
\end{equation*}
$$

Integrating by parts the 1st term, one obtains $(1 / 2) \square \Phi$, and thus the correct Euler-Lagrange equation for Φ (analogously for $\Phi \leftrightarrow \Phi^{*}$).
3. Complex Scalar Field II: Phase Invariance and Noether-Theorem
(a) If the potential is a function of $\Phi^{*} \Phi$, both the potential and the derivative terms of the Lagrangian are obviously invariant under

$$
\begin{equation*}
\Phi(x) \rightarrow \mathrm{e}^{i \theta} \Phi(x) \quad, \quad \Phi^{*}(x) \rightarrow \mathrm{e}^{-i \theta} \Phi^{*}(x) \tag{20}
\end{equation*}
$$

for constant θ, since in this case the derivatives transform the same way, i.e.

$$
\begin{equation*}
\partial_{\alpha} \Phi(x) \rightarrow \mathrm{e}^{i \theta} \partial_{\alpha} \Phi(x) \quad, \quad \partial_{\alpha} \Phi^{*}(x) \rightarrow \mathrm{e}^{-i \theta} \partial_{\alpha} \Phi^{*}(x) \tag{21}
\end{equation*}
$$

(b) Infinitesimally, one has

$$
\begin{equation*}
\Delta \Phi=i \theta \Phi \quad, \quad \Delta \Phi^{*}=-i \theta \Phi^{*} \tag{22}
\end{equation*}
$$

and therefore the corresponding Noether current is

$$
\begin{equation*}
J_{\Delta}^{\alpha}=\frac{\partial L}{\partial\left(\partial_{\alpha} \Phi\right)} \Delta \Phi+\frac{\partial L}{\partial\left(\partial_{\alpha} \Phi^{*}\right)} \Delta \Phi^{*}=-(i \theta / 2)\left(\Phi \partial^{\alpha} \Phi^{*}-\Phi^{*} \partial^{\alpha} \Phi\right) \tag{23}
\end{equation*}
$$

where (as usual) $\partial^{\alpha}=\eta^{\alpha \beta} \partial_{\beta}$. Calculating its divergence, one finds (ignoring the irrelevant constant prefactor, and using the equations of motion)

$$
\begin{align*}
\partial_{\alpha}\left(\Phi \partial^{\alpha} \Phi^{*}-\Phi^{*} \partial^{\alpha} \Phi\right) & =\partial_{\alpha} \Phi \partial^{\alpha} \Phi^{*}+\Phi \square \Phi^{*}-\partial_{\alpha} \Phi^{*} \partial^{\alpha} \Phi-\Phi^{*} \square \Phi \\
& =\Phi \square \Phi^{*}-\Phi^{*} \square \Phi=2\left(\Phi \partial W / \partial \Phi-\Phi^{*} \partial W / \partial \Phi^{*}\right) \tag{24}
\end{align*}
$$

This is not (and should not be) zero in general, but it is zero precisely when $W=W\left(\Phi^{*} \Phi\right)$. Indeed, in that case one has

$$
\begin{equation*}
\partial W\left(\Phi^{*} \Phi\right) / \partial \Phi=W^{\prime}\left(\Phi^{*} \Phi\right) \Phi^{*} \quad, \quad \partial W\left(\Phi^{*} \Phi\right) / \partial \Phi^{*}=W^{\prime}\left(\Phi^{*} \Phi\right) \Phi \tag{25}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\Phi \partial W / \partial \Phi-\Phi^{*} \partial W / \partial \Phi^{*}=W^{\prime}\left(\Phi^{*} \Phi\right)\left(\Phi \Phi^{*}-\Phi^{*} \Phi\right)=0 . \tag{26}
\end{equation*}
$$

4. Complex Scalar Field III: Gauge Invariance and Minimal Coupling
(a) Under
$\Phi(x) \rightarrow \mathrm{e}^{i \theta(x)} \Phi(x) \quad, \quad \Phi^{*}(x) \rightarrow \mathrm{e}^{-i \theta(x)} \Phi^{*}(x) \quad, \quad A_{\alpha}(x) \rightarrow A_{\alpha}(x)+\partial_{\alpha} \theta(x)$
the partial derivative transforms as

$$
\begin{equation*}
\partial_{\alpha} \Phi \rightarrow \partial_{\alpha}\left(\mathrm{e}^{i \theta} \Phi\right)=\mathrm{e}^{i \theta}\left(\partial_{\alpha} \Phi+i\left(\partial_{\alpha} \theta\right) \Phi\right) \tag{28}
\end{equation*}
$$

Therefore the covariant derivative

$$
\begin{equation*}
D_{\alpha} \Phi=\partial_{\alpha} \Phi-i A_{\alpha} \Phi \quad, \quad D_{\alpha} \Phi^{*}=\partial_{\alpha} \Phi^{*}+i A_{\alpha} \Phi^{*} \tag{29}
\end{equation*}
$$

transforms as

$$
\begin{align*}
D_{\alpha} \Phi & \rightarrow \mathrm{e}^{i \theta}\left(\partial_{\alpha} \Phi+i\left(\partial_{\alpha} \theta\right) \Phi\right)-i \mathrm{e}^{i \theta} A_{\alpha} \Phi-i \mathrm{e}^{i \theta}\left(\partial_{\alpha} \theta\right) \Phi \\
& =\mathrm{e}^{i \theta}\left(\partial_{\alpha} \Phi-i A_{\alpha} \Phi\right)=\mathrm{e}^{i \theta} D_{\alpha} \Phi \tag{30}
\end{align*}
$$

Likewise

$$
\begin{equation*}
D_{\alpha} \Phi^{*} \rightarrow \mathrm{e}^{-i \theta} D_{\alpha} \Phi^{*} \tag{31}
\end{equation*}
$$

(b) It is now obvious that the action

$$
\begin{equation*}
S[\Phi, A]=\int d^{4} x\left(-\frac{1}{2} \eta^{\alpha \beta} D_{\alpha} \Phi D_{\beta} \Phi^{*}-W\left(\Phi \Phi^{*}\right)\right) \tag{32}
\end{equation*}
$$

ist gauge invariant.
(c) The action is

$$
\begin{equation*}
S=S_{\mathrm{Maxwell}}[A]+S[\Phi, A]=\int d^{4} x\left(-\frac{1}{4} F^{2}\right)+S[\Phi, A] \tag{33}
\end{equation*}
$$

The equations of motion for Φ and Φ^{*} are simply the covariant versions of the equations of motion from Exercise 2, namely

$$
\begin{equation*}
D^{\alpha} D_{\alpha} \Phi=2 \partial W / \partial \Phi^{*} \quad, \quad D^{\alpha} D_{\alpha} \Phi^{*}=2 \partial W / \partial \Phi \tag{34}
\end{equation*}
$$

Variation with respect to A leads to

$$
\begin{equation*}
\delta S=\int d^{4} x\left(\partial_{\alpha} F^{\alpha \beta}+J^{\beta}\right) \delta A_{\beta} \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
J^{\beta}=(i / 2)\left(\Phi D^{\beta} \Phi^{*}-\Phi^{*} D^{\beta} \Phi\right) \tag{36}
\end{equation*}
$$

The equations of motion $\partial_{\alpha} F^{\alpha \beta}+J^{\beta}=0$ imply (and therefore require) that $\partial_{\beta} J^{\beta}=0$. Let us show that this equation is satisfied as a consequence of the equations of motion for Φ.
First of all, we have

$$
\begin{equation*}
\partial_{\beta}\left(\Phi D^{\beta} \Phi^{*}\right)=\partial_{\beta} \Phi D^{\beta} \Phi^{*}+\Phi \partial_{\beta} D^{\beta} \Phi^{*} \tag{37}
\end{equation*}
$$

Adding and subtracting $+i A_{\beta} \Phi$, we can write this as

$$
\begin{equation*}
\partial_{\beta}\left(\Phi D^{\beta} \Phi^{*}\right)=D_{\beta} \Phi D^{\beta} \Phi^{*}+\Phi D_{\beta} D^{\beta} \Phi^{*} \tag{38}
\end{equation*}
$$

Since the first term is invariant under the exchange $\Phi \leftrightarrow \Phi^{*}$, one finds

$$
\begin{equation*}
\partial_{\beta}\left(\Phi D^{\beta} \Phi^{*}-\Phi^{*} D^{\beta} \Phi\right)=\Phi D_{\beta} D^{\beta} \Phi^{*}-\Phi^{*} D_{\beta} D^{\beta} \Phi \tag{39}
\end{equation*}
$$

Note that this is just the covariant version of the divergence of the Noether current in Exercise 3, and the remaining step in the proof that this vanishes for a solution to the equations of motion is now identical to that in Exercise 3.

