
Solutions to Assignments 05

1. It is useful to first recall how this works in the case of classical mechanics (i.e. a
0+1 dimensional “field theory”). Consider a Lagrangian L(q, q̇; t) that is a total
time-derivative, i.e.

L(q, q̇; t) =
d

dt
F (q; t) =

∂F

∂t
+

∂F

∂q(t)
q̇(t) . (1)

Then one has
∂L

∂q(t)
=

∂2F

∂q(t)∂t
+

∂2F

∂q(t)2
q̇(t) (2)

and
∂L

∂q̇(t)
=

∂F

∂q(t)
⇒ d

dt

∂L

∂q̇(t)
=

∂2F

∂t∂q(t)
+

∂2F

∂q(t)2
q̇(t) (3)

Therefore one has
∂L

∂q(t)
=

d

dt

∂L

∂q̇(t)
identically (4)

Now we consider the field theory case. We define

L :=
d

dxα
Wα(φ;x) =

∂Wα

∂xα
+
∂Wα

∂φ(x)

∂φ(x)

∂xα

= ∂αW
α + ∂φW

α∂αφ (5)

to compute the Euler-Lagrange equations for it. One gets

∂L

∂φ
= ∂φ∂αW

α + ∂2
φW

α∂αφ (6)

d

dxβ
∂L

∂(∂βφ)
=

d

dxβ

(
∂φW

αδ βα

)
= ∂β∂φW

β + ∂2
φW

β∂βφ . (7)

Thus (since partial derivatives commute) the Euler-Lagrange equations are satis-
fied identically.

Remark: One can also show the converse: if a Lagrangian L gives rise to Euler-
Lagrange equations that are identically satisfied then (locally) the Lagrangian is
a total derivative. The proof is simple. Assume that L(q, q̇; t) satisfies

∂L

∂q
≡ d

dt

∂L

∂q̇
(8)

identically. The left-hand side does evidently not depend on the acceleration q̈.
The right-hand side, on the other hand, will in general depend on q̈ - unless L is
at most linear in q̇. Thus a necessary condition for L to give rise to identically
satisfied Euler-Lagrange equations is that it is of the form

L(q, q̇; t) = L0(q; t) + L1(q; t)q̇ . (9)
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Therefore
d

dt

∂L

∂q̇
=

d

dt
L1 =

∂L1

∂t
+
∂L1

∂q
q̇ (10)

and
∂L

∂q
=
∂L0

∂q
+
∂L1

∂q
q̇ . (11)

Noting that the 2nd terms of the previous two equations are equal, the Euler-
Lagrange equations thus reduce to the condition

∂L1

∂t
=
∂L0

∂q
. (12)

This means that locally there is a function F (q; t) such that

L0 = ∂tF , L1 = ∂qF , (13)

and therefore
L = L0 + L1q̇ = ∂tF + ∂qF q̇ =

d

dt
F , (14)

as was to be shown. (Proof in the field theory case is analogous)

2. Complex Scalar Field I: Action and Equations of Motion

The action is

S[Φ] =

∫
d4x

(
−1

2η
αβ∂αΦ∂βΦ∗ −W (Φ,Φ∗)

)
=

∫
d4x

(
−1

2η
αβ∂αφ1∂βφ1 − 1

2η
αβ∂αφ2∂βφ2 − V (φ1, φ2)

) (15)

(a) Varying φ1 in the 2nd line, while keeping φ2 fixed, one finds

δS =

∫
d4x

(
−ηαβ∂αφ1∂βδφ1 − (∂V/∂φ1)δφ1

)
. (16)

Integrating by parts the first term, and dropping the boundary term, one
finds the Euler-Lagrange equation 2φ1 = ∂V/∂φ1. Analogous for φ2.

(b) Using

∂V/∂φ1 = (∂W/∂Φ)(∂Φ/∂φ1) + (∂W/∂Φ∗)(∂Φ∗/∂φ1) = (∂W/∂Φ) + (∂W/∂Φ∗)

∂V/∂φ2 = (∂W/∂Φ)(∂Φ/∂φ2) + (∂W/∂Φ∗)(∂Φ∗/∂φ2) = i(∂W/∂Φ)− i(∂W/∂Φ∗)

(17)
one finds

2Φ = 2φ1 + i2φ2 = ∂V/∂φ1 + i∂V/∂φ2 = 2∂W/∂Φ∗

2Φ∗ = 2φ1 − i2φ2 = ∂V/∂φ1 − i∂V/∂φ2 = 2∂W/∂Φ
(18)

(c) Varying only Φ∗ in the first line of the action, while keeping Φ fixed, one finds

δS =

∫
d4x

(
−1

2η
αβ∂αΦ∂βδΦ

∗ − (∂W/∂Φ∗)δΦ∗
)

. (19)

Integrating by parts the 1st term, one obtains (1/2)2Φ, and thus the correct
Euler-Lagrange equation for Φ (analogously for Φ↔ Φ∗).
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3. Complex Scalar Field II: Phase Invariance and Noether-Theorem

(a) If the potential is a function of Φ∗Φ, both the potential and the derivative
terms of the Lagrangian are obviously invariant under

Φ(x)→ e iθΦ(x) , Φ∗(x)→ e−iθΦ∗(x) (20)

for constant θ, since in this case the derivatives transform the same way, i.e.

∂αΦ(x)→ e iθ∂αΦ(x) , ∂αΦ∗(x)→ e−iθ∂αΦ∗(x) (21)

(b) Infinitesimally, one has

∆Φ = iθΦ , ∆Φ∗ = −iθΦ∗ , (22)

and therefore the corresponding Noether current is

Jα∆ =
∂L

∂(∂αΦ)
∆Φ +

∂L

∂(∂αΦ∗)
∆Φ∗ = −(iθ/2)(Φ∂αΦ∗ − Φ∗∂αΦ) (23)

where (as usual) ∂α = ηαβ∂β . Calculating its divergence, one finds (ignoring
the irrelevant constant prefactor, and using the equations of motion)

∂α(Φ∂αΦ∗ − Φ∗∂αΦ) = ∂αΦ∂αΦ∗ + Φ2Φ∗ − ∂αΦ∗∂αΦ− Φ∗2Φ

= Φ2Φ∗ − Φ∗2Φ = 2(Φ∂W/∂Φ− Φ∗∂W/∂Φ∗)
(24)

This is not (and should not be) zero in general, but it is zero precisely when
W = W (Φ∗Φ). Indeed, in that case one has

∂W (Φ∗Φ)/∂Φ = W ′(Φ∗Φ)Φ∗ , ∂W (Φ∗Φ)/∂Φ∗ = W ′(Φ∗Φ)Φ , (25)

and therefore

Φ∂W/∂Φ− Φ∗∂W/∂Φ∗ = W ′(Φ∗Φ) (ΦΦ∗ − Φ∗Φ) = 0 . (26)

4. Complex Scalar Field III: Gauge Invariance and Minimal Coupling

(a) Under

Φ(x)→ e iθ(x)Φ(x) , Φ∗(x)→ e−iθ(x)Φ∗(x) , Aα(x)→ Aα(x)+∂αθ(x)

(27)
the partial derivative transforms as

∂αΦ→ ∂α(e iθΦ) = e iθ(∂αΦ + i(∂αθ)Φ) (28)

Therefore the covariant derivative

DαΦ = ∂αΦ− iAαΦ , DαΦ∗ = ∂αΦ∗ + iAαΦ∗ . (29)
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transforms as

DαΦ→ e iθ(∂αΦ + i(∂αθ)Φ)− ie iθAαΦ− ie iθ(∂αθ)Φ

= e iθ(∂αΦ− iAαΦ) = e iθDαΦ
(30)

Likewise
DαΦ∗ → e−iθDαΦ∗ . (31)

(b) It is now obvious that the action

S[Φ, A] =

∫
d4x

(
−1

2η
αβDαΦDβΦ∗ −W (ΦΦ∗)

)
(32)

ist gauge invariant.

(c) The action is

S = SMaxwell[A] + S[Φ, A] =

∫
d4x(−1

4F
2) + S[Φ, A] . (33)

The equations of motion for Φ and Φ∗ are simply the covariant versions of
the equations of motion from Exercise 2, namely

DαDαΦ = 2∂W/∂Φ∗ , DαDαΦ∗ = 2∂W/∂Φ . (34)

Variation with respect to A leads to

δS =

∫
d4x

(
∂αF

αβ + Jβ
)
δAβ (35)

where
Jβ = (i/2)

(
ΦDβΦ∗ − Φ∗DβΦ

)
(36)

The equations of motion ∂αFαβ + Jβ = 0 imply (and therefore require) that
∂βJ

β = 0. Let us show that this equation is satisfied as a consequence of the
equations of motion for Φ.

First of all, we have

∂β(ΦDβΦ∗) = ∂βΦDβΦ∗ + Φ∂βD
βΦ∗ . (37)

Adding and subtracting +iAβΦ, we can write this as

∂β(ΦDβΦ∗) = DβΦDβΦ∗ + ΦDβD
βΦ∗ . (38)

Since the first term is invariant under the exchange Φ↔ Φ∗, one finds

∂β

(
ΦDβΦ∗ − Φ∗DβΦ

)
= ΦDβD

βΦ∗ − Φ∗DβD
βΦ (39)

Note that this is just the covariant version of the divergence of the Noether
current in Exercise 3, and the remaining step in the proof that this vanishes
for a solution to the equations of motion is now identical to that in Exercise
3.
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