SOLUTIONS TO ASSIGNMENTS 05

1. It is useful to first recall how this works in the case of classical mechanics (i.e. a
0+1 dimensional “field theory”). Consider a Lagrangian L(q,q;t) that is a total
time-derivative, i.e.
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Then one has
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and
oL _ or _ d oL _ &F N °F (1) )
2i(t) ~ da(t) dt0g(t) ~ otoq(t)  dqt)?”
Therefore one has oL i oL
m = am ldentlcally (4)
Now we consider the field theory case. We define
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to compute the Euler-Lagrange equations for it. One gets
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Thus (since partial derivatives commute) the Euler-Lagrange equations are satis-
fied identically.

Remark: One can also show the converse: if a Lagrangian L gives rise to Euler-
Lagrange equations that are identically satisfied then (locally) the Lagrangian is
a total derivative. The proof is simple. Assume that L(q, ¢;t) satisfies

=T )

identically. The left-hand side does evidently not depend on the acceleration §.
The right-hand side, on the other hand, will in general depend on § - unless L is
at most linear in ¢. Thus a necessary condition for L to give rise to identically

satisfied Euler-Lagrange equations is that it is of the form

L(g,4;t) = L%(g; t) + L (g 1)g - (9)
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Noting that the 2nd terms of the previous two equations are equal, the Euler-

Lagrange equations thus reduce to the condition
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This means that locally there is a function F'(g;t) such that
L°=6,F , L'=9,F , (13)
and therefore p
L=L"+L'=0,F +0,Fq= prd (14)

as was to be shown. (Proof in the field theory case is analogous)

. Complex Scalar Field I: Action and Equations of Motion

The action is

S[®] = /d4m (—%naﬂaﬂaﬁé* —W(®, @*))

(15)
= [ (40001001 — 300020302~ Vi(1,))
(a) Varying ¢; in the 2nd line, while keeping ¢ fixed, one finds
58 = / 0z (1 Bar35061 — (0V/061)01) (16)

Integrating by parts the first term, and dropping the boundary term, one
finds the Euler-Lagrange equation O¢; = V/0¢1. Analogous for ¢s.

(b) Using
OV /0¢p1 = (OW/0P)(0P/Dp1) + (OW/OD*)(0DP* /Op1) = (OW /D) + (OW/IP™)
OV /0pg = (OW/OD)(0P/Dp3) + (OW/0DP™)(0P* /Ops) = i(OW/OP) — i(OW /ODP™)
(17)
one finds
O® = O¢y + i0¢py = V/Ip1 + 10V /Dpy = 20W/0P* (18)
O®* = O¢y — i0gpy = OV/0¢p1 — i0V/0py = 20W /0P
(¢) Varying only ®* in the first line of the action, while keeping ® fixed, one finds
5S = / dia (—%naﬂaacbaﬁa@* - (8W/6®*)5<I>*> . (19)

Integrating by parts the 1st term, one obtains (1/2)0®, and thus the correct
Euler-Lagrange equation for ® (analogously for ® <> &*).



3. Complex Scalar Field II: Phase Invariance and Noether-Theorem

(a) If the potential is a function of ®*®, both the potential and the derivative

terms of the Lagrangian are obviously invariant under
B(z) = Wo(z) |, @ (x) = e War(2) (20)
for constant 6, since in this case the derivatives transform the same way, i.e.
9a®(z) — eW9,0(x) | 9.0"(x) — ¢ W9,8"(x) (21)
(b) Infinitesimally, one has
AP =ifd | AD* = —ifd* | (22)

and therefore the corresponding Noether current is
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JA = 8(6Q<I>)A(I)+8(6Q<I)*)A(I) = —(i0/2)(P0*P O*0“D) (23)

where (as usual) 9% = *?95. Calculating its divergence, one finds (ignoring

the irrelevant constant prefactor, and using the equations of motion)

O (PO D" — B*0°D) = 9,PI*P* + PTIP* — §o*9*® — O*TP

24
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This is not (and should not be) zero in general, but it is zero precisely when
W =W (®*®). Indeed, in that case one has

oW (®*®) /0D = W/(®*®)D* | OW(D*®)/0d* = W'(*®)d , (25)
and therefore
POW /0D — D*OW/0D* = W'(P*®) (D" — &*P) =0 . (26)
4. Complex Scalar Field III: Gauge Invariance and Minimal Coupling
(a) Under

o) = W@ o) | o' @) 5 e W@t (x) | Au(z) = Aa(z)+0.0(z)

(27)
the partial derivative transforms as
0a® — 9a(e®) = (9,0 + i(9.0)®) (28)
Therefore the covariant derivative
Dy® = 0,9 —iAy® |, Dy®" = 0,0 +iA, D" . (29)



transforms as

Da® — (9,8 +i(8,0)®) — i 4,8 — e (9,0)®

) . (30)
=¢(9,8 — i4,0) =D,
Likewise
Da®* — e WD, 3% (31)
It is now obvious that the action
S[®, Al = /d4x (—%no‘ﬁDa@Dgtﬁ* - W(@@*)) (32)
ist gauge invariant.
The action is
S = Shtawet[A] + S[®, A] = / do(-LF?) 4 S[@,4] . (33)

The equations of motion for ® and ®* are simply the covariant versions of

the equations of motion from Exercise 2, namely
D*Dy® =20W/0®* |, D*D,d* =20W/0P . (34)
Variation with respect to A leads to
58 = / diz (aaFaﬁ + J5> 5Ag (35)

where
T8 = (i/2) (@D%* - @*D%) (36)

The equations of motion 9,F*? + J? = 0 imply (and therefore require) that
ogJ # = 0. Let us show that this equation is satisfied as a consequence of the

equations of motion for ®.

First of all, we have
Dp(®DP®*) = 9s®DPD* + d93 D D* . (37)
Adding and subtracting +iAg®, we can write this as
95(®D°®*) = D@D ®* + ®Dz D o* . (38)
Since the first term is invariant under the exchange ® <+ ®*, one finds
95 (#D0* ~ " DD) = @Dz D ®* — 0" DD (39)

Note that this is just the covariant version of the divergence of the Noether
current in Exercise 3, and the remaining step in the proof that this vanishes
for a solution to the equations of motion is now identical to that in Exercise
3.



