
Solutions to Assignments 04

1. We first compute the variation of E [φ] = 1

2

∫

d3x
(

~∇φ
)2

:

δE [φ] =

∫

d3x ~∇φ · ~∇δφ

=

∫

d3x ~∇ ·

(

~∇φδφ
)

−

∫

d3x (∆φ) δφ

= −

∫

d3x (∆φ) δφ , (1)

where the first term in the second line vanishes because it is a boundary term

and the variation is zero on the boundary. Finally, because for an extremum the

variation has to vanish for any variation δφ, we conclude

δE [φ] = 0 ∀ δφ ⇔ ∆φ = 0 . (2)

2. Again we compute the variation in exactly the same way

δS[Φa] =

∫

d4x

[

−ηαβ∂αΦ
a∂βδΦ

bδab −
∂V

∂Φb
δΦb

]

=

∫

d4x

[

δab2Φ
a
−
∂V

∂Φb

]

δΦb , (3)

such that we can read off the equations of motion for the fields

2Φb =
∂V

∂Φb
, (4)

where Φb = δabΦ
a ≡ Φb.

3. It is useful to first recall how this works in the case of classical mechanics (i.e. a

0+1 dimensional “field theory”). Consider a Lagrangian L(q, q̇; t) that is a total

time-derivative, i.e.

L(q, q̇; t) =
d

dt
F (q; t) =

∂F

∂t
+

∂F

∂q(t)
q̇(t) . (5)

Then one has
∂L

∂q(t)
=

∂2F

∂q(t)∂t
+

∂2F

∂q(t)2
q̇(t) (6)

and
∂L

∂q̇(t)
=

∂F

∂q(t)
⇒

d

dt

∂L

∂q̇(t)
=

∂2F

∂t∂q(t)
+

∂2F

∂q(t)2
q̇(t) (7)

Therefore one has
∂L

∂q(t)
=

d

dt

∂L

∂q̇(t)
identically (8)
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Now we consider the field theory case. We define

L :=
d

dxα
Wα(φ;x) =

∂Wα

∂xα
+
∂Wα

∂φ(x)

∂φ(x)

∂xα

= ∂αW
α + ∂φW

α∂αφ (9)

to compute the Euler-Lagrange equations for it. One gets

∂L

∂φ
= ∂φ∂αW

α + ∂2φW
α∂αφ (10)

d

dxβ
∂L

∂(∂βφ)
=

d

dxβ

(

∂φW
αδ β

α

)

= ∂β∂φW
β + ∂2φW

β∂βφ , (11)

and realizing that ∂β∂φW
β = ∂φ∂βW

β we have (10) = (11), thus the Euler-

Lagrange equations are trivially satisfied.

Remark: One can also show the converse: if a Lagrangian L gives rise to Euler-

Lagrange equations that are identically satisfied then (locally) the Lagrangian is

a total derivative. The proof is simple. Assume that L(q, q̇; t) satisfies

∂L

∂q
≡

d

dt

∂L

∂q̇
(12)

identically. The left-hand side does evidently not depend on the acceleration q̈.

The right-hand side, on the other hand, will in general depend on q̈ - unless L is

at most linear in q̇. Thus a necessary condition for L to give rise to identically

satisfied Euler-Lagrange equations is that it is of the form

L(q, q̇; t) = L0(q; t) + L1(q; t)q̇ . (13)

Therefore
d

dt

∂L

∂q̇
=

d

dt
L1 =

∂L1

∂t
+
∂L1

∂q
q̇ (14)

and
∂L

∂q
=
∂L0

∂q
+
∂L1

∂q
q̇ . (15)

Noting that the 2nd terms of the previous two equations are equal, the Euler-

Lagrange equations thus reduce to the condition

∂L1

∂t
=
∂L0

∂q
. (16)

This means that locally there is a function F (q; t) such that

L0 = ∂tF , L1 = ∂qF , (17)

and therefore

L = L0 + L1q̇ = ∂tF + ∂qF q̇ =
d

dt
F , (18)

as was to be shown. (Proof in the field theory case is analogous)
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4. The Chern-Simons Action

First note that

SCS [A] =

∫

d3x ǫαβγAαFβγ

= 2

∫

d3x ǫαβγAα∂βAγ . (19)

(a) To find the equations of motion one computes the variation

δSCS [A] = 2

∫

d3x ǫαβγ (δAα∂βAγ +Aα∂βδAγ)

= 2

∫

d3x ǫαβγ (δAα∂βAγ − (∂βAα)δAγ)

= 2

∫

d3x ǫαβγ (∂βAγ − ∂γAβ) δAα

= 2

∫

d3x ǫαβγFβγδAα , (20)

which implies

δSCS [A] = 0 ⇔ Fβγ = 0 . (21)

(b) The equation of motion Fαβ = 0 is certainly gauge invariant. We now want

to know if the Chern-Simons action SCS[A] is gauge invariant. To address

the question we perform a gauge transformation Aα → A′

α = Aα + ∂αψ and

see how the Chern-Simons term changes

SCS [A
′] = SCS[A] +

∫

d3x ǫαβγFβγ∂αψ

= SCS[A] +

∫

d3x ∂α

(

ǫαβγFβγψ
)

(22)

using ǫαβγ∂αFβγ = 0. Thus, because the second term is a total derivative

(i.e. the Lagrangian is invariant up to a total derivative), one sees that the

Chern-Simons action is gauge invariant up to boundary terms.

(c) Combining the above result in (a) with the equations of motion of pure

Maxwell theory, the result

∂αF
αβ + k ǫβγδFγδ = 0 . (23)

follows.
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As an aside: the above theory with Lagrangian

L = Lm + k Lcs = −
1

4
FαβFαβ + 1

2
k ǫαβγAαFβγ (24)

is also known as topologically massive Maxwell theory, since the CS term provides

a “topological” gauge-invariant mass term for the photon (note that a mass term

like m2AαA
α, like in the KLein-Gordon equation, would not be gauge invariant -

which is why it is usually claimed that the masslessness of the photon is due to

gauge invariance).

One quick way to see this is to introduce the dual of the field strength

Gβ = 1

2
ǫβγδFγδ (25)

in terms of which the equations of motion and the Bianchi identity take the form

∂αGβ − ∂βGα = 2k ǫαβγG
γ , ∂βG

β = 0 (26)

respectively. Acting with ∂α on the equation of motion and using the Bianchi

identity and again the equation of motion one finds

2Gβ = 2k ǫαβγ∂
αGγ = k ǫαβγ(∂

αGγ
− ∂γGα)

= 2k2 ǫαβγǫ
αγδ Gδ = 4k2Gβ

(27)

so that the theory indeed describes excitations of mass m2 = 4k2.
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