
KFT Solutions 03

1. Inhomogeneous Maxwell-Equations and Potentials

(a) Under the gauge transformation Aβ → Aβ + ∂βΨ, Fαβ transforms as

∂αAβ − ∂βAα → ∂αAβ + ∂α∂βΨ− ∂βAα − ∂β∂αΨ = ∂αAβ − ∂βAα (1)

and therefore Fαβ is gauge-invariant.

(b) With Aα = (−φ/c, ~A) one has

F0k = −Fk0 = ∂0Ak − ∂kA0 = c−1(∂tAk + ∂kφ) = −Ek/c

Fik = ∂iAk − ∂kAi = εik`B` (F12 = B3 etc.)
(2)

and therefore, with Fαβ = ηαγηβδFγδ,

F 0k = −F k0 = −F0k = Ek/c , F ik = Fik = εik`B` . (3)

(c) Thus, with Jα = (ρc, ~J) one has

∂αF
α0 = ∂kF

k0 = −c−1~∇. ~E = −ρ/(ε0c) = −µ0cρ = −µ0J0 (4)

and

∂αF
α1 = ∂0F

01 + ∂2F
21 + ∂3F

31 = c−2∂tE1 − ∂2B3 + ∂3B2

= −(~∇× ~B − 1

c2
∂t ~E)1 = −µ0J1 = −µ0J1

(5)

(and likewise for the 2- and 3-components).

(d) One has

∂αF
αβ = ∂α∂

αAβ − ∂α∂βAα = 2Aβ − ∂β∂αAα = −µ0Jβ (6)

and therefore 2Aβ − ∂β∂αAα = −µ0Jβ.

(e) One has

2(Aβ + ∂βΨ)− ∂β∂α(Aα + ∂αΨ) = 2Aβ + ∂β2Ψ− ∂β∂αAα − ∂β2Ψ (7)

Since the 2Ψ-term cancels, the expression is gauge invariant.

(f) From ∂αF
αβ = −µ0Jβ one deduces −µ0∂βJβ = ∂β∂αF

αβ = 0 because Fαβ =

−F βα is anti-symmetric while ∂α∂β = ∂β∂α is symmetric.
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2. The Homogeneneous Maxwell-Equations

(a) One has ∂αFβγ = ∂α∂βAγ − ∂α∂γAβ etc. Using the fact that 2nd partial

derivatives commute one deduces

∂αFβγ + ∂γFαβ + ∂βFγα

= ∂α∂βAγ − ∂γ∂αAβ + ∂γ∂αAβ − ∂β∂γAα + ∂β∂γAα − ∂α∂βAγ = 0
(8)

(b) ∂αFβγ + ∂βFγα + ∂γFαβ = 0

i. Two indices equal (α = β, say): ∂αFαγ+∂αFγα+∂γFαα = 0 is identically

satisfied because Fαα = 0, Fαγ + Fγα = 0.

ii. All 3 indices spatial, (α, β, γ) = (1, 2, 3):

∂1F23 + ∂2F31 + ∂3F21 = ∂1B1 + ∂2B2 + ∂3B3 = ~∇. ~B = 0 (9)

iii. One index time, the others spatial, e.g. (α, β, γ) = (0, 1, 2):

∂0F12+∂1F20+∂2F01 = c−1(∂tB3+∂1E2−∂2E1) = c−1(~∇× ~E+∂t ~B)3 = 0

(10)

(and likewise for the other components).

3. The dual field strength tensor

The dual field strength tensor is defined by

F̃αβ = 1
2ε
αβγδFγδ . (11)

With F0i = −c−1Ei, Fij = εijkBk and F̃αβ = 1
2ε
αβγδFγδ one gets for the non-zero

components of F̃αβ :

F̃ 0i = 1
2ε

0iγδFγδ = 1
2ε

0ijkFjk = 1
2ε

0ijkεjklBl = −Bi (12)

F̃ ij = 1
2ε
ijγδFγδ = εij0kF0k = −c−1εij0kEk = c−1εijkEk . (13)

The equation ∂λF̃
λδ = 0 can then be written as

∂λF̃
λ0 = −∂iF̃ 0i = ~∇ · ~B (14)

∂λF̃
λj = ∂0F̃

0j + ∂iF̃
ij = −c−1∂tBj − c−1εjik∂iEk

= −1

c

(
∂t ~B + ~∇× ~E

)
j
, (15)

which proves the assertion.

4. Lorentz Invariants
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(a)

I1 = 1
4FαβF

αβ = 1
4

(
F0iF

0i + Fi0F
i0 + FijF

ij
)

= 1
2

(
−(F0i)

2 + (Fij)
2
)

= 1
2

(
~B2 − c−2 ~E2

)
(16)

I2 = 1
4FαβF̃

αβ = 1
4

(
F0iF̃

0i + Fi0F̃
i0 + FijF̃

ij
)

= 1
4

(
2c−1EiBi + εijkBkc

−1εijlEl

)
= c−1 ~E · ~B (17)

where one has used εijlεijk = 2δlk. If ~E = 0 in one inertial system, then I1 > 0

and I2 = 0 in all inertial systems, and thus ~E. ~B = 0 and | ~E| < | ~B| in all

inertial systems.

(b)

8I2 = εαβγδFαβFγδ = 2εαβγδ(∂αAβ)Fγδ = 2∂α

(
εαβγδAβFγδ

)
(18)

because εαβγδ∂αFγδ = 0 (Bianchi identity). Thus I2 is a total derivative,

I2 = ∂αC
α. Cα is not gauge invariant but changes by a total derivative

under a gauge transformation,

εαβγδAβFγδ → εαβγδ∂βψFγδ = ∂β(εαβγδψFγδ) (19)

5. Lorentz transformation of ~B:

Using F̄αβ = Λ γ
α Λ δ

β Fγδ one wants to compute the transformation of F̄ij which

contains the magnetic field components. To do this we need Λ β
α which is obtained

from Lαβ by inverse transposition, which gives

(
Λ β
α

)
=


coshα sinhα 0 0

sinhα coshα 0 0

0 0 1 0

0 0 0 1

 . (20)

With it one computes :

F̄ij = Λ γ
i Λ δ

j Fγδ = Λ 0
i Λ l

jF0l + Λ k
i Λ 0

j Fk0 + Λ k
i Λ l

jFkl

=
(

Λ 0
i Λ l

j − Λ l
i Λ 0

j

)
F0l + Λ k

i Λ l
jFkl (21)

such that

F̄12 = sinhαF02 + coshαF12 = −c−1γβE2 + γB3 (22)

F̄23 = F23 (23)

F̄31 = − sinhαF03 + coshαF31 = c−1γβE3 + γB2 (24)

from which one can read off the transformation of the magnetic field :

B̄1 = B1

B̄2 = γB2 + c−1βγE3

B̄3 = γB3 − c−1βγE2 (25)
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