
Solutions to Assignments 01

1. Die Lorentz-Gruppe

(a) The first claim follows from multiplicativity of the determinant (and invari-
ance under transposition):

LT ηL = η ⇒ det(LT ηL) = det(η) ⇒ det(L)2 = +1 . (1)

The second claim follows fom writing (LT ηL)00 = η00 explicitly,
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(b) It is trivial to verify that

LT1 ηL1 = η, LT2 ηL2 = η ⇒ (L1L2)
T η(L1L2) = η . (3)

Existence of an inverse L−1 follows from detL 6= 0 (shown above). That
L ∈ L ⇒ L−1 ∈ L follows from

LT ηL = η ⇔ η = (L−1)T ηL−1 . (4)

2. Geometrie : Analytische Minkowski-Geometrie

(a) Because of Lorentz invariance one can choose to work in the rest frame in
which v = (a, 0, 0, 0). A general null vector w = (w0, w1, w2, w3) is such that
(w0)2 = (w1)2 + (w2)2 + (w3)2 and we want v = w1 + w2. With the choice
w0
1 = w0

2 = a
2 one possibility is

w1 = (a2 ,
a
2 , 0, 0) w2 = (a2 ,−

a
2 , 0, 0) . (5)

(b) Assuming v = (a, a, 0, 0) a general null vector in a preferred frame (with
a 6= 0), then the orthogonality condition with w gives

v.w = a(w1 − w0) = 0 ⇒ w0 = w1 , (6)

with w2 and w3 unconstrained. Therefore the square of w gives :

w.w = −(w0)2 + (w1)2 + (w2)2 + (w3)2

= (w2)2 + (w3)2 ≥ 0 ⇔ Not timelike (7)

and is equal to zero if and only if w2 = w3 = 0 which implies v = λw for
some constant λ.
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(c) The sum of two timelike vectors is not necessarily timelike. As a counterex-
ample, consider the vectors u = (a, b, 0, 0) and v = (−a, b, 0, 0); these are
timelike for |b| < |a| but their sum u + v = (0, 2b, 0, 0) is clearly spacelike.
What is true is that the sum of two future-pointing (u0 > 0, v0 > 0) timelike
vectors is future-pointing and timelike.

Likewise, the sum of two spacelike vectors is not necessarily spacelike. As
a counterexample, consider the vectors u = (a, b, 0, 0) and v = (a,−b, 0, 0);
these are spacelike for |b| > |a| but their sum u + v = (2a, 0, 0, 0) is clearly
timelike. This shows that one should not think that for spacelike vectors
Minkowski geometry reduces to Euclidean geometry.

3. Tensor-Algebra: Lorentz-Tensoren

By definition a Lorentz vector transforms as

v̄α = Lαβv
β , (8)

and a Lorentz covector as
ūα = Λ β

α uβ , (9)

with
Λ = (LT )−1 ⇔ Λ β

α L
α
γ = δβγ . (10)

This definition is such that the contraction between a vector and a covector is a
scalar (invariant under Lorentz transformations),
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α . (11)

Higher rank tensors transform like products of vectors and covectors, i.e. a (p, q)

tensor transforms with p factors of L and q factors of Λ and is written as an object
with p upper indices and q lower indices.

By the same calculation as above one then finds that any contracted pair of indices
on a tensor is invariant (and therefore the tensor type of the resulting object can
be read off just by looking at the number of uncontracted upper and lower indices).
For example:

(a) for the contraction of a (2, 0)-tensor and a (0, 1)-tensor (covector) one has

T̄αβūβ = LαγL
β
δ T

γδ Λ ρ
β uρ = Lαγ δ

ρ
δ T

γδuρ = Lαγ

(
T γδuδ

)
(12)

so that Tαβuβ transforms like (and therefore is) a (1, 0)-tensor (vector).

(b) likewise the trace of a (1, 1)-tensor is a scalar,

T̄αα = LαβΛ γ
α T

β
γ = δγβ T

β
γ = T ββ (13)
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Note that the trace of a (0, 2)-tensor Tαβ is not well-defined without using
the Minkowski metric, i.e. something like

trace(Tαβ)
?
=
∑
α

Tαα (???) (14)

is not Lorentz-invariant and therefore depends on the inertial system in which
it is evaluated. However, with the help of the Minkowski metric one can define
a Lorentz-invariant trace (i.e. a scalar) via

Tαβ → Tαβ = ηαγTγβ → Tαα = ηαγTγα X (15)

(“taking the trace with respect to η”). This is now manifestly a scalar.

4. Tensor-Analysis: Lorentz-Tensoren und ihre Ableitungen

The formalism is designed in such a way that the transformation behaviour (ten-
sorial nature) can just be read off from the free indices. In particular, the partial
derivative (∂/∂xα) = ∂α transforms as a covector,

∂̄α ≡
∂

∂x̄α
= Λ β

α ∂β . (16)

Thus ∂α acting on a (p, q)-tensor gives a (p, q + 1)-tensor.

Then the answers are trivially (a) ∂αf covector (b) V α∂αf scalar (c) V α∂βf (1,1)-
tensor (d) ∂αV α scalar (e) f∂αV α scalar (f) ∂αVβ (0,2)-tensor (g) ∂α∂βf (0,2)-
tensor (h) V α∂βVα covector.
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