KFT UBUNGEN 03 (ADDENDUM)

REMARKS ON SYMMETRISATION AND ANTI-SYMMETRISATION OF TENSORS:

e A covariant 2-tensor T),,, say, is said to be symmetric if T, = T,, and anti-
symmetric if T}, = —T,,. This is well-defined because it is a Lorentz-invariant
notion: a tensor is symmetric in all inertial systems iff it is symmetric in one

inertial system, etc.

e This definition can be extended to any or all pairs of covariant indices or pairs
of contravariant indices. Thus e.g. a tensor TH1#r is called totally symmetric (or
totally anti-symmetric) if it is symmetric (anti-symmetric) under the exchange of
any pair of indices. On the other hand, it is not meaningful to talk of the symmetry

of a (1,1)-tensor, say, as an equation like T% = 1%, is meaningless.

e The number of independent components of a general (p,q)-tensor is 4’77, The
number of independent components is reduced if the tensor has some symmetry

properties. Thus

— a symmetric (0,2)- or (2,0)-tensor has 4 x 5/2 = 10 independent components,
— an anti-symmetric (0,2)- or (2,0)-tensor has 4 x 3/2 = 6 independent com-
ponents,

— a totally anti-symmetric (0, 3)-tensor T, ., has 4 x 3 x 2/(2 x 3) = 4 inde-

pendent components,

— and a totally anti-symmetric (0,4)-tensor T,, . ,, has only got one indepen-
dent component, namely Tpio3 (all the others being determined by anti-

symmetry).

e Given any (0,2)-tensor 7},,, one can decompose it into its symmetric and anti-

symmetric parts as
T L T L T T
w = 5(Tw + Top) + 3 (T — Top) = () + L) (1)

The decomposition into symmetric and anti-symmetric parts is Lorentz invariant.

In particular, when 7),, is a tensor, also 7{,,) and Tj,,) are tensors, and thus



(anti-)symmetrisation is yet another linear operation that one can perform on

tensors.

The factor % is chosen such that the symmetrisation of a symmetric tensor is the

same as the original tensor,

T =Ty = Tyuy =1,

w) =T T =0 (2)

(and likewise for the anti-symmetrisation of anti-symmetric tensors).

This can be generalised to the (anti-)symmetrisation of any pair of (contravariant

or covariant) indices; e.g.

T(;u/))\ - %(THV)\ + TVHA) (3)

is the symmetrisation of T}, in its first and second index. It can also be generalised

to the total (anti-)symmetrisation of a higher-rank tensor; e.g.
T(;u/)\) = %(T;w)\ + Tu,u)\ + T)\u,u + Tu)\u + T,u)\u + T)\/J,l/) (4)
is totally symmetric, i.e. symmetric under the exchange of any pair of indices, and

T[;u/)\} = %(T/J,l/)\ - Tu,u)\ - T)\u,u + Tu)\u - T,u)\u + T)\/J,l/) (5)

is totally anti-symmetric. The prefactor % is again there to ensure that the total
symmetrisation of a totally symmetric tensor is the original tensor (and likewise for
the total anti-symmetrisation of totally anti-symmetric tensors). This generalises

in an evident way to higher rank p tensors, with the combinatorial prefactor 1/p!.

A special case, and the one of interest to us here, is the total anti-symmetrisation
Tiwy of a tensor Ty, that is already anti-symmetric in two of its indices, say
Tyny = =Ty In that case, the 1st and 2nd terms of (5) are equal, as are the 3rd
and 4th, and the 5th and 6th, and the formula (5) reduces to a sum of 3 terms,

T[,uz/)\] = %(T/Jl/)\ + sz)\,u + T)\,ul/) ) (6)
the sum of cyclic permutations of the 3 indices.

In particular, the totally anti-symmetrised derivative of the Maxwell field strength
tensor is

OaFpy) = 5(0aFpy + O Fya + 0y Fap) (7)
and therefore the homogeneous Maxwell equations can be written as
80,ng + 65Fm + 67Fa5 =0 < a[aFM =0 . (8)

From the above counting of components we learn (or reconfirm) that this equation
has precisely 4 independent components, equal to the number of components of

the homogeneous Maxwell equations.



e Since 9, Fy4 is totally anti-symmetric, nothing is lost by multiplying it by the
totally anti-symmetric Levi-Civita symbol €#7 characterised (with a suitable

choice of sign convention) by

eaﬁ’yéze[aﬁy(ﬂ ’ 60123: -1 . (9)

Thus the homogeneous Maxwell equations can equivalently be written as
OuFry =0 & €PP9F;=0 & 0,7 =0 (10)

where
Fob =1 P F s (11)
is the dual field strength tensor.

e Essentially, F*# is obtained from F®® by the replacement B — E/c and E/c —
—B. Since under this replacement the left-hand sides of the inhomogeneous Max-
well equations get mapped to left-hand sides of the homogeneous Maxwell equa-
tions (electric-magnetic duality of the Maxwell equations), it is not surprising

that the full set of (inhomogeneous and homogeneous) Maxwell equations can be

written in the more symmetric and compact form
OFP = —pgJ? | 9, FP =0 . (12)

These two sets of equations encapsulate all of electrodynamics (Maxwell theory).



