
KFT Übungen 03 (Addendum)

Remarks on symmetrisation and anti-symmetrisation of tensors:

• A covariant 2-tensor Tµν , say, is said to be symmetric if Tµν = Tνµ and anti-

symmetric if Tµν = −Tνµ. This is well-defined because it is a Lorentz-invariant

notion: a tensor is symmetric in all inertial systems iff it is symmetric in one

inertial system, etc.

• This definition can be extended to any or all pairs of covariant indices or pairs

of contravariant indices. Thus e.g. a tensor T µ1...µp is called totally symmetric (or

totally anti-symmetric) if it is symmetric (anti-symmetric) under the exchange of

any pair of indices. On the other hand, it is not meaningful to talk of the symmetry

of a (1,1)-tensor, say, as an equation like T µ
ν = T ν

µ is meaningless.

• The number of independent components of a general (p, q)-tensor is 4p+q. The

number of independent components is reduced if the tensor has some symmetry

properties. Thus

– a symmetric (0,2)- or (2,0)-tensor has 4×5/2 = 10 independent components,

– an anti-symmetric (0,2)- or (2,0)-tensor has 4 × 3/2 = 6 independent com-

ponents,

– a totally anti-symmetric (0, 3)-tensor Tν1...ν3 has 4× 3× 2/(2 × 3) = 4 inde-

pendent components,

– and a totally anti-symmetric (0, 4)-tensor Tν1...ν4 has only got one indepen-

dent component, namely T0123 (all the others being determined by anti-

symmetry).

• Given any (0, 2)-tensor Tµν , one can decompose it into its symmetric and anti-

symmetric parts as

Tµν = 1
2(Tµν + Tνµ) +

1
2(Tµν − Tνµ) ≡ T(µν) + T[µν] . (1)

The decomposition into symmetric and anti-symmetric parts is Lorentz invariant.

In particular, when Tµν is a tensor, also T(µν) and T[µν] are tensors, and thus
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(anti-)symmetrisation is yet another linear operation that one can perform on

tensors.

The factor 1
2 is chosen such that the symmetrisation of a symmetric tensor is the

same as the original tensor,

Tµν = Tνµ ⇒ T(µν) = Tµν , T[µν] = 0 (2)

(and likewise for the anti-symmetrisation of anti-symmetric tensors).

• This can be generalised to the (anti-)symmetrisation of any pair of (contravariant

or covariant) indices; e.g.

T(µν)λ = 1
2 (Tµνλ + Tνµλ) (3)

is the symmetrisation of Tµνλ in its first and second index. It can also be generalised

to the total (anti-)symmetrisation of a higher-rank tensor; e.g.

T(µνλ) ≡
1
3!(Tµνλ + Tνµλ + Tλνµ + Tνλµ + Tµλν + Tλµν) (4)

is totally symmetric, i.e. symmetric under the exchange of any pair of indices, and

T[µνλ] ≡
1
3!(Tµνλ − Tνµλ − Tλνµ + Tνλµ − Tµλν + Tλµν) (5)

is totally anti-symmetric. The prefactor 1
6 is again there to ensure that the total

symmetrisation of a totally symmetric tensor is the original tensor (and likewise for

the total anti-symmetrisation of totally anti-symmetric tensors). This generalises

in an evident way to higher rank p tensors, with the combinatorial prefactor 1/p!.

• A special case, and the one of interest to us here, is the total anti-symmetrisation

T[µνλ] of a tensor Tµνλ that is already anti-symmetric in two of its indices, say

Tµλν = −Tµνλ. In that case, the 1st and 2nd terms of (5) are equal, as are the 3rd

and 4th, and the 5th and 6th, and the formula (5) reduces to a sum of 3 terms,

T[µνλ] =
1
3(Tµνλ + Tνλµ + Tλµν) , (6)

the sum of cyclic permutations of the 3 indices.

• In particular, the totally anti-symmetrised derivative of the Maxwell field strength

tensor is

∂[αFβγ] =
1
3 (∂αFβγ + ∂βFγα + ∂γFαβ) (7)

and therefore the homogeneous Maxwell equations can be written as

∂αFβγ + ∂βFγα + ∂γFαβ = 0 ⇔ ∂[αFβγ] = 0 . (8)

From the above counting of components we learn (or reconfirm) that this equation

has precisely 4 independent components, equal to the number of components of

the homogeneous Maxwell equations.
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• Since ∂[αFγδ] is totally anti-symmetric, nothing is lost by multiplying it by the

totally anti-symmetric Levi-Civita symbol ∈αβγδ characterised (with a suitable

choice of sign convention) by

∈
αβγδ=∈

[αβγδ] , ∈
0123= −1 . (9)

Thus the homogeneous Maxwell equations can equivalently be written as

∂[αFγδ] = 0 ⇔ ∈
αβγδ ∂αFγδ = 0 ⇔ ∂αF̃

αβ = 0 (10)

where

F̃αβ = 1
2 ∈

αβγδ Fγδ (11)

is the dual field strength tensor.

• Essentially, F̃αβ is obtained from Fαβ by the replacement ~B → ~E/c and ~E/c →

− ~B. Since under this replacement the left-hand sides of the inhomogeneous Max-

well equations get mapped to left-hand sides of the homogeneous Maxwell equa-

tions (electric-magnetic duality of the Maxwell equations), it is not surprising

that the full set of (inhomogeneous and homogeneous) Maxwell equations can be

written in the more symmetric and compact form

∂αF
αβ = −µ0J

β , ∂αF̃
αβ = 0 . (12)

These two sets of equations encapsulate all of electrodynamics (Maxwell theory).
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