
Solutions to Assignments 04

1. Tensor Analysis II: the Covariant Derivative

(a) Consider the scalar AνV
ν and take its covariant derivative. Since it is a

scalar, its covariant and partial derivatives agree, and since both satisfy the

Leibniz rule one has

∇µ(AνV
ν) = ∂µ(AνV

ν) = Aν∂µV
ν + V ν∂µAν

= Aν∇µV ν + V ν∇µAν
(1)

This implies

V ν∇µAν = V ν∂µAν +Aν∂µV
ν −Aν∇µV ν

= V ν∂µAν +Aν∂µV
ν −Aν(∂µV

ν + ΓνµρV
ρ)

= V ν∂µAν −AνΓνµρV
ρ = V ν∂µAν −AλΓλµνV

ν

⇒ ∇µAν = ∂µAν − ΓλµνAλ

(2)

the last implication following because this has to be true for any V ν .

(b) Since Aν′ = Jνν′Aν and ∂µ′ = Jµµ′∂µ, one has

∂µAν → ∂µ′Aν′ = Jµµ′∂µ(Jνν′Aν)

= Jµµ′J
ν
ν′∂µAν +AνJ

µ
µ′∂µJ

ν
ν′

= Jµµ′J
ν
ν′∂µAν +AνJ

ν
µ′ν′ .

(3)

Thus this is not a tensor, but since the last term is symmetric in the free

indices,

Jνµ′ν′ =
∂2xν

∂yµ′∂yν′
= Jνν′µ′ (4)

(partial derivatives commute), it drops out when one takes the antisymmetric

part, i.e. the curl,

∂µAν − ∂νAµ → ∂µ′Aν′ − ∂ν′Aµ′ = Jµµ′J
ν
ν′(∂µAν − ∂νAµ) (5)

Because the Christoffel symbols are symmetric in their lower indices, they

always drop out of the anti-symmetrised derivatives of anti-symmetric co-

variant tensors. In the present (simplest) case of covectors, one has

∇µAν −∇νAµ = ∂µAν − ΓλµνAλ − ∂νAµ + ΓλνµAλ = ∂µAν − ∂νAµ . (6)

(c) • Argument by direct calculation:

∇µgνλ = ∂µgνλ − Γρµνgρλ − Γρµλgνρ

= ∂µgνλ − Γλµν − Γνµλ = 0
(7)

from the explicit form of the Christoffel symbols.
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• Alternative argument: Since ∇µgνλ is a tensor, we can choose any co-

ordinate system we like to establish if this tensor is zero or not at a

given point x. Choose an inertial coordinate system at x. Then the par-

tial derivatives of the metric and the Christoffel symbols are zero there.

Therefore the covariant derivative of the metric is zero. Since ∇µgνλ is

a tensor, this is then true in every coordinate system.

2. Stationary and Freely Falling Schwarzschild Observers

(a) The observer is sitting at fixed radius and angles, therefore his worldline

4-velocity is of the form

dxµ

dτ
= uµ = (ut, 0, 0, 0) . (8)

The proper time normalisation condition implies

uµuµ = −1 ⇒ ut =
1√

1− 2m
r

(9)

(we have chosen ut > 0 because the oberver evolves forward in time, ṫ > 0).

The acceleration is then

aµ = ∇τuµ = uρ∇ρuµ

= ut∂tu
µ + utΓµttu

t

= Γµtt
1

1− 2m
r

= −1

2
gµρ∂ρgtt

1

1− 2m
r

for µ 6= r = 0

for µ = r =
1

2
grr∂r(1−

2m

r
)

1

1− 2m
r

= −1

2
∂r

2m

r
=
m

r2
(10)

and therefore the norm of the acceleration is

gµνa
µaν = grra

rar

=
1

1− 2m
r

m2

r4
. (11)

Note that this approaches the Newtonian value (m/r2)2 for r → ∞, while

the required acceleration to keep the stationary observer at rest diverges as

r → 2m.

(b) For zero angular momentum, and with ṙr=R = 0 the effective potential equa-

tion reduces to

E2 − 1 = ṙ2 − 2m

r
⇒ ṙ2 =

2m

r
− 2m

R
, (12)

2



which integrates to

τR→r1 = −(2m)−1/2
∫ r1

R
dr

(
Rr

R− r

)1/2

. (13)

This integral can be calculated in closed form, e.g. via the change of variables

r

R
= sin2 α α1 ≤ α ≤

π

2
, (14)

leading to

τR→r1 = 2

(
R3

2m

)1/2 ∫ π/2

α1

dα sin2 α =

(
R3

2m

)1/2 [
α− 1

2 sin 2α
]π/2
α1

. (15)

For r1 → 0⇔ α1 → 0 one obtains

τR→0 =

(
R3

2m

)1/2

(π/2) = π

(
R3

8m

)1/2

(16)

R and rS = 2m have dimensions of length, thus the quantity above also has

dimensions of length, so what we have actually calculated is cτ , not τ . To

obtain proper time, we thus need to divide by c. Using the approximate

values

(R)sun ≈ 7× 1010cm (2m)sun ≈ 3× 105cm c ≈ 3× 1010cm s−1 (17)

one finds τR→0 ≈ 2× 103s, which is roughly 30 minutes.
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