SOLUTIONS TO ASSIGNMENTS 04

1. TENSOR ANALYSIS II: THE COVARIANT DERIVATIVE

(a)

()

Consider the scalar A, V" and take its covariant derivative. Since it is a
scalar, its covariant and partial derivatives agree, and since both satisfy the

Leibniz rule one has
Vu(AVY) =0, (AVY) = A0,VY +VV0,A, )
=AV,V'+V'V,A,

This implies
VYV, A, = VYO,A, + A0 VY — ANV, VY
= VY0,A, + A,0,V" — A (0,V" + TV V?)
= VY0, A, — AT, VP = VY9, A, — AT V"
= Vud, =04, -T) A,

(2)

the last implication following because this has to be true for any V".

Since A4,y = J% A, and 9,y = J/’j,a“, one has

8HAV — GMAZ,/ = Jﬁ,@u(Jﬁ,Ay)
= 0 0uAy + AT} 0u Ty (3)
= T 0u AL + A,

Thus this is not a tensor, but since the last term is symmetric in the free

indices,
v, = P (4)
ay,u 8:1./” v

(partial derivatives commute), it drops out when one takes the antisymmetric

part, i.e. the curl,
Ay — O A, — O Ay — 0y Ay = J[j, J(0uA, — 0,A,) (5)

Because the Christoffel symbols are symmetric in their lower indices, they
always drop out of the anti-symmetrised derivatives of anti-symmetric co-

variant tensors. In the present (simplest) case of covectors, one has
Vudy — VA = 0,A, — T, Ay — 0, A, +T0, A\ = 0,4, — 0, A, . (6)
e Argument by direct calculation:

Viugor = augu)\ - F,pwgpA - FZ)\gl/p
= Ou9vx — F)\,uu - Fuu/\ =0

from the explicit form of the Christoffel symbols.



e Alternative argument: Since Vg, is a tensor, we can choose any co-
ordinate system we like to establish if this tensor is zero or not at a
given point . Choose an inertial coordinate system at z. Then the par-
tial derivatives of the metric and the Christoffel symbols are zero there.
Therefore the covariant derivative of the metric is zero. Since Vg, is

a tensor, this is then true in every coordinate system.

2. STATIONARY AND FREELY FALLING SCHWARZSCHILD OBSERVERS

(a) The observer is sitting at fixed radius and angles, therefore his worldline

4-velocity is of the form

dz*

—— =" = (u",0,0,0) . (8)
dr
The proper time normalisation condition implies
1
wu, =-1 = W= —— 9)
1— 2m

(we have chosen u! > 0 because the oberver evolves forward in time, £ > 0).

The acceleration is then

a =Vut' = uVut
= utout + utfﬁut
1
-
1 1
= _§gupapgtt 1{_2m
p
foru#r = 0
1 2m 1
forp=r = 59”&(1 - T) [ — =
1. 2m m
and therefore the norm of the acceleration is
glwauay = gpa'a
1 m?

-
Note that this approaches the Newtonian value (m/r?)? for r — oo, while
the required acceleration to keep the stationary observer at rest diverges as
r — 2m.

(b) For zero angular momentum, and with 7,—r = 0 the effective potential equa-
tion reduces to

2 om 2
BPo1=2-" o 20T (12)
T



which integrates to

2l 1/2
TR—ry :—(Qm)_l/Q/ dr < R > . (13)

R R—'f’

This integral can be calculated in closed form, e.g. via the change of variables

%:singa algagg , (14)
leading to
R3 /2 rm/2 s R3 1/2 - /2
TR—r, = 2 <2m> /o[1 do sin® a = <2m> [a — §sm2a]a1 . (15)

For r1 — 0 & a1 — 0 one obtains
R3 1/2 RS 1/2
= = 2) = - 1
o= () (/2 =7 (o) (16)

R and rg = 2m have dimensions of length, thus the quantity above also has
dimensions of length, so what we have actually calculated is ¢, not 7. To
obtain proper time, we thus need to divide by c¢. Using the approximate
values

(R)sun = 7 x 10°%m  (2m)sun = 3 x 10°cm  c~3 x 10%ecm st (17)

one finds Tr_so = 2 x 103s, which is roughly 30 minutes.



