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Field Theory on Schrodinger Space-Time
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The Schrddinger space-time plays an important role indinéaxt of non-relativistic holography. We discuss
causal structure properties of the Schrodinger space-iyrprobing it with point particles as well as with
scalar fields. We show that even though the causal structere sy point particles is almost pathological
(absence of a time function) this is not so for the scalar dielfe highlight Galilean-like causal structure
properties.
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1 Introduction

Starting with [1-3] one has tried to construct holograpaahhiques to study systems with non-relativistic
symmetries. Such systems typically occur in the area of eoseld matter physics, e.g. in the context of
quantum critical points [4,5]. Typically one is interestedsome strongly coupled scale invariant field
theory that describes some critical point. These theorige as effective infrared descriptions of some
physical system. Typically these scale invariant thecaiesinvariant under Lifshitz, Schrodinger or the
full relativistic conformal symmetry group. Often theseosigly coupled scale invariant field theories
describing some critical point belong to a universalitysslaOne assumes that the universality class also
contains a gravitational theory that admits a holographa.dThe goal is then to construct holographic
techniques for space-times with non-relativistic isomgnoups such as Lifshitz and Schrodinger groups.
As afirst step in realising these goals we study quantum figldriy on a fixed Schrodinger background
and focus on its causal structure properties as these willaut to be somewhat unusual. Nonetheless we
will argue that it is possible to have a well-defined quantwidfineory on a fixed Schrodinger background.

2 Causal properties of Schbdinger space-times

In this section we will discuss the causal structure assedtiavith point particles moving along future
directed causal curves in the Schrodinger space-time.lolmag coordinates [6] the Schrodinger metric
reads

ds? — B WQX‘Q 2 T2 1 T X2 2 1
0 =— ﬁ‘i‘ﬁ( +R%))d + 73 —2dTdV +dX* + dR") . 1)

When the parametgt = 0 this becomes the metric of AdS space-time in plane wave ooates. \When

w = 0 we obtain the metric in Poincaré coordinates. We will adlleere some basic causal structure
properties of this space-time indicating which propetttielsl only for5 # 0 (Schrodinger) and which also
hold for 8 = 0 (AdS). The definitions used below follow [7, 8]. Global comrate timeT" is a globally
defined smooth function. The vector figlg is an everywhere timelike Killing vector, which provides a
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time orientation. The functiof’ is strictly increasing along any future-directed timelik@ve and non-
decreasing along any future-directed null curve. The Estifnplies that the space-time is chronological.

A time function is a globally defined continuous functionttigstrictly increasing along all future-
directed causal curves. It therefore provides an ordesas@ll causally related events can then be labeled
by different values ofl’. The existence of a time-function is equivalent to the sgane being stably
causal, and this in turn is equivalent to the existence obar{acessarily the same) globally defined func-
tion whose gradient is everywhere timelike [7, 8]. Heficis not a time function, neither for Schrodinger
nor for AdS. So what about stable causality of these spaces?

An important difference between AdS and Schrodinger siawes is that for AdS we can construct
time functions, e.g. the time coordinate of the usual glé@8 coordinate system, whereas for Schrodinger
we cannot. Therefore Schrodinger space-times are ndy stabsal.

The manner in whicH fails to be a time function is very precise. The only eveng #re not distinctly
labeled byT" lie on so-called lightlike lines.Lightlike lines are always null geodesics but the convesse i
generally not true. In space-times such as Minkowski and &ltiSull geodesics are lightlike lines. In our
context the lightlike lines are given by the following fugudirected null geodesics along whi¢tremains
constant

Y(A) = (To, V(N), Ro, Xo) (2)

whereV () is a monotonically increasing function af

This being said the truly dramatic effect of having a nomezeiis that it makes the space-time non-
distinguishing® This has already been proven in [10] for the= 3 Schrodinger space-time and the
possible connection of this property with a Galilean-lileusal structure was noted in [11]. The proof
of [10] is based on the existence of a causal curve that césia@y two points whose time interval is
infinitesimally small.

A curve similar to the one used in [10] to prove the non-dgiishing character of the Schrodinger
space-time can be used to explicitly find the chronologicélie (past),/*(pg), of any pointpy =
(TO,%,RO,XO). It turns out to be the set of all points with > Ty (T' < Ty). Therefore, for any
pointpy one has the decomposition

Sch = I~ (po) U Xr, U T (po) 3)

of the Schrodinger space-time. Since all points on a cahstae slice share the same future and past, the
space-time is in a sense “maximally non-distinguishing”.

This is strongly reminiscent of a Galilean causal strucauré Galilean relativity. In order to sharpen
this analogy, we need an appropriate notion of spacelikaragpn. We will call two points: andz’
spacelike separated if there is no causal curve connecting them. It is perhapshwaointing out that this
notion of spacelike separation does not imply that two poare spacelike separated when they can be
connected by a spacelike geodesic. According to this dieim#ipacelike separated points necessarily lie
on an equal-timé” slice X 7.

This appears to be completely Galilean, since in Galileéativity any two non-simultaneous events
can be connected by the worldline of a (sufficiently fast mgyiparticle, and the only events for which
no such curve exists are those that are simultaneous. Hovieegenovel and non-Galilean feature of the
causal structure of Schrodinger space-times is the peceseflightlike lines. Indeed, on a Schrodinger
space-time all points with the same valué/tédire either spacelike separated or separated by a lightii&e |
and conversely all points that are either spacelike segpdi@tseparated by a lightlike line lie on an equal
time T surface.

This Galilean-like structure is preserved by the subgroup

(1", V',R',X") = (T"(T),V'(T,V,R, X), R'(T, R, X), X' (T, R, X)) (4)
1A lightlike line is an achronal inextendible causal curvg [@set S is called achronal resp. acausal if no two distinct points of
S can be connected by a timelike resp. causal curve.

2 space-time is called non-distinguishing if there exisb wstinct points that have identical past and future.
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of the full group of space-time diffeomorphisms. Indeed; set of coordinate§l”, V’, R’, X') obtained

by acting on the global coordinatés, V, R, )?) with such a diffeomorphism is such that, the new time
coordinate, labels surfaces of spacelike and lightlike Beparated events while any n&W coordinate
parametrises the lightlike lines. The normal to a consfdrlice X7 is proportional to the null Killing
vector N, and the (degenerate) induced metricXop agrees with the Galilean metric measuring the
distance between simultaneous (spacelike) separatetseVéiis special class of diffeomorphisms consists
precisely of the double foliation preserving diffeomorghs discussed in a related context in [12]. Here
the double foliation refers to the foliations associatethuhie equal time surfaces and the lightlike lines.

3 Scalar field theory

The causal structure properties of the Schrodinger spaeemay cast doubt on there being a well-defined
quantum field theory. Potential problems deriving from thsence of a time function and the non-
distingushing nature of the space-time could arise witretondering, time evolution or predictability.
In this section we will study the causal structure of Scim@dr space-times as seen by scalar field probes
and show that, even though the causal structure seen bypaniitles is close to pathological, this is not
so from the point of view of the scalars.

The action for a massive complex scalar figls

S =— /dd+3m\/—_g (0u0* 0"+ mid* ) + ..., (5)

wherem, is a mass parameter and the dots refer to boundary terms. M&onsider scalar fields that
are eigenstates of the central elemgntof the Schrodinger algebra, i.e.

(T, V,R, X) = e "™Vy(T,R,X), (6)

in whichm # 0, and we will decompose solutions to the scalar field equdtionally as

¢ = Z apmuM (7)
M

where theuy, (T,V, R, )?) form a complete set of modes with a fixed momentunin the V' direction,
up (T, V, R, X) = e~V (T, R, X). These states furnish a unitary irreducible represematiche
Schrodinger group with respect to the inner product

Ay
(unrlun) = 5/2 A5y Oy uar ®8)
T

TheT = cst sliceXr is a lightlike surface whose normal (%%)“ = 4},. The integration measure is
dvr = 8 R™HDJRAYX AV .

In (6) we assume thah # 0. For modes withn = 0 the time-dependence is not fixed by the Klein—
Gordon equation. Since these are the modes with zero ligatemmentumpP_ ¢ = 0, they can be thought
of as the precise scalar field counterparts of the lightliked discussed in section 3. It turns out that for
a free non-interacting theory these modes do not appeaeiphthse space of the theory. They are zero as
a consequence of Hamilton’s equations (see [13] for an eapilan of this fact in Minkowski space-time
with a compact null circle). The problems encountered widvt. = 0 modes in [14] appear only when
one studies loop corrections in an interacting theoryel theyond the scope of our work to see if similar
problems appear on a Schrodinger space-time.

We next construct the possible Hilbert spaces. To this endeeel to obtain the normalisable modes.
Normalizable modes are solutions that are regular evergaihehe bulk and that furthermore satisfy the
boundary condition that the inner product (8) is time indegent. This will be the case provided we have

lim [ ROyt SpuandVdiX = 0. 9)

e=0 Jr—¢
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This is the condition that the flux of the currem;ngjuM, through the boundary a® = 0 vanishes.
Imposing this boundary condition requires thvadefined by

U= \/(d-sf)2 +m2 + B2m? (10)

is real so that all normalisable modes respect the Breiter@o-Freedman bound [15].
In global coordinates the normalizable motlase given by

—imV + +
or = e Z AL kYL n k
L.,k
+ 1 2 2
— imV Z CLnk Lnke ELYnYkTYLefgwIm\(P +R )pLRAi %
L.n,k
X L2 (w|m|p?) LiE (w]m| R?) (11)

where theY; with L = 0,1, 2, ... are spherical harmonics &' and theL,]f”d/Q, L,f” with n, k =
0,1,2,...are generalized Laguerre polynomials. Further we have

2
AL = d‘; + (12)
Ef,, = signm)2w (n+k+ Ly %) : (13)
2(w|m|) LA+ nlk!

cE )P = : 14
(CLon) Im|lm Dn+ L+ $T(1+k+v) (14)
For the minus modes we must assubne v < 1 while for the plus modes we must assume that 0.

The cases =0, 1,2, ... have to be dealt with separately because they involve lthgait solutions. Here

we will always assume that # 0,1,2,.... Upon quantisation the creation and annihilation opesator
at . andafLE,Tm,C satisfy the commutation relation
[aF i QF ] = 3SIGNM) 811G S (15)

The sign function on the right hand side of (15) can be undedsas follows. The Fock space vacuum
|0) is defined bwL nkl0) =0form >0 andai! n.k0) = 0form < 0. The interpretation of the latter

statement is tha;tL . form < 0is the annihilation operator for the antiparticle makc@n pform <0
the creation operator for the antiparticle.

For all Hilbert spaces associated with thiemodes and withn # 0, denoted byH::, there exists a
well-posed initial value problem in the sense that givetidghdata for a scalar field ift{;> at some time
T = Ty itis possible to uniquely predict the future dependenceséiothis one just has to note that from
o(T =Ty, V,R, X’) and the mode decomposition (11) it is possible to read oftdedficientsuy, ,, 1 via

(e™™VuE | Lo(T = Tp)) = signim)az . - (16)

Knowing all theafm,C determines the full future dependence of the functigifrom (11)). Note that in
order to have a well-defined time evolution we only need teapéhe values of the fielg at timeT = T
and not its first/'-derivative.

This structure and property of the initial value problem &imek-evolution of scalar fields on Schrodinger
space-times is preserved by the foliation-preservingdifiorphisms (4). In any coordinate system ob-
tained in this way, the Klein-Gordon equation is a first ordiéierential equation in the new time coordi-
nate7”, and the evolution of the Klein-Gordon fielglis determined by the value of the field on the null
surfaceX; (and the momentum in thi’-direction, the mass).

3 Theset normalisable modes have also been discussed in globalinates in [16] and in Poincaré coordinates in [1].
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In order to further study the causal structure seen by thlarsiields we look at Green’s functions. For
this purpose we will first construct the positive and negafiequency Wightman function& ™ (z, 2').
These can be defined for both Hilbert spaks where thet refer to the two different sets of normalisable
modes in (11). We will write the expressions f@r- and G~ on ;- simultaneously, hoping that this
does not cause any confusion. Using the mode decomposffidhsogether with arie prescription, that
guarantees convergence of the sum over the normalizablesnag obtain

T d+2

G (x,2") = (0]p(x)o" (2')|0) = O(m) ——F——(m( ) 2 Ju,(m¢_)e™ 17)
(2m)24mm
— / T iAi at2 im
G (z,2") = (0]¢" (2")p(2)[0) = —0(—m) ——F——(—m(te) 2 T (—mlie)e™ e,
(2m)24mm
(18)
whereJ., are Bessel functions and whefe, andn... are
wRR'
Cre = sinw(T —T" +ie€) 19)
X2 X2 R2 4 R2 X. X
I 7(V7V,)+w( + + R*+ R’#) w (20)

2tanw(T —T" +ie)  sinw(T —T' +ie)

The functions ¢ (z, 2') andn..(z, 2") are fore = 0 invariant under the Schrodinger group when we act
onz andz’ simultaneously with the same transformation.

Now that we have the two Wightman functions at our disposaklveein a position to compute any
Green'’s function that we are interested in. For example gymfman propagator is given by (see also [17])

Gr(z,2')=0(T —TG" (z,2")+ 0(T' — T)G™ (z,2'), (21)
and the retarded and advanced Green'’s functions read

Gr(z,2') = 0T -T) (G"'(x,x’) -G (x, :17')) , (22)
Ga(z,2') = 0T -T)(G"(z,2") - G (z,2")) , (23)

whereG* (z,2') — G~ (z, 2') is the commutator function.

It is clear, though, that in the Schrodinger case, due tddbethatm is not summed over, there is
no mixing between positive and negative frequency Wightrfugctions. For example, fom > 0 the
Feynman propagator and the retarded Green'’s functionshareame, while forn < 0 the Feynman
propagator equals the advanced Green’s function.

The fact that in the Feynman propagator the step funéti@h— 7") is multiplied by the step function
6(m) appearing in the Wightman functicii®™ and similarly the fact tha#(7” — T') multiplies 6(—m)
appearing inG— has the following welcome consequence. Even thdligh not a global time function
and as such does not allow one to label all causally relatedts\by a different value df’, it is not a
problem to define a time ordering since the time orderingénReynman propagator is correlated with the
sign of m. The failure ofT" to provide a well-defined global time ordering only appliegvents with the
same value of . Propagation between such events with> 0 or m < 0 does not occur.

By microcausality, the commutator functiéh (z, 2') — G~ (z, ') must vanish for spacelike separated
pointsz andz’. In a free field theory the commutator function is a classiealimber quantity. Hence, it
can only be nonzero whenever two points can be connected lagsiaal path. The commutator function
is therefore zero for points that are either spacelike sgpdror that cannot be connected by a geodesic.
Points separated in time such tRatw(7T — T”) = 0 comprise the set of points that are either space-like
separatedq = T") or for which there is no geodesic connecting them. Zdyarescription is such that the
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commutator function vanishes feit w(7—T”) = 0. Hence the commutator function probes the following
part of the space-time,

Ur@=17+mn-1Z)nI (T =T"+nZ), (24)
nez

which is the scalar field counterpart of the non-distingimglcharacter of space-time as seen by point
particle probes.

4 Discussion

The way in which the scalar field theory resolves the pointiglarcausal structure problems is via the
unitary irreducible representations (6). The Hilbert gsacarry the momentumn in the direction of
the lightlike lines as an additional label, a superselecparameter. This means that fields are always
effectively massive (even whem, = 0). Hence in an eikonal approximation scalar fields corredpon
to particles moving along timelike curves and for massivimfpparticles we did not observe any causal
pathologies. For more information on this subject see [Iti&ould be interesting to extend this analysis
to include holographic renormalization (comparing witk thork of [19]) and interacting field theories.
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