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Field Theory on Schrödinger Space-Time
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The Schrödinger space-time plays an important role in the context of non-relativistic holography. We discuss
causal structure properties of the Schrödinger space-time by probing it with point particles as well as with
scalar fields. We show that even though the causal structure seen by point particles is almost pathological
(absence of a time function) this is not so for the scalar fields. We highlight Galilean-like causal structure
properties.
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1 Introduction

Starting with [1–3] one has tried to construct holographic techniques to study systems with non-relativistic
symmetries. Such systems typically occur in the area of condensed matter physics, e.g. in the context of
quantum critical points [4, 5]. Typically one is interestedin some strongly coupled scale invariant field
theory that describes some critical point. These theories arise as effective infrared descriptions of some
physical system. Typically these scale invariant theoriesare invariant under Lifshitz, Schrödinger or the
full relativistic conformal symmetry group. Often these strongly coupled scale invariant field theories
describing some critical point belong to a universality class. One assumes that the universality class also
contains a gravitational theory that admits a holographic dual. The goal is then to construct holographic
techniques for space-times with non-relativistic isometry groups such as Lifshitz and Schrödinger groups.

As a first step in realising these goals we study quantum field theory on a fixed Schrödinger background
and focus on its causal structure properties as these will turn out to be somewhat unusual. Nonetheless we
will argue that it is possible to have a well-defined quantum field theory on a fixed Schrödinger background.

2 Causal properties of Schr̈odinger space-times

In this section we will discuss the causal structure associated with point particles moving along future
directed causal curves in the Schrödinger space-time. In global coordinates [6] the Schrödinger metric
reads

ds2 = −
(

β2

R4
+
ω2

R2
( ~X2 +R2)

)

dT 2 +
1

R2

(

−2dTdV + d ~X2 + dR2
)

. (1)

When the parameterβ = 0 this becomes the metric of AdS space-time in plane wave coordinates. When
ω = 0 we obtain the metric in Poincaré coordinates. We will collect here some basic causal structure
properties of this space-time indicating which propertieshold only forβ 6= 0 (Schrödinger) and which also
hold for β = 0 (AdS). The definitions used below follow [7, 8]. Global coordinate timeT is a globally
defined smooth function. The vector field∂T is an everywhere timelike Killing vector, which provides a
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time orientation. The functionT is strictly increasing along any future-directed timelikecurve and non-
decreasing along any future-directed null curve. The last fact implies that the space-time is chronological.

A time function is a globally defined continuous function that is strictly increasing along all future-
directed causal curves. It therefore provides an ordering,as all causally related events can then be labeled
by different values ofT . The existence of a time-function is equivalent to the space-time being stably
causal, and this in turn is equivalent to the existence of a (not necessarily the same) globally defined func-
tion whose gradient is everywhere timelike [7,8]. HenceT is not a time function, neither for Schrödinger
nor for AdS. So what about stable causality of these space-times?

An important difference between AdS and Schrödinger space-times is that for AdS we can construct
time functions, e.g. the time coordinate of the usual globalAdS coordinate system, whereas for Schrödinger
we cannot. Therefore Schrödinger space-times are not stably causal.

The manner in whichT fails to be a time function is very precise. The only events that are not distinctly
labeled byT lie on so-called lightlike lines.1 Lightlike lines are always null geodesics but the converse is
generally not true. In space-times such as Minkowski and AdSall null geodesics are lightlike lines. In our
context the lightlike lines are given by the following future-directed null geodesics along whichT remains
constant

γ(λ) = (T0, V (λ), R0, ~X0) , (2)

whereV (λ) is a monotonically increasing function ofλ.
This being said the truly dramatic effect of having a non-zero β is that it makes the space-time non-

distinguishing.2 This has already been proven in [10] for thez = 3 Schrödinger space-time and the
possible connection of this property with a Galilean-like causal structure was noted in [11]. The proof
of [10] is based on the existence of a causal curve that connects any two points whose time interval is
infinitesimally small.

A curve similar to the one used in [10] to prove the non-distinguishing character of the Schrödinger
space-time can be used to explicitly find the chronological future (past),I±(p0), of any pointp0 =

(T0, V0, R0, ~X0). It turns out to be the set of all points withT > T0 (T < T0). Therefore, for any
pointp0 one has the decomposition

Sch = I−(p0) ∪ ΣT0
∪ I+(p0) (3)

of the Schrödinger space-time. Since all points on a constant time slice share the same future and past, the
space-time is in a sense “maximally non-distinguishing”.

This is strongly reminiscent of a Galilean causal structureand Galilean relativity. In order to sharpen
this analogy, we need an appropriate notion of spacelike separation. We will call two pointsx andx′

spacelike separated if there is no causal curve connecting them. It is perhaps worth pointing out that this
notion of spacelike separation does not imply that two points are spacelike separated when they can be
connected by a spacelike geodesic. According to this definition spacelike separated points necessarily lie
on an equal-timeT sliceΣT .

This appears to be completely Galilean, since in Galilean relativity any two non-simultaneous events
can be connected by the worldline of a (sufficiently fast moving) particle, and the only events for which
no such curve exists are those that are simultaneous. However, the novel and non-Galilean feature of the
causal structure of Schrödinger space-times is the presence of lightlike lines. Indeed, on a Schrödinger
space-time all points with the same value ofT are either spacelike separated or separated by a lightlike line
and conversely all points that are either spacelike separated or separated by a lightlike line lie on an equal
timeT surface.

This Galilean-like structure is preserved by the subgroup

(T ′, V ′, R′, ~X ′) = (T ′(T ), V ′(T, V,R, ~X), R′(T,R, ~X), ~X ′(T,R, ~X)) (4)

1 A lightlike line is an achronal inextendible causal curve [9]. A setS is called achronal resp. acausal if no two distinct points of
S can be connected by a timelike resp. causal curve.

2 A space-time is called non-distinguishing if there exist two distinct points that have identical past and future.
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of the full group of space-time diffeomorphisms. Indeed, any set of coordinates(T ′, V ′, R′, ~X ′) obtained
by acting on the global coordinates(T, V,R, ~X) with such a diffeomorphism is such thatT ′, the new time
coordinate, labels surfaces of spacelike and lightlike line separated events while any newV ′ coordinate
parametrises the lightlike lines. The normal to a constantT ′ sliceΣT ′ is proportional to the null Killing
vectorN , and the (degenerate) induced metric onΣT ′ agrees with the Galilean metric measuring the
distance between simultaneous (spacelike) separated events. This special class of diffeomorphisms consists
precisely of the double foliation preserving diffeomorphisms discussed in a related context in [12]. Here
the double foliation refers to the foliations associated with the equal time surfaces and the lightlike lines.

3 Scalar field theory

The causal structure properties of the Schrödinger space-time may cast doubt on there being a well-defined
quantum field theory. Potential problems deriving from the absence of a time function and the non-
distingushing nature of the space-time could arise with time ordering, time evolution or predictability.
In this section we will study the causal structure of Schrödinger space-times as seen by scalar field probes
and show that, even though the causal structure seen by pointparticles is close to pathological, this is not
so from the point of view of the scalars.

The action for a massive complex scalar fieldφ is

S = −
∫

dd+3x
√−g

(

∂µφ
∗∂µφ+m2

0φ
∗φ

)

+ . . . , (5)

wherem0 is a mass parameter and the dots refer to boundary terms. We will consider scalar fieldsφ that
are eigenstates of the central element∂V of the Schrödinger algebra, i.e.

φ(T, V,R, ~X) = e−imV ψ(T,R, ~X) , (6)

in whichm 6= 0, and we will decompose solutions to the scalar field equationformally as

φ =
∑

M

aMuM , (7)

where theuM (T, V,R, ~X) form a complete set of modes with a fixed momentumm in theV direction,
uM (T, V,R, ~X) = e−imV vM (T,R, ~X). These states furnish a unitary irreducible representation of the
Schrödinger group with respect to the inner product

〈uM |uM ′〉 = i

2

∫

ΣT

dΣµu∗M
←→
∂µuM ′ . (8)

TheT = cst sliceΣT is a lightlike surface whose normal is
(

∂
∂V

)µ
= δ

µ
V . The integration measure is

dΣµ = δ
µ
VR

−(d+1)dRdd ~XdV .
In (6) we assume thatm 6= 0. For modes withm = 0 the time-dependence is not fixed by the Klein–

Gordon equation. Since these are the modes with zero lightcone momentum,P−φ = 0, they can be thought
of as the precise scalar field counterparts of the lightlike lines discussed in section 3. It turns out that for
a free non-interacting theory these modes do not appear in the phase space of the theory. They are zero as
a consequence of Hamilton’s equations (see [13] for an explanation of this fact in Minkowski space-time
with a compact null circle). The problems encountered with them = 0 modes in [14] appear only when
one studies loop corrections in an interacting theory. It lies beyond the scope of our work to see if similar
problems appear on a Schrödinger space-time.

We next construct the possible Hilbert spaces. To this end weneed to obtain the normalisable modes.
Normalizable modes are solutions that are regular everywhere in the bulk and that furthermore satisfy the
boundary condition that the inner product (8) is time independent. This will be the case provided we have

lim
ε→0

∫

R=ε

R−(d+1)u∗M
←→
∂RuM ′dV dd ~X = 0 . (9)
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This is the condition that the flux of the currentu∗M
←→
∂µuM ′ through the boundary atR = 0 vanishes.

Imposing this boundary condition requires thatν defined by

ν =

√

(d+2)2

4 +m2
0 + β2m2 (10)

is real so that all normalisable modes respect the Breitenlohner–Freedman bound [15].
In global coordinates the normalizable modes3 are given by

φ± = e−imV
∑

L,n,k

a±L,n,kv
±
L,n,k

= e−imV
∑

L,n,k

C±
L,n,ka

±
L,n,ke

−iE±

L,n,k
TYLe

−
1
2ω|m|(ρ2+R2)ρLR∆± ×

×LL−1+d/2
n (ω|m|ρ2)L±ν

k (ω|m|R2) , (11)

where theYL with L = 0, 1, 2, . . . are spherical harmonics onSd−1 and theLL−1+d/2
n , L±ν

k with n, k =
0, 1, 2, . . . are generalized Laguerre polynomials. Further we have

∆± =
d+ 2

2
± ν , (12)

E±
L,n,k = sign(m)2ω

(

n+ k + L
2 + ∆±

2

)

, (13)

(C±
L,n,k)

2 =
2(ω|m|)L+∆±

|m|π
n!k!

Γ(n+ L+ d
2 )Γ(1 + k ± ν)

. (14)

For the minus modes we must assume0 < ν < 1 while for the plus modes we must assume thatν > 0.
The casesν = 0, 1, 2, . . . have to be dealt with separately because they involve logarithmic solutions. Here
we will always assume thatν 6= 0, 1, 2, . . .. Upon quantisation the creation and annihilation operators
a±L,n,k anda±†

L,n,k satisfy the commutation relation

[a±L,n,k, a
±†
L′,n′,k′ ] = 1

2sign(m)δLL′δnn′δkk′ . (15)

The sign function on the right hand side of (15) can be understood as follows. The Fock space vacuum
|0〉 is defined bya±L,n,k|0〉 = 0 for m > 0 anda±†

L,n,k|0〉 = 0 for m < 0. The interpretation of the latter

statement is thata±†
L,n,k form < 0 is the annihilation operator for the antiparticle makinga±L,n,k form < 0

the creation operator for the antiparticle.
For all Hilbert spaces associated with the± modes and withm 6= 0, denoted byH±

m, there exists a
well-posed initial value problem in the sense that given initial data for a scalar field inH±

m at some time
T = T0 it is possible to uniquely predict the future dependence. Tosee this one just has to note that from
φ(T = T0, V, R, ~X) and the mode decomposition (11) it is possible to read off thecoefficientsaL,n,k via

〈e−imV v±L,n,k|φ(T = T0)〉 = sign(m)a±L,n,k . (16)

Knowing all thea±L,n,k determines the full future dependence of the functionφ (from (11)). Note that in
order to have a well-defined time evolution we only need to specify the values of the fieldφ at timeT = T0
and not its firstT -derivative.

This structure and property of the initial value problem andtime-evolution of scalar fields on Schrödinger
space-times is preserved by the foliation-preserving diffeomorphisms (4). In any coordinate system ob-
tained in this way, the Klein-Gordon equation is a first orderdifferential equation in the new time coordi-
nateT ′, and the evolution of the Klein-Gordon fieldφ is determined by the value of the field on the null
surfaceΣT ′ (and the momentum in theV ′-direction, the mass).

3 These± normalisable modes have also been discussed in global coordinates in [16] and in Poincaré coordinates in [1].
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In order to further study the causal structure seen by the scalar fields we look at Green’s functions. For
this purpose we will first construct the positive and negative frequency Wightman functions,G±(x, x′).
These can be defined for both Hilbert spacesH±

m where the± refer to the two different sets of normalisable
modes in (11). We will write the expressions forG+ andG− onH±

m simultaneously, hoping that this
does not cause any confusion. Using the mode decompositions(11) together with aniǫ prescription, that
guarantees convergence of the sum over the normalizable modes, we obtain

G+(x, x′) = 〈0|φ(x)φ†(x′)|0〉 = θ(m)
i−∆±

(2π)
d
2 4πm

(mζ−ǫ)
d+2
2 J±ν(mζ−ǫ)e

imη−ǫ , (17)

G−(x, x′) = 〈0|φ†(x′)φ(x)|0〉 = −θ(−m)
i∆±

(2π)
d
2 4πm

(−mζ+ǫ)
d+2
2 J±ν(−mζ+ǫ)e

imη+ǫ ,

(18)

whereJ±ν are Bessel functions and whereζ±ǫ andη±ǫ are

ζ±ǫ =
ωRR′

sinω(T − T ′ ± iǫ) , (19)

η±ǫ = −(V − V ′) +
ω( ~X2 + ~X ′2 +R2 +R′2)

2 tanω(T − T ′ ± iǫ) − ω ~X · ~X ′

sinω(T − T ′ ± iǫ) . (20)

The functionsζ±ǫ(x, x
′) andη±ǫ(x, x

′) are forǫ = 0 invariant under the Schrödinger group when we act
onx andx′ simultaneously with the same transformation.

Now that we have the two Wightman functions at our disposal weare in a position to compute any
Green’s function that we are interested in. For example the Feynman propagator is given by (see also [17])

GF (x, x
′) = θ(T − T ′)G+(x, x′) + θ(T ′ − T )G−(x, x′) , (21)

and the retarded and advanced Green’s functions read

GR(x, x
′) = θ(T − T ′)

(

G+(x, x′)−G−(x, x′)
)

, (22)

GA(x, x
′) = θ(T ′ − T )

(

G+(x, x′)−G−(x, x′)
)

, (23)

whereG+(x, x′)−G−(x, x′) is the commutator function.
It is clear, though, that in the Schrödinger case, due to thefact thatm is not summed over, there is

no mixing between positive and negative frequency Wightmanfunctions. For example, form > 0 the
Feynman propagator and the retarded Green’s functions are the same, while form < 0 the Feynman
propagator equals the advanced Green’s function.

The fact that in the Feynman propagator the step functionθ(T − T ′) is multiplied by the step function
θ(m) appearing in the Wightman functionG+ and similarly the fact thatθ(T ′ − T ) multiplies θ(−m)
appearing inG− has the following welcome consequence. Even thoughT is not a global time function
and as such does not allow one to label all causally related events by a different value ofT , it is not a
problem to define a time ordering since the time ordering in the Feynman propagator is correlated with the
sign ofm. The failure ofT to provide a well-defined global time ordering only applies to events with the
same value ofT . Propagation between such events withm > 0 orm < 0 does not occur.

By microcausality, the commutator functionG+(x, x′)−G−(x, x′) must vanish for spacelike separated
pointsx andx′. In a free field theory the commutator function is a classicalc-number quantity. Hence, it
can only be nonzero whenever two points can be connected by a classical path. The commutator function
is therefore zero for points that are either spacelike separated or that cannot be connected by a geodesic.
Points separated in time such thatsinω(T − T ′) = 0 comprise the set of points that are either space-like
separated (T = T ′) or for which there is no geodesic connecting them. Theiǫ prescription is such that the
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commutator function vanishes forsinω(T−T ′) = 0. Hence the commutator function probes the following
part of the space-time,

⋃

n∈Z

I+(T = T ′ + (n− 1)πω ) ∩ I
−(T = T ′ + nπ

ω ) , (24)

which is the scalar field counterpart of the non-distinguishing character of space-time as seen by point
particle probes.

4 Discussion

The way in which the scalar field theory resolves the point particle causal structure problems is via the
unitary irreducible representations (6). The Hilbert spaces carry the momentumm in the direction of
the lightlike lines as an additional label, a superselection parameter. This means that fields are always
effectively massive (even whenm0 = 0). Hence in an eikonal approximation scalar fields correspond
to particles moving along timelike curves and for massive point particles we did not observe any causal
pathologies. For more information on this subject see [18].It would be interesting to extend this analysis
to include holographic renormalization (comparing with the work of [19]) and interacting field theories.
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