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We generalize the classical Bochner-Yano theorems of Riemannian geometry to 

pseudo-Riemannian manifolds in order to obtain information on higher dimensional 

space-times with symmetries. The results are used to shed some light on questions of 

consistency and the zero-mode ansatz in Kaluza-Klein theories. Some applications to 

Einstein spaces are given. 

Since our space-time is generally believed to be fairly well describable by a 4 

(or 4+ D)-dimensional manifold of Lorentzian signature, it is of interest to know 

which of the powerful tools and theorems of Riemannian geometry (see e.g. Cl]) 

may be carried over to the Lorentzian (or - more generally - to the pseudo- 

Riemannian) case. 

Only fairly recently however has pseudo-Riemannian geometry attracted atten- 

tion as a separate branch of mathematics (for a text-book account and references 

to earlier work see [2]). The reason for this may be that pseudo-Riemannian 

geometry is slightly disappointing from a mathematical point of view, since the 

theorems that can be proven are usually significantly weaker than their Rieman- 

nian counterparts. A notable exception of this are some “time-like” versions [3] of 

classical comparison-theorems [4]. (Here one essentially works inside the “Rieman- 

nian” light-cone.) 

However, from a physical point of view one might - quite apart from the 

interest in its own right - be tempted to make a virtue out of this fact by saying 

that the pseudo_Riemannian case in less restrictive. One of the most striking 

features of Riemannian geometry is the intimate relationship and subtle interplay 

between curvature and topology (see [S], or [6] for some recent results) and 

curvature and symmetries (i.e. curvature and Killing vectors [S]). 

Thus - since symmetries play an important role in classical general relativity 
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and in order to obtain general information on the geometry of Kaluza-Klein 

theories [7] without going into the details of a specific model - it seems worth 

investigating what a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori constraints symmetries impose on the curvature and 

what conclusions may be drawn from the Einstein (or some other) field equations 

determining the geometry (locally) as regards the existence of symmetries. 

The plan of this paper is therefore as follows: 

In Section I we give a short summary of the original Bochner-Yano theorems 

[S] and indicate some of their applications. In Section II we illustrate the dith- 

culties one encounters when trying to extend these results to pseudo-Riemannian 

manifolds and derive the analogue of the fundamental Bochner-Yano formula in 

this case. In Section III we give some applications of these results to Kaluza-Klein 

theories (relating the occurrence of the “Kaluza-Klein constraints” [S] to the 

setting sketched above and examining the traditional “zero-mode-ansatz” from this 

point of view), and to Einstein spaces. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I. The classical Bochner-Yano theorems 

Let (M, (, )) be an n ( = D+4)dimensional compact orientable Rieman- 

nian manifold with metric (, ) and denote by V its unique metric and torsionfree 

(Levi-Civita) connection. 

The norm of a vector field X (or tensor field 7) will occasionally be denoted by 

llXll (or IlTll) instead of (X, X) = X,XA (or (T, T) = TAB...C TAB-.C) (upper case 

Latin indices run from 1 to n = dim A4). By straighforward computation it may be 

established that every vector field on M satisfies 

div[VxX-(divX)X] = Ric(X, X)+tr(VX)2-(divX)2, (1.1) 

where Ric is the Ricci tensor (with components R,B), div is the divergence 

operator (divX = VAX”) and tr denotes the trace. Integrating this expression over 

A4 one obtains 

J [Ric(X, X)ftr(VX)2-(divX)2] = 0 
M 

(I.9 

and inserting the condition for X to be a Killing vector field 

(V, X, Z)+ (Vz X, Y) = 0, Vu, Z 

or a harmonic vector field 

(V,X, Z)- (V,X, Y) = 0, QY, Z, 

divX = 0 

(1.3) 

(1.4) 
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one arrives at 

j” [Ric(X, X)+llVXl12] = 0 (1.5) 
M 

or 

S [Ric(X, X)-l(VXJ(2] = 0. (1.6) 
M 

This allows one to conclude that there are no Killing vector fields on a compact 

orientable Riemannian manifold if Ric < 0, and no harmonic vector fields if 

Ric > 0. Thus the first Betti-number b1 (M) of a compact orientable Riemannian 

manifold with Ric > 0 (e.g. the n-sphere S” for II > 1) is zero, and every closed one- 

form is exact. Analogous results for Killing and harmonic tensor fields may also be 

proved along these lines, the quadratic form replacing Ric is however somewhat 

more complicated. 

A similar way of reasoning is employed in the proof of the Hopf-Bochner 

theorem [S], which states that if df 2 0 for a functionf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon a compact Riemannian 

manifold, then f is constant 

A,f> 0 

and 

imply 

fAf=O 
i4 

Af=O. 

Integrating Af2 over M leads to 

1 llgradfl12 = 0, 
M 

which yields 

f = const . 

The consequences of (1.5) are of relevance for Kaluza-Klein theories, since they tell 

us that we cannot simply use Ricci-flat internal spaces to circumvent the cosmolo- 

gical-constant-problem 171, if we want other than Abelian symmetries to emerge 

from this space. 

II. The pseudo-Riemannian case 

Let now M be a pseudo-Riemannian manifold, which we shall not assume to 

be compact for the time being, since compact Lorentzian manifolds are known to 

violate causality in the sense that they contain closed time-like curves [9]. (It is 



112 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. BLAU 

not clear, however, what role this “classical” causality violation (if any) plays at the 

Planck scale, which is the relevant regime for Kaluza-Klein theories.) 

(1.1) remains true in this context and we could arrive at (1.2) by imposing 

suitable boundary conditions on X at infinity, but let us first investigate which 

conclusions may be drawn from (1.1) in the more general case. 

In the case of geodesic Killing vector fields (which appear in the standard 

Kaluza-Klein ansgtze [7]) or harmonic vector fields of constant length (which are 

of interest because of the Goldberg-Kobayashi theorem [S] and related results) we 

can drop the term on the left-hand side of (1.1) right away to obtain 

Ric(X, X)+tr(VX)2 = 0. (11.1) 

This leads to 

Ric(X, X) = jIVX112 (11.2) 

for geodesic Killing vectors and 

Ric(X, X)+IIVX1j2 = 0 (11.3) 

for harmonic vectors of constant length and allows us to draw conclusions similar 

to those obtained from (1.5) and (1.6). 

PROPOSITION A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet M be a Riemannian manifold (nor necessarily compact). Then 

there are no geodesic Killing vector ,jields if Ric < 0 and no harmonic vectors of 

constant length if Ric > 0. 

The following proposition is relevant for Kaluza-Klein theories (see [S] and 

Section III (c)): 

PROPOSITION B. Let M be a Ricci$at pseudo-Riemannian manfold. Then every 

geodesic Killing vector ,$eld and every harmonic vector ,field of constant length has to 

satisfy 

llvxlj* = 0. (11.4) 

If we impose such boundary conditions on the admissible vector fields that the 

left-hand side of (1.1) vanishes upon integration over M, we can do away with the 

assumptions of geodesy and constant length and arrive at (1.2) in this case as well. 

Thus for Killing vector fields on Ricci-flat manifolds we obtain the condition 

- weaker than (11.4) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~llvxll’  = 0. (11.5) 

This is of interest because the restriction imposed on X in the Riemannian case 

(namely to be parallel and hence to generate only Abelian symmetries) can be 

avoided here and non-Abelian gauge symmetries may be obtained from Ricci-flat 



SYMMETRIES AND PSEUDO-RIEMANNIAN MANIFOLDS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA113 

internal spaces (pseudo-Riemannian internal spaces have been suggested in [lo] 

for entirely different reasons). 

Several other results along these lines may be obtained by exploiting (1.1) in 

various situations. We shall, however, not pursue this matter here but rather just 

mention some results in the case of Einstein manifolds in the next chapter. 

As an illustration of the difficulties one encounters in the pseudo-Riemannian 

case, let us try to derive an analogue of the Hopf-Bochner theorem. Since the 

Laplacian is now hyperbolic rather than elliptic, it is to be expected that the result 

f = const does not persist in this case. It seems to be less generally well known 

however, what conclusions may nevertheless be drawn from Af 2 0. Thus assume 

Af 2 0 and (for simplicity) that f goes to zero at infinity sufficiently fast. Then we 

arrive - imitating the proof of Chapter I - at the conclusion that f necessarily 

hasqo satisfy Af = 0 and 

J Ilgradfll' = 0. 

M 

(11.6) 

A sufficient condition for (11.6) to be satisfied is that grad f be null - ([grad f [I2 

= 0. However, not even this condition - already weaker than its Riemannian 

counterpart - is necessary, as the following example shows: 

Choose M = T2 = S’ xS’ (with coordinates t and x) and equip it with the 

standard metric but non-standard signature (- +). Then every solution of Af = 0 

is of the form 

and 

f(t, 4 =f1(t+x)+f2@-4 (11.7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

llmd fl12 = -4j;f, f 0 

(a ’ denotes derivative with respect to I), however 

J llg ra d fl12 = 0. 
T2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

III. Applications 

Let us now turn to some applications of these ideas. Certain results - arising 

in the context of Kaluza-Klein theories - have already been mentioned above: 

(a) If the internal space is compact and Riemannian, its Ricci-tensor has to be 

positive definite in order to allow for the occurrence of non-Abelian symmetries. 

(b) If the internal space is pseudo-Riemannian, then Killing vector fields 

satisfying SllVXJ(’ = 0 may lead to non-Abelian symmetries in the Ricci-flat case. 

As an application of Proposition B we mention [8]: 
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(c) Let M = M, x G be the product of a pseudo-Riemannian 4-manifold M, 

and a compact connected semi-simple Lie-group G. Use the standard Kaluza- 

Klein ansatz [7] for a metric on M; then - due to the presence of Killing vectors 

of the total metric - the G-Yang-Mills field configurations are constrained to 

satisfy 

FamnFbmn = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--gob (111.1) 

(F, is the Yang-Mills field-strength, -gab the Killing-Cartan form of G, and m, n 

label world-indices on M4). 

In the case M = M, x S’ Proposition B analogously leads to the result 

F,, F”” = 0 (111.2) 

for the electromagnetic field-strength F,,. These constraints have been discussed 

by Duff et al. [l l] f rom a different point of view in their “Kaluza-Klein 

consistency” programme. 

(d) An interesting aspect of the Bochner-Yano operator of the internal space 

Vz + Ric 

is the fact ’ that it appears as the vector-mass-operator, when small fluctuations of 

the metric around its ground-state value are taken into account. This gives a 

partial justification of the zero mode ansatz [7] of Kaluza-Klein theories, since 

every Killing vector field of the internal space satisfies 

V2XA+R;XB = 0. (111.3) 

However, not all solutions of (111.3) are Killing vector fields. But the additional 

solutions (like conformal Killing vectors in the case of two internal dimensions - 

giving rise to massless conformal vector-modes) are usually eliminated by imposing 

div X = 0 as a gauge condition. Since these gauge conditions are to a certain 

extent arbitrary, the physical interpretation of these modes is, however, not quite 

clear. 

(e) As a final application in the case of Einstein spaces 

Ric =c(,), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACER (111.4) 

let us mention the following facts which are easy corollaries of the general 

formulae (1.1) and (II.lHII.3): 

COROLLARY A. Let M be a pseudo-Riemannian Einstein space (111.4). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf M admits 

a parallel vector jield, then either c = 0 or the vector jield is null. 

1 I am grateful to Jan Sobczyk for drawing my attention to this. 
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COROLLARY B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOn a pseudo-Riemannian Einstein space M every null geodesic 

field (world lines of massless particles) with tangent vector field X satisjes 

tr (VX)2 + X div X = 0. 

COROLLARY C. Let M be a compact orientable Ricci$at Riemannian manifold. 

Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IV. Conclusions 

j tr(VX)’ = j (divX)2, VX. 
M M 

We have generalized some classical theorems of Riemannian geometry due 

mainly to Bochner and Yano to pseudo-Riemannian manifolds, in order to obtain 

some general information on space-times with symmetries. Due to the fact that the 

differential operators involved are hyperbolic rather than elliptic in that case and 

because the space-time topology is not the (non-Hausdorff! metric topology, the 

results were somewhat weaker than in the Riemannian case. Nevertheless if would 

be of interest to see, what other Lorentzian analogues of “Riemannian” results will 

find application in physics and what may be learnt from these. 
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