
Letters in Mathematical Physics 13 (1987) 83-92. 
�9 1987 by D. Reidel Publishing Company. 

83 

Connections on Clifford Bundles and the Dirac 

Operator 

M. B L A U  
lnstitutJ~r Theoretische Physik, Universitiit Wien, Boltzmanngasse 5, A-I090 Vienna, Austria 

(Received: 10 October 1986) 

Abstract. It is shown, how, in the setting of Clifford bundles, the spin connection (or Dirac operator) may 
be obtained by averaging the Levi-Civita connection (or K~hler-Dirac operator) over the finite group 
generated by an orthonormal frame of the base manifold. 

The familiar covariance of the Dirac equation under a simultaneous transformation of spinors and matrix 
representations emerges very naturally in this scheme, which can also be applied when the manifold does 
not possess a spin structure. 

1. Introduction 

In recent years, there has been a growing interest in a nonstandard description of 
fermions by differential forms instead of spinors. 

Originally proposed by Ivanenko and Landau as early as 1928 [ 1], this approach was 
independently discovered by K~thler in 1960 [2], who suggested the equation 

(d+ 6)~k= m~O. (1.1) 

Here ~ is an inhomogeneous differential form on Minkowski space, d is the exterior 
derivative, and b the exterior coderivative b = * -1 d*, where �9 is the Hodge duality 
operator [ 12]. He showed that this equation is completely equivalent to the Dirac 
equation (even if minimal electromagnetic coupling is introduced), provided that r lies 
in a minimal left ideal of the exterior algebra. 

To see the relation to the standard description, note that d + b is also a 'square-root' 
of the Laplace operator, since 

( d + 6 )  2 = d r + b d = [ ]  (1.2) 

and that the restriction on ~O reduces the number of components from 16 to 4. 
These ideas were generalized to manifolds by Graf [ 3], who was the first to point out 

that in a curved spacetime the Kahler-Dirac equation (1.1) and the Dirac equation are 
not necessarily equivalent. 

Subsequent work by Benn and Tucker [4-5] has brought about many improvements 
and refinements of the original theory which is by now a fairly well developed alternative 
to the usual fermion = spinor philosophy. 
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Particular attention has been paid to these 'K/thler fermions' in the context of the 
lattice theories [17], where they seem to offer a promising way to circumvent some 
difficulties of the standard approach. 

It is the purpose of this Letter to establish a relation between the Dirac equation and 
the K~thler-Dirac equation. The necessary mathematical framework is introduced in 
Section 2. Section 3 deals with the Levi-Civita connection on Clifford bundles and, in 
Section 4, the techniques are developed which allow us to obtain the Dirac equation 
from the K~thler-Dirac equation by a simple averaging procedure, as is shown in 
Section 5. There it is also pointed out how the usual copied transformation of spinors 
and y-matrices arises very naturally in this setting. Finally some concluding remarks 
may be found in Section 6. 

2. Mathematical Prelminaries 

2.1. MULTILINEAR ALGEBRA 

Let E be a finite (n)-dimensional real vector space equipped with a nondegenerate 
quadratic form Q and its associated bilinear form g 

g ( e , f )  " = �89 + f )  - O(e) - a ( f ) )  , e, f e E . 

(Most of our considerations carry over to the degenerate case, but since g will later be 
taken to be the spacetime metric, we do not need this generality here.) 

Denote by |  the tensor algebra of E, and by I (E)  (resp. J(E))  the ideals of |  
generated by elements of the form e | e (resp. e | e - Q(e)). Then the exterior algebra 
AE and the Clifford algebra C(E) are defined by [7] 

lEE: = |  (2.1) 

and 

C(E): = |  (2.2) 

Multiplication in the resulting algebras will be denoted by 'A '  (resp. ' v  ') and their 
defining properties are 

e ^  F =  - f A e  (2.3) 

and 

e v f + f v e = 2g(e, f )  (2.4) 

for e, f ~ E c A E  (resp. C(E)). 

The exterior algebra AE inherits the Z-graduation of | E (since the generators of I(E) 
are of homog#neous Z-degree in |  

AE = �9 APE, (2.5) 
p=O 

and the elements of APE are totally antisymmetric tensors of rank p. 
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Of considerable importance are the main automorphism 
automorphism ~ defined by 

r/e = - e ,  

~/(e | f )  = r/e | r/f, 

~ e = e ,  

r | f )  = ( f  | Ce, 

e ~ E  c |  

e, f e |  

e 6 E  ~ |  

e , f r 1 7 4  

which survive the quotient-forming and act on AE and C(E)  as 

rle = ( - )P e ,  

rl(e ^ f )  = rle ^ rlf, 

rl(e v f )  = qe v rlf, 

Ce = ( - )Cge, 

~(e ^ f )  = <f  ^ ~e, 

~(e v f ) = g _ f  v Ce, 

e ~ A r E ,  

e, f s A E ,  

e, f ~ C(E)  ; 

e ~ A P E ,  

e, f s A E ,  

e, f e C ( E )  . 
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r/ and the main anti- 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

r/induces a Z2-graduation on |  

|  = |176 + |  
by 

| = {e~ |  r/e = ( - y e }  

which passes to AE and C(E), because the generators I (E)  and J (E)  are even (i.e., 
elements of |176 

A crucial observation is that one can define a Clifford product on AE by 

e v f : = e ^ f  + g ( e , f ) ,  e, f e g c A E .  (2.10) 

Indeed 

e v f + f v e = 2g(e,f)  

and the universal property of Clifford algebras [7] guarantees that the resulting algebra 
is isomorphic to C(E). 

Conversely an exterior (or wedge-) product may be defined on C(E)  by 

e ^ f :  = �89 v f - f v  e) 

= e v f - g ( e ,  f )  (2.11) 

= - - f A e .  

The relations (2.9) and (2.10) can be extended to p-vectors ~k by 

e v ~ O = e A ~ k + i e ~ ,  ~ O v e = ~ A e - i e q ~ k  (2.12) 
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where i (an anti-derivation of degree - 1) is the usual interior derivative defined by 
contraction with respect to g: 

U e f : = g ( e , f ) ,  e, f e E ,  

ie(fl ^ f2) = (ief~) ^ f2 + rlfl ^ ief2, (2.13) 

ie(fl V f2) = (iefl) X/ f2 + rlfl V ief  2 . 

The resulting algebra, in which'  A ' , '  V' and 'i' are related in this way, is known as the 
K/thler-Atiyah algebra KA(E) [2, 3, 8, 9], and its elements, which may equivalently be 
regarded as antisymmetric inhomogeneous tensors or Clifford multi-vectors, will, as a 
rule, be denoted by Greek letters. 

2.2. SPINORS 

According to Brauer and Weyl [10], spinors are elements of irreducible Clifford 
modules, while the Wedderburn theorem on simple associative algebra tells us that these 
are isomorphic to minimal left ideals of the corresponding Clifford algebra [ 11 ]. 

Since minimal left ideals of Clifford algebras are themselves irreducible modules (the 
representation simply being left multiplication), spinors may be regarded as elements of 
minimal left ideals of Clifford algebras [9, 16]. 

Hence, in the setting sketched above, spinors may be equivalently regarded as certain 
antisymmetric tensors, and this will lead to the description of spinor fields in terms of 
differential forms below. 

Given a minimal left ideal S(E) of C(E), 

S(E) = C(E) v p ,  (2.14) 

where p is a primitive idempotent of C(E), a necessary and sufficient condition for 
~ C(E) to be an element of S(E) is 

fie S(E)r ~b = ~ v p .  (2.15) 

Henceforth, objects ff satisfying this condition will be called spinors (or, although the 
distinction is not necessary, algebraic spinors). 

More information on the details of the relation among Clifford algebras, exterior 
algebras and spinors, and examples may be found in [9]. 

2.3. EXTENSION TO VECTOR BUNDLES 

Almost everything we have said so far remains true if E is a smooth vector bundle 
equipped with a nondegenerate fibre metric instead of a vector space. 

We then have the tensor bundle |  the ideal bundles I(E) and J(E), the quotient 
bundles (cf. (2.1), (2.2)) AE and C(E) and the Kllhler-Atiyah bundle KA(E). Given any 
bundle F over a smooth manifold M, the C~176 of smooth sections of F will 
be denoted by F(F). 
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In order to make contact with the desired description of spinors on M in terms of 
differential forms, we choose E = T * M  - the cotangent bundle of an orientable 
manifold M. 

It should be noted that on a Lorentzian four-dimensional manifold with signature 
( -  + + + ) (resp. (+ - - - ) )  C ( T * M )  gives rise to four-component Majorana- 
-Dirac (resp. two-component quaterionic) spinors. The usual Dirac spinors are, there- 
fore, obtained by complexifying T * M  (or C ( T * M ) :  C ( T * M  | C )  "~ C ( T * M )  | C) .  

Let us choose an orthonormal frame of one-forms {e u} for T * M .  We then have 
(cf. (2.3), (2.4), (2.12)) 

e u A e  v =  - e  v A e  u ,  (2.16) 

e ~' v e v + e v v e ~' = 2~1 ~'' , 

e u v e v = e u A e ~ + ~1 u~,  (2.17) 

e ~' v • = e ~' A ~O + ie,,~O = : e ~' A ~k + i~'~b, 

where q~'v = g ( e  ~', e ~), g a metric on M. 
Until flow, no complications have arisen as a consequence of the transition from 

vector spaces to vector bundles, all the bundles introduced so far are well defined and 
exist globally. However, in order to relate spinor fields to certain sections of the Clifford 
bundle C ( T * M ) ,  we need a globally defined minimal ideal S (2.14) of C ( T * M ) ,  which 
may not always exist. 

Since, to the best of the author's knowledge, the question of which manifolds do admit 
such an S has not been settled yet, we shall assume the existence of a globally defined 
primitive idempotent p (which is a sufficient but possibly not necessary condition) and 
can thus identify spinor fields with sections of the corresponding ideal bundle 

{spinor fields} r162 F ( C ( T * M )  v p )  = F ( S ( T * M ) )  , 

r  F ( S ( T * M ) ) . r  ~k = ~O v p .  (2.15) 

Regarding spinor fields as sections of S ( T * M )  has - while being completely equivalent 
to the standard point of view - many computational and conceptional advantages and 
allows a direct comparison of the K/thler-Dirac equation (1.1) with the Clifford 
algebraic formulation of the Dirac equation on S (5.3) due to Benn and Tucker [6] (cf. 
also [5]). 

Because differential forms on M may be regarded as sections of C ( T * M ) ,  we may, 
using (2.17), rewrite the Kahler-Dirac operator as 

(d+ ~)~= e u A 7 ~ 0 +  i u T j g =  e u v 7~k (2.18) 

where 7 is the Levi-Civita connection of the (pseudo-) Riemannian manifold (M, g) and 
7# = 7e~ is the covariant derivative along the vector field e u dual to e ~'. 

Therefore, in order to relate the Dirac operator to the K~hler-Dirac operator, we shall 
first take a slightly more detailed look at the Levi-Civita connection on C ( T * M ) .  
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3. The Levi-Civita Connection 

The Levi-Civita connection of M is uniquely determined by the conditions [ 12] 

de ~' = -co~ ^ e v (torsion-free), 

o.~ + coy, = 0 (Pdemannian), 

on the connection-forms co~" and acts on e ~' as 

Ve" = - co~ | e ~ (3.1) 
i.e., 

V xe"  = -(ixOJ"~ )e ~ (3.2) 

for the covariant derivative V x along the vector field X e F(TM). 
V extends (by linearity and postulation of the Leibniz rule) in a unique way to | T*M 

and passes to the quotient C(T*M) to yield a well-defined covariant derivative there, 

since V preserves the ideal J(T*M)  (2.2): 

Vx(~b | r - g(q, q~)) 

= l[(Vx~b + ~)| (Vx~ + ~b) - g(Vx~ + 4 A Vx4 P + *)l - 

-l[(v~- ~)| (v~- ~) -g(Vx~- ~, vx~- ~)l 

for all 4~e F(T*M), Xe  F(TM). This shows that 

Vx(~ |  ~ - g(~b, ~))e  F(J(T*M))  ~_ J(F(T*M))  

and, therefore, V is an algebra connection [13] on C(T*M): 

Vx(~ v ~) = (vx~) v 0 + ~ v v x o ,  v~, ~e  r ( c ( r * g ) ) .  

Setting g - 0 in the above computation shows that the same conclusion holds for V on 

AT*M. 
The crucial observation is now, that despite all these nice properties, V does not as 

a rule map a minimal left ideal S of C(T*M) into itself 

~ e s ~ = ~ v p ,  vx(~vp)=(vx~)vp+~vVxp. 

Vxp is not necessarily an element of S, and the condition (2.15) 

Vxp = (Vxp) v p (3.3) 

leads to [3] 

P v V x P  = 0.  (3.4) 

Equation (3.4) and its integrability conditions impose severe restrictions on the 

Petrov-type of the manifold [ 14]. 
Therefore, the Kahler-Dirac operator d + ~ --- e" v V, (2.18) cannot be identical with 

the Dirac operator nor with any other differential operator on S, although (2.18) obvious 
coincides with the Dirac operator in the fiat space limit. 
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Thus what we want, in order to have an ideal-preserving connection, is a covariant 
derivative, which is, in a sense, invariant under fight multiplication. In the next section 
we show how such a connection with the desired property may be obtained from V, and 
in Section 5 we show that the resulting differential operator is, indeed, the usual 
covariant derivative for spinors in curved space. 

4 .  A v e r a g i n g  o f  7 

In order to arrive at the desired invariance, we make use of the fact that the e ~' 
(# = 1, . . . ,  n, a set oforthonormal one-forms) generate a finite group G of 2 n + 1 dements 
under Clifford multiplication, namely 

G = { + 1}, +em v e ~'~ v . . .  v e~',: 1 ~p~< n,#1 <#2  < " ' "  </Ap} 

= ;  {e• 1 . . . . .  2 " , e _ i : =  - e i } .  

In the literature, these groups run under the name of 'vee-groups' [15], and the study 
of their properties gives insight into the structure and systematics of Clifford algebras 
[9, 151. 

Now there is a general procedure to obtain a connection invariant under the action 
of some compact Lie group from a given connection. This procedure amounts to 
integrating (or averaging) the connection over the group [ 13]. 

In general, this may be quite cumbersome but, in our case (where we have a finite 
group), this integration reduces to a simple summation (or equivalently: the invariant 

volume element collapses to a discrete measure). 
We shall specify the action of G to be fibre-wise left or right multiplication on 'its' 

Clifford algebra and (for computational ease, since V acts from the left) compute the 
left invariant connection D (4.1) resulting from V first. The right invariant connection 

may be obtained from D by transforming it with the main anti-automorphism (2.9) 
in a suitable way (5.1). 

Let us, therefore, compute 

D = 2 - ( " + 1 )  ~,,+__lei v Voe/-1 v 

= 2 -n E i e l  V V o e / l  v 

= q + 2-" 2 1 e i  V ( V e / 1 )  v 

V 1 = - ~e),v| a"v v (4.1) 

= : V - Y~ v (4 .2 )  

where 

a , v . =  �88 v e v - e ~ v e" ) .  

Equation (4.1) is obtained by repeated application of (3.1), and looks quite promising, 
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since we have (somewhat surprisingly?) produced the generators a uv of the spin 
group [11] of the Clifford algebra by this averaging. 

We may check by explicit calculation that D has indeed the desired property, namely 

D(e  ~' v ~) = e ~' v D~b, V4J~ F ( C ( T * M ) ) ,  (4.3) 

D(e  ~ v 1~) = (7e  u) v ~ + e ~ V V ~ -  E V e ~ v 

= -o~| ~+ e"v V~- 

- la~vp~ eU V O'~Pl,b _ 1  

= e v v O~b. 

In the following we list some basic properties of D: 

(1) D is compatible with the '+  '-operation on C ( T * M ) .  

(2) D is not an algebra connection on C ( T * M ) :  

D(e  u v $)  = e ~' v O $  # (De ~') v ~b + e ~' v O~b. 

(3) D is compatible with the ZE-graduation of C ( T * M ) ,  i.e., D maps even to even and 
odd to odd elements and, therefore, commutes with the main automorphism r/ 
(2.8), Dr/= r/D. 

(4) D does not commute with the main anti-automorphism ~ (2.9). 
(5) D does not commute with fight-' v '-multiplication: To evaluate D($  v eJ'), we 

shall regard ~, v e u as an element of KA(T*M) and make use of (2.12): 

O(~b v e ~') = D(~b A e v - iv~/~;) 

= D ( e  u A r / r  it'r/tO) 

= D ( e  u v r / $ -  2i~'r/~,) 

= e ~ v q D $ -  2 D # ' q $ )  

= e u A r /O$  + iUr/D$ - 2DiUr/$ 

= D $  ^ e u + iUr/D~O - 2DiUr/$ 

= D $  v e u + 2 i U ~ D $  - 2Di~ 'q$  

= (DqJ) v e ~ + 2r/[O, iu]$.  (4.4) 

Since [D, i v ] does not vanish identically, the left invariance of D does not imply 
its fight invariance. 

5. The  D i r a c  Equat ion  

Let us define D by 

~ :  = r162 (5.1) 
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Then we find 

n ( r  v e ' )  = r162 v e") 

= C D ( r  ~' v r162 

= CD(e ~' v ~r 

= ~(e" v D r 1 6 2  

= ~ D ~ r  v e ~' 
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= (De) v e ~' . (5.2) 

Thus, D is right invariant and coincides with the connection we would have obtained 
by averaging V over the fight action of G. 

In terms of connection forms, D is given by 

- 6 r  = ~ D ~ r  = ~ V ~ r  ~,,v| ~(a  ,'v v 4r  

1 = r e +  ~o~.v| C v  a .  v 

= V r  + r v ~ .  (5.3) 

As shown by Benn and Tucker [6], this opera tor / )  yields precisely the curved space 
Dirac equation if one chooses a primitive idempotent p constructed from the {ez } and 
the corresponding matrix-basis. 

Since then Vp = [Z, p] is a consequence of V#' = [Z, # ' ] ,  we obtain 

r  r v p ~ - 6 r  = -6(r v p) 

= ( r e )  v p + C v  Vp+ C v p v  r. 

= ( r e )  v p  + C v  [Z,p]  + C v p v r .  

=(re+ C v Z ) v p  

= ( D e )  v p .  (5 .4)  

If one averages V not with respect to {e z } but, say, with respect to the 'conjugate' group 
{S-  ' v ez v S}, corresponding to a change of the v-matrix representation, thereby 
obtaining - 6 [ S - '  v e / v  S]  instead of -6[e / ] ,  one sees that 

D [ S - '  v e / v  S ] ( r  S)  

= - 6 [ S  - l  v e / v  S ] ( r  S v S -I  v p  v S)  

= (-6[S -~ v e / v  S]  ( r  S)) v S -1 v p v S .  

Therefore, one recovers the familiar covariance 

r  r v s ,  (5.5) 

ei - - .  S - '  v e z v S (5.6) 
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of  the Dirac equation very elegantly in this setting and one can interpret it as adjusting 

the representation in such a way that the e I have constant  components  with respect to 

the corresponding matrix basis. (In (5.5), S only seems to act on ~b from the wrong side: 

upon spelling out (5.5) in a matrix basis one recovers the usual left action o f  S on the 
components  of  qJ.) 

6. Conclusion 

We have shown that, starting with the Kahler-Dirac operator (1.1), (2.15)), 

e" v Vu~k = (d + b)~ we may arrive at the Dirac operator (5.3) 

e ~' v ~j, qJ = e ~ v 7~,~0 + e i' v ~ v i~,E 

by averaging the Levi-Civita connection V over the finite group generated by the e ~', 

thereby ensuring the desired ideal preserving property of  D. 

While being interesting in itself, this new geometrical interpretation of  the Dirac 

operator gives some insight into the interplay between the global conditions under which 

the procedure outlined above works and the question o f  existence of  a spin-structure 
on M, which is quite subtle and presently under investigation. 
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