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Abstract: Motivated by some questions in the path integral approach to (topological) 
gauge theories, we are led to address the following question: given a smooth map 
from a manifold M to a compact group G, is it possible to smoothly "diagonalize" 
it, i.e. conjugate it into a map to a maximal toms T of G? 

We analyze the local and global obstructions and give a complete solution to 
the problem for regular maps. We establish that these can always be smoothly 
diagonalized locally and that the obstructions to doing this globally are non-trivial 
Weyl group and torus bundles on M. We explain the relation of the obstructions 
to winding numbers of  maps into G/T  and restrictions of the structure group of 
a principal G bundle to T and examine the behaviour of  gauge fields under this 
diagonalization. We also discuss the complications that arise in the presence of 
non-trivial G-bundles and for non-regular maps. 

We use these results to justify a Weyl integral formula for functional integrals 
which, as a novel feature not seen in the finite-dimensional case, contains a sum- 
mation over all those topological T-sectors which arise as restrictions of  a trivial 
principal G bundle and which was used previously to solve completely Yang-Mills 
theory and the GIG model in two dimensions. 

1. Introduction 

One of the most useful properties of a compact Lie group G is that its elements 
can be "diagonalized" or, more formally, conjugated into a fixed maximal toms 
T C G. In this paper we investigate to which extent this property continues to hold 
for spaces of (smooth) maps from a manifold M to a compact Lie group G. Thus, 
given a smooth map 9 : M ~ G, the first thing one would like to know is if it can 
be written as 

g(x) = h (x ) t ( x )k -~(x ) ,  (1.1) 
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where t : M --+ T and h : M -~ G are smooth globally defined maps. It is easy to 
see (by examples) that this cannot be true in general, not even for loop groups 
(M = S 1 ), and we are thus led to ask instead the following questions: 

1. Under which conditions can (1.1) be achieved locally on M? 
2. Under which conditions will t(x) be smooth (while possibly relaxing the con- 

ditions on h)? 
3. What are the obstructions to representing 9 as in (1.1) globally? 

We will not be able to answer these questions in full generality. For those 
maps, however, which take values in the dense set Gr of  regular elements of G we 
provide complete answers to 1-3. We establish that conjugation into T can always 
be achieved locally and that non-trivial T-bundles on M are the obstructions to 
finding smooth functions h which accomplish (1.1) globally. Furthermore we prove 
that if either G or M is simply connected the diagonalized map t will be smooth 
globally. These results confirm the intuition that (in SU(n) language) obstructions 
to diagonalization can arise from the ambiguities in either the phase of h or in the 
ordering of the eigenvalues of t. 

While these equations seem to be interesting in their own right, they also arise 
naturally within the context of  gauge fixing in non-Abelian gauge theories. In [7], 
't Hooft has argued that a "diagonalizing gauge" may not only be technically use- 
ful but also essential for unravelling the physical content of these theories. For 
us the motivation for looking at this issue arose originally in the context of low- 
dimensional gauge theories. In particular, in [1,2] we used a path integral version 
of the Weyl integral formula, which relates the integral of a conjugation invari- 
ant function over G to an integral over T, to effectively abelianize non-Abelian 
gauge theories like 2d Yang-Mills theory and the GIG gauged Wess-Zumino- 
Witten model. The path integrals for the partition function and correlation functions 
on arbitrary two-dimensional closed surfaces Z could then be calculated explicitly 
and straightforwardly. Formally this Abelianization was achieved by using the lo- 
cal conjugation (gauge) invariance of the action to impose the "gauge condition" 
g(x) c T (or its Lie algebra counterpart in the case of Yang-Mills theory). The 
correct results emerged when the resulting Abelian theory was summed over all 
topological sectors of T-bundles on E, even though the original G-bundle was triv- 
ial. This method has been reviewed and applied to some other models recently in 
[12]. 

In light of the above, the occurrence of the sum over isomorphism classes 
of T-bundles can now be understood as a consequence of the fact that the chosen 
gauge condition cannot necessarily be achieved globally on M = s by smooth gauge 
transformations. But while it is certainly legitimate to use a change of variables in 
the path integral which is not a gauge transformation, one needs to exercise more 
care when keeping track of the consequences of  such a change of variables. Thus 
to the above list of questions we add (with hindsight) 

4. What happens to G gauge fields A under the possibly non-smooth gauge transfor- 
mation A --+ A h = h-lAh + h-ldh? In particular, does this give rise to T gauge 
fields on non-trivial T bundles on M? 

5. What is the correct version of the path integral analogue of the Weyl integral 
formula taking into account the global obstructions to achieving (1.1) globally? 
In particular, does this explain the appearance of the sum over all isomorphism 
classes of T bundles? 
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It turns out that indeed connections on T-bundles appear in that way and that the 
Weyl integral formula should include a sum over those topological sectors which 
appear as obstructions to diagonalization. When M and G are such that there are 
no non-trivial G bundles on M, all isomorphism classes of torus bundles appear as 
obstructions (because then all torus bundles are restrictions of the trivial G bundle). 
In particular, this takes care of the two- and three-dimensional models considered in 
[1,2] (as the contributions from the non-regular maps are suppressed by the zeros 
of the Faddeev-Popov determinant). 

The situation concerning non-regular maps is quite different and much murkier. 
For example, there are maps taking on non-regular values just at isolated points but 
which nevertheless cannot be smoothly diagonalized in any open neighbourhood of 
one of these points. Consequently, the (differential-topology) methods we use in this 
paper to investigate regular maps are inappropriate in the more general situation. 
We present some examples illustrating the difficulties and discuss why our present 
treatment fails in these cases. 

This paper is organized as follows: In Sect. 2 we briefly recall the basic facts 
we need from the theory of Lie groups. In Sect. 3 we discuss three prototypical 
examples which illustrate the possible ways in which (1.1) can fail either locally or 
globally. The first of these, a smooth map from S 1 to SU(2), shows that not even 
t(x) is necessarily smooth in general. The second, a regular map from S 2 to SU(2), 
can be smoothly diagonalized locally but not globally. It provides a preliminary 
identification of certain obstructions in terms of winding numbers of maps from 
M to G/T and also shows quite clearly how and why connections on non-trivial 
T-bundles emerge. Finally, the third example (a map into SO(3)) illustrates how 
global smoothness of t can fail even for regular 9 when both M and G are not 
simply connected. 

Section 4 contains the main mathematical results of this paper. We prove that 
regular maps can be smoothly conjugated into the toms over any contractible open 
set in M and we identify the obstructions to doing this globally. These results 
are summarized in Propositions 1 and 2. Proposition 3 contains the corresponding 
statements for Lie algebra valued maps. We also explain how to extend the results 
to sections of a non-trivial adjoint bundle AdPG of a principal bundle Pc  and how 
finding a solution to (1.1) is related to restricting the structure group of PG to T. 
In particular, we establish a relation between restrictions of  Pc  and regular sections 
of AdPc. 

Section 5 contains some additional results which are useful for the application 
of the previous considerations to gauge theories. We first look at what happens to 
gauge fields on PG under restrictions of the structure group. For two-dimensional 
theories (and simply-connected G) we explain the appearance of the obstructions 
in the form of non-trivial torus bundles by relating their Chern classes to winding 
numbers associated with regular maps (the space of which is, in contrast to the space 
of  all maps, not connected). We also consider SU(n)-bundles on four-manifolds to 
illustrate the obstruction to restrictions of the structure group. Finally, we address 
the issue of genericity of regular maps and make some comments on the problem 
of conjugating non-regular maps into the torus. 

In Sect. 6, we turn to applications of  the above results. We use them to jus- 
tify a version of the Weyl integral formula for functional integrals over spaces of 
maps into a simply connected group. As a novel feature not present in the finite 
dimensional (or quantum mechanical path integral) version this formula includes a 
sum over all those topological sectors of  T bundles which arise as restrictions of 
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a trivial principal G bundle, justifying the method used in [1,2] to solve exactly 
some low-dimensional (topological) gauge theories. 

While we have used a global coordinate-independent approach to establishing the 
above results, in particular those of Sect. 4, they can of course also be obtained in 
a more pedestrian manner by working with coordinate patches, local trivializations 
and transition functions. At the referee's suggestion we primarily focus on the 
global approach in this paper and we refer the reader who likes to see things 
in local coordinates to the version of the paper available from the bulletin board 
(hep-th/9402097). 

After having completed our investigations we came across a 1984 paper by 
Grove and Pedersen [5] in which the local obstructions we find in Sect. 4 are 
also identified, albeit using quite different techniques, see [5, Theorem 1.4]. The 
global issues which are our main concern in the present paper, in particular the 
relation between conjugation into the toms and restrictions of the structure group 
and the behaviour of gauge fields, are not addressed in [5], the emphasis there 
being on characterizing those spaces on which every continuous function taking 
values in normal matrices can be continuously diagonalized. These turn out to be 
so-called sub-Stonean spaces of  dimension < 2 satisfying certain additional criteria, 
[5, Theorem 5.6]. 

A final remark on terminology: we will (as above) occasionally find it con- 
venient to use SU(n) terminology even when dealing with a general compact Lie 
group G. In particular, we might say "diagonalize" when we should properly be 
saying "conjugate into the maximal toms" and we may loosely refer to the action 
of  the Weyl group as "a permutation of the eigenvalues". We denote the space of  
maps f rom a manifold M into a group G by Map(M, G). Unless specified other- 
wise, these maps are taken to be smooth, although the topological results of  this 
paper will of  course continue to hold under less stringent requirements. 

2. Background from the Theory of Lie Groups 

We fecal1 some basic facts from group theory we will need later on (see e.g. [3, 6]). 
Let G be a compact connected Lie group of rank r and T a maximal torus of G. 
We denote by N(T)  the normalizer of T in G, by W the Weyl group W = N(T) /T,  
and by Gr and T~ = T f) Gr the set of regular elements of G and T respectively, i.e. 
those lying in one and only one maximal toms of G. The non-regular elements of G 
form a set of codimension three in G and, although this set may not be a manifold, 
Gr and G have the same fundamental group, rCl(Gr) = 7Zl(G). Any element of  G 
can be conjugated into T, 

Vg c 'G 3h E G �9 h-~gh E T.  (2.1) 

For g E G~, such an h is unique up to h ---+ hn, n E N(T) ,  and i f h - l g h  = t E T then 
(hn)-lg(hn) = n- i tn  E T is one of the finite number of  images w(t) of t under the 
action of the Weyl group W. The conjugate map 

q : G/T  x T~ --+ Gr 

([h],t) ~ hth -1 (2.2) 

is a ]WI-fold covering onto G~. I f  G is simply connected, this W-bundle is trivial, 
and hence the Weyl group acts freely on each connected component P~ of T~ 
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and simply transitively on the set of components. Thus we can identify Pr, the 
image of a Weyl alcove under the exponential map, with a fundamental domain 
for the action of W on Tr and the restriction of q to Pr provides an isomorphism 
between G/T x Pr and Gr. In particular, one has n2(G~)= Z ~, to be contrasted 
with n2(G) = 0. In general, if one restricts q to G/T  x Pr, it becomes a universal 
covering of G~ and the covering (2.2) is neither trivial nor connected. Nevertheless, 
the fact that, away from the non-regular points, the above map q is a smooth 
fibration (with discrete fibers) will be of utmost importance in our discussion in 
Sect. 4. 

3. Examples: Obstructions to Globally Conjugating to the Torus 

We will now take a look at three examples of maps which illustrate the obstructions 
to achieving (1~ 1 ) globally or smoothly. The first one, which we will only deal with 
briefly, illustrates what can go wrong with maps which pass through non-regular 
points of  G. We shall from then on (and until the end of Sect. 5) focus exclusively 
on regular maps and try to come to terms with them. The second example, a simple 
map from S 2 to SU(2), allows us to detect an obstruction to globally and smoothly 
diagonalizing it more or less by inspection. This obstruction turns out to be a 
winding number associated with that map. Refining that winding number to include 
a gauge field contribution one can moreover read off directly that any attempt to 
force the map into the toms by a possibly non-smooth (discontinuous) h will give 
rise to non-trivial toms gauge fields. The third example, a map from the circle to 
S0(3),  highlights another obstruction which can only arise when neither G nor M 
is simply connected. 

Example 1: A Map from S 1 to SU(2). Let f be any smooth N-valued function 
on the real line such that f ( x  + 2~) = - f ( x ) .  Then the map 9 E Map(S 1, SU(2)) 
(the loop group of SU(2)) defined by 

cos f ( x )  - i e  -ix/2 sin f ( x )  "~ 
g(x) = - i e  ix/2 sin f ( x )  cos f ( x )  J (3.1) 

is single-valued, g(x + 2~z) = g(x), and smooth. As f is necessarily zero somewhere, 
g passes through the (non-regular) identity element. 9 can be diagonalized by a map 
h, h-19h = t, but for generic f neither h nor t are smooth. For instance, h can be 
chosen to be (e /: 

e /2 , (3.2) 

and t turns out to be 

e _ i f ( x  ) , (3.3) 

t(x + 27r) = t - l (x )  :t: t(x) .  (3.4) 

What happens here is that, upon going around the circle, t(x) comes back to itself 
only up to the action of the Weyl group, reflecting the ambiguity h ~ hn at the 
regular points of  9 mentioned in Sect. 2. Had 9 been regular everywhere to start 
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off with, this ambiguity could have been consistently eliminated by giving a partic- 
ular ordering prescription for the diagonal elements. Such a prescription, however, 
becomes ambiguous when two of  the diagonal elements coincide (as at the identity 
element o f  the group). The fact that, when dealing with non-regular maps, one is 
leaving the realm of  smooth or topological fiber bundles like (2.2) is illustrated by 
the observation that it is possible to conjugate 9 to a continuous and periodic map 
t t, e.g. 

0 ) 
e_ilf(x) I , (3.5) 

but that there is no differentiable choice of  t', while any map h giving rise to a 
continuous t is necessarily discontinuous. 

This illustrates clearly one of  the difficulties one encounters when trying to diag- 
onalize non-regular maps. Nevertheless, this difficulty disappears when one regards 
9 as a smooth map from the real line to SU(2),  both h and t being smooth in that 
case. However, as we will see in Sect. 5, the procedure of  diagonaiization of  non- 
regular maps is beset with rather more serious difficulties as well, with obstructions 
to smooth diagonalization appearing even on open and contractible sets. 

Example 2: A Map from S 2 to SU(2). A nice example (suggested to us by 
E. Witten) giving us a first idea of  the possible obstructions in the case of  reg- 
ular maps and the role of  non-trivial torus bundles is afforded by the following map 
from the two-sphere into SU(2), 

ix3 xl 4- ix2 ~ (3.6) 
g(X) = --Xl 4- ix2 --ix3 J ' 

where x~ 4-x 2 4-x~ = 1. This map can also be written as g(x) = ~kxkak which 
defines our conventions for the Pauli matrices ak. This map is clearly regular (the 
only non-regular elements o f  SU(2)  being plus or minus the identity element). It 
is a smooth map from the two-sphere to a two-sphere in SU(2)  and is, in fact, 
the identity map when one considers S U ( 2 ) ~  S 3 living inside ]R 4 with cartesian 
co-ordinates (Xl,X2,X3,X4) subject to x 2 4- x 2 4- x 2 + x] = 1. We represent elements 
of  SU(2)  as x41 4- ~kxkak so that g maps the sphere to itself thought of  as the 
equator of  $3(x4 = 0). 

To detect a possible obstruction to diagonalizing g we proceed as follows. To 
any map f from the two sphere to the two sphere we may assign an integer, 
the winding number n( f )  of  that map. This winding number is invariant under 
homotopies of  f .  Writing (as above) f = }-~fkak w i t h  ~ k ( f k )  2 = 1, an integral 
representation of  its winding number is 

1 
n( f )  = ~ f Trf[df ,  df] .  (3.7) 

3 Z ~  $2 

Clearly for (3.6) we have n(9) = 1, as it should be 
Now suppose that one can smoothly conjugate the map g into a map t : S 2 ---+ 

U(1) via some map h. As the space of  maps from S 2 to SU(2)  is connected, g is 
homotopic to t and one has n(9)= n(t). But, since g2 = - - 1 ,  t is a constant map 
so that n(t) = 0, a contradiction. 1 More generally, if  one has an f : S 2 --~ S 2 C S 3 

1 t can be chosen to be either t = a3 or t = (-a3). We fix on one of these throughout S 2 so  that 
t is smooth. This is justified in the next section. 
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of the above form and one is able to smoothly conjugate this map to a map into 
U(1), then one necessarily has n ( f )  = 0. So what we have learnt is that one may 
not, in general, smoothly conjugate into the maximal torus globally. We will see in 
the next section that this can be done locally in open neighbourhoods. 

There is a disadvantage in simply considering the number (3.7) for it does 
not tell us how non-trivial U(1) bundles will arise if we insist, in any case, on 
conjugating into U(1), regardless of  whether we can do so smoothly or not. There is 
a slight generalisation of the formula (3.7) which is not only a homotopy invariant, 
but for which conjugation (gauge) invariance can be established directly without 
any integration by parts. The advantage of such a formula is that it allows one to 
conjugate with arbitrary maps, not just smooth ones, and so to relate maps which 
are not homotopic. 

Let A be a connection on the SU(2) product bundle over the sphere. As the 
bundle is trivial such an A can be thought of as a Lie algebra valued one-form on 
S a, A E (21($2,su(2)). The number we want is 

1 f T r  f [d f ,  d f ] -  I f  Tr[d(fA)],  n ( f  ,A) - 327Zs2 (3.8) 

and obviously coincides with (3.7) when both f and A are smooth. Furthermore 
n(f ,  A) is gauge invariant, i.e. invariant under simultaneous transformation of f and 
A, 

n(h-l f h , A  h) = n ( f ,A ) ,  (3.9) 

where A h = h-lAh + h-ldh, even for discontinuous h. This is seen most readily by 
rewriting (3.8) in manifestly gauge invariant form, 

n( f ,A )  - 327rf  Tr f[dAf ,  dAf] - Tr[fFA], (3.10) 

with dAf  = d f  + [A,f] and FA = dA § �89 
Let us now choose h so that it conjugates our favourite map g into U(1), say 

9 = ha3 h-1. Using (3.9) we find 

n ( g , A ) =  1 =  ~ J ' T r a 3 d ( A  h) (3.11) 

In particular, if we introduce the Abelian gauge field a = -Tro-3 Ah, we obtain 

1 f d a  
n(g,A ) = 1 = 27rs2 (3.12) 

We now see the price of conjugating into the toms. The first Chern class of the 
U(1 ) component of  the gauge field A h is equal to the winding number of the original 
map! We have picked up the sought for non-trivial toms bundles. In this case it 
is just the pull-back of the U(1)-bundle SU(2) ---+ SU(2)/U(1) ~ S 2 via g and this 
turns out to be more or less what happens in general. 

As both 9 and its diagonalization • may just as well be regarded as Lie 
algebra valued maps, this example establishes that obstructions to diagonalization 
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will also arise in the (seemingly topologically trivial) case of Lie algebra valued 
maps. 

As we will see in Sect. 5, a certain non-regular extension of this map provides 
us with an example of a map which cannot be smoothly diagonalized in any open 
neighbourhood of a non-regular point. 

Example 3: A Map from S 1 to SO(3). While we have seen in Example 1 that 
non-regularity is one obstruction to finding a globally well-defined smooth diago- 
nalization t, even for regular g an obstruction to finding such a t may arise. We 
will establish in Sect. 4 that this can only happen when neither G nor M is simply 
connected. The raison d'etre of this obstruction is the fact that diagonalization in- 
volves lifting a map into Gr to a map into G / T x T r  which may not be possible if 
the fibration (2.2) is non-trivial. Here we illustrate this obstruction by a map from 
S 1 into SO(3)r. 

Consider first of all the following path in SU(2)r, 

l ( e ix~2 ie -ix/2 ) 
0 ( x ) = ~  ieix/2 e_iX/2 . (3.13) 

As ~(2zc) = -~(0) ,  0 will project to a non-contractible loop g -= Ad(O) E Map(S 1, 
SO(3)r). Explicitly, this g, satisfying 0-1~rk0 = gkl~rl and g(2~) = g(0), is given by 

( ~ ~  g(x) = sinx cosx . 
k-COSX sinx 

(3.14) 

There is no obstruction to diagonalizing g, g =/~[/~-1 and there are two solutions 
[= differing by a Weyl transformation (exchange of the diagonal entries). It can 
be checked that ~+(2~) differs from t• not only by a sign but also by a Weyl 
transformation, 

1 ( 1 + i  0 ) =_/T(2~z)  (3.15) 
/4-(0) = ~ 0 1 :V i 

Hence t" will not project to a closed loop in SO(3) and the diagonalization t of g 
will necessarily be discontinuous (non-periodic), as can also be checked directly. 
Choosing the torus SO(2) C SO(3) to consist of elements of the form 

cosy  - s i n y  i )  
sin y cos y , 

o 0 
(3.16) 

with the Weyl group acting as y -+ - y ,  one finds that 

(Z t(O) = ; , 
0 

(3.17) 

while 

t(2~z) = - 1  0 
0 0 

(3.18) 
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Hence the periodic regular map g cannot be diagonalized to a periodic map t and, 
regarded as map from S 1 into SO(2)~, t will only be smooth locally. 

This concludes our visit to the zoo of obstructions, and we will now es- 
tablish some general local and global results concerning the diagonalizability of 
maps. 

4. Local Conjugation to the Maximal Torus and Global Obstructions 

In this section we will explore the diagonalizability of regular maps g E Map(M, Gr) 
and g E Map(U, G~), where M is a smooth connected manifold and U c M a 
contractible open set. The local considerations will of course apply equally well 
to local regular sections of the adjoint bundle AdPa of a non-trivial principal G 
bundle Pc  over M. 

Being able to locally conjugate smoothly into the maximal torus is the statement 
that we can find smooth maps hu E Map(U, G) and tu E Map(U, T) such that 
the restriction gu of g to U can be written as gu = h~tvh~ ~. In other words, 
we are looking for a (local) lift of  the map g E Map(M, Gr) to a map (h, t ) E  
Map(M, G) x Map(M, T~). We will establish the existence of this lift in a two-step 
procedure indicated in diagram (4.1). 

CxT, 

(h, t) ( f ,  t /  

Z 
M 

9 

p x 1 G/T x Tr 

Gr (4.1) 

In the first step we lift g along the diagonal, i.e. we construct a pair ( f ,  t), where 
f E Map(M, G/T) ,  which projects down to g via the projection q introduced in 
(2.2). The obstruction to doing this globally is related to the possibility of having 
non-trivial W bundles on M (as in Examples 1 and 3 of the previous section) but 
only arises if neither G nor M is simply connected. 

In the second step, dealing with the upper triangle, we will lift f locally to 
Map(M, G), and the obstruction to doing this globally is given by non-trivial T 
bundles on M (as in Example 2). 

The First Lifting-Problem: W-Bundles. We begin by recalling that the conjugation 
map q : G / T  • Tr ~ Gr, given by ([h]~ t) ~ hth -1, is a smooth ]WI-fold covering 
of Gr so that G / T  • Tr is the total space of a principal fibre bundle over Gr with 
fibre and structure group W and projection q. Given the map 9 into Gr, the base 
space of this bundle, we would like to lift this to a map into the total space, i.e. we 
want to find a pair ( f ,  t ) E  Map(M, G / T  • Map(M, T~) such that diagram (4.2) 
commutes. 
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G f r  x T r 

M , Gr (4.2) g 

That such a map indeed exists locally is a consequence of the following fundamental 
result on the lifting of maps (see e.g. [8] for this and most of  the other topological 
results used in this paper): I f  P is a (smooth) principal fiber bundle with base space 
B and f is a (smooth) map from a manifold X to B then f can be lifted to a 
(smooth) map into P if and only if the pull-back bundle f*P over X is trivial. It 
is indeed easy to see that there is a direct correspondence between lifts of f and 
trivializing sections of f*P. 

The first implication of this result is that locally, i.e. over some contractible 
open set U C M, the desired lift can always be found as the pull-back bundle will 
certainly be trivializable over U. 

However, in certain cases we can sharpen this statement to establish the existence 
of a global lift. Consider e.g. the case when G is simply connected. As the principal 
W-bundle G / T  x Tr --+ Gr is then trivial, so is its pull-back to M via any map 
g E Map(MGr) .  Hence a lift ( f ,  t) making the above diagram commute exists 
globally on M. There is an obvious ]Wl-fold ambiguity in the choice of such a lift. 

Even if G is not simply connected but M is, the pull-back bundle is necessarily 
trivial over M (otherwise it would be a non-trivial covering of M)  and again a lift 
( f ,  t) will exist globally. 

Finally, there is a class of maps for which the W-obstruction does not arise 
regardless of what M and G are. This class consists of  those maps g which are 
conjugate to a constant map t into T. We will have more to say about these maps 
and why they are interesting in Sect. 6. 

The Second Lifting Problem: T-Bundles. It remains to lift the G/T  valued map 
f to G. Thus we are looking for a h C Map(M, G) making the following diagram 
commute (with the replacement of M by U if only the local existence of ( f ,  t) 
could be established): 

M 

G 

, G / T  
f 

(4.3) 

Here p is the projection of the principal fibration p : G ---+ G/T.  By construction 
this map will then satisfy g = hth-1. However, by the same result on the lifting 
of maps quoted above there will be an obstruction to finding such an h globally. 
As G can be regarded as the total space of a principal T-bundle over G/T,  the 
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same reasoning as above leads us to conclude that such a lift exists iff f * G  is a 
trivial(izable) T bundle over M. Whether or not this is the case will depend on the 
interplay between the homotopy class of  f and the classification of torus bundles 
on M. We will discuss both this toms bundle and the issue of its triviality in more 
detail below (see the discussion following (4.4) and Sect. 5). However, if  we restrict 
f to U C M, then a lift hu of f over U will always exist as the pull-back bundle 
is certainly trivializable over the contractible set U. The upshot of  this is that, for a 
regular map g we can always locally find smooth G-valued functions hv such that 
h~lguhu takes values in Tr. 

We summarize the results about the possibility to conjugate a map (or section) 
locally into a maximal torus in 

Proposition 1. Let G be a compact Lie group, T a maximal torus, M a smooth 
manifold, U c M a contractible open set in M, Pc a principal G bundle over 
M and g a section of  AdPc. I f  g[8 = gu is regular, then it can be smoothly 
conjugated into T. In other words, under these circumstances there exist smooth 
functions tv E Map(U, Tr) and h8 c Map(U, G) such that gu = hutuh{  1. 

Of course, we already know a little bit more than that, for instance that un- 
der certain conditions the diagonalized map t will exist globally. We can also be 
more precise about the obstruction occurring in the second lifting problem, as toms 
bundles are classified by H2(M, 2g~), where r = d imT is the rank of G. We have 
therefore established the following results concerning global obstructions to conju- 
gating a map g : M --+ Gr into the toms: 

Proposition 2. Let g : M ~ Gr be a smooth regular map. Then a smooth map t : 
M -+ Tr satisfying g = hth -1 for some (not necessarily smooth) map h : M ---+ G 
exists globally i f  g*(G/T x Tr) is the total space of  a trivial W-bundle over M. 
If, furthermore, f * ( G )  (where f is the G/T-part o f  the lift o f  g) is a trivial T 
bundle over M, then h can be chosen to be smooth globally. 

Corollary 1. I f  either M or G is simply connected, a smooth diagonalization 
t E Map(M, Tr) of  a regular g will exist globally. If, moreover HZ(M, 7Z) = O, 
then a smooth regular map g can be smoothly conjugated into a maximal torus, 
i.e. there exists a smooth function h E Map(M, G) such that g = hth -1. 

As loop groups are a particularly interesting and well studied class of spaces 
of group valued maps [9], we also mention separately the following immediate 
consequence of the above considerations: 

Corollary 2. I f  G is simply connected, every regular element of  the group LG of  
smooth loops in G can be smoothly diagonalized. 

Examples 1 and 3 of  Sect. 3 show that both regularity and simple connectivity 
are necessary conditions. What we have shown is that they are also sufficient. 

Restriction of  the Structure Group and Non-Trivial T Bundles. In order to deal 
with the question of diagonalizability of  sections of  non-trivial bundles as well as 
with the question of what happens to gauge fields under diagonalization, it will turn 
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out to be convenient to look at the above constructions from a slightly different 
point of view, namely in terms of restrictions of  the structure group of a principal 
G bundle PG (PG ~ M • G in the above) to T. In the following we will assume for 
simplicity that G is simply-connected, so that there are no obstructions to the first 
lifting problem. 2 Let EG/r be the homogeneous bundle associated to PG (E~/v 
M • G / T  if PG is trivial). There is a bijective correspondence between sections 
of EG/r and restrictions of the structure group G of PG to that of a principal T 
bundle P r c  P~, this correspondence being given by pulling back the T bundle 
P~ ~ P e l T  ~ Ec / r  to M via a section s : M -+ EG/r of EG/r. 

If  PG is trivial, there are no a priori obstructions to restrictions of the structure 
group and such sections correspond to maps from M to G/T. In particular, the 
solution of the first lifting problem provides one with such a map, namely f ,  and 
hence with the (possibly non-trivial) torus bundle 

PT ~ (Id • f ) * ( M  • G --+ M • G / T ) .  (4.4) 

The relevance of this bundle lies in the fact (already mentioned above) that its 
non-triviality is the obstruction to finding a global diagonalizing map h lifting f .  
Moreover, connections on PG will give rise to connections on Pv after diagonaliza- 
tion. It is therefore important to determine, which isomorphism classes of  T bun- 
dles can arise in this way. This can readily be done when M is two-dimensional, 
since G/T is then a classifying space for T bundles and the isomorphism class of 
P r  can be identified with the homotopy class of f .  We will come back to this 
below. 

When PG is non-trivial, there may be obstructions to restricting its structure 
group to T and one may wonder how much of the above then carries over to 
that case. It turns out that this obstruction is also the obstruction to finding regular 
sections of the adjoint bundle AdPG so that, as long as we restrict our attention 
to regular maps and sections (as we have been doing), the situation concerning 
non-trivial bundles is indeed exactly analogous to that for trivial bundles. We will 
also have a little bit more to say about this below. 

There is a slightly more canonical way of describing the torus bundle PT and 
the results obtained in Proposition 2, one which does not depend on the (arbitrary) 
choice of a maximal torus T of  G. We first observe that over G~ there is a natural 
torus bundle Pc (the centralizer bundle) with total space 

Pc = {(gr, if) c Gr • ~3:ff ~ C(g~)}, (4.5) 

(C(gr) ~ T denoting the centralizer of gr in G) and projection (gr, g) ~-+ gr. For any 
map g C Map(M, G~) this bundle can be pulled back to a torus bundle g 'Pc  over M 
and it is the possible non-triviality of this bundle which is the obstruction to finding 
a globally smooth h accomplishing the diagonalization. To make contact with the 
previous construction, we note that under the isomorphism q : G / T  x Pr ---+ Gr the 
bundle Pc pulls back to the T-bundle G • P~ ~ G / T  • Pr, while the l i f t ( f ,  t) in 
diagram (4.2) can be written as ( f ,  t) = q-1 o g. This is illustrated in the diagram 
below. 

2 Similar considerations, however, apply in general, the non-triviality of (the pull-back of) the 
W-bundle being the obstruction to reducing the structure group from N(T) to T. 
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M ~ G r' g q 

G• 

l p x l  

G / T  xP,. (4.6) 

While not canonically a principal T bundle, under the non-canonical identification 
C N T the bundle Pc can be identified with the toms bundle PT of (4.4). 

Diagonalization of Sections of Non-Trivial Ad-Bundles. We consider now the sit- 
uation where the bundle PG is non-trivial. We furthermore assume the existence of 
a regular section g of  AdPG. 3 As, for simply-connected G, the conjugation map 
q of (2.2) provides an isomorphism between G~ and G/T • P~, a regular section 
of AdPG is the same thing as a section of EG/r x P~. Hence a regular section of 
AdPa will exist if and only if PG can be restricted to a principal T bundle Pr .  
I f  this is the case, a smooth diagonalization t of  g, a section of the trivial adjoint 
bundle AdPT, will exist globally. 

It may be instructive to see how these conclusions can be reached from a patch- 
ing argument in terms of local data. Thus we assume that Pa is characterized by a 
set of  transition functions {g~} with respect to a contractible open covering {U~} 
of the base space M. Since g is a section of the adjoint bundle, its local repre- 
sentatives g~ are related on overlaps U~ N U~ by g~ = g~pg~g~l. Locally, i.e. over 
each contractible open set U~, the situation is exactly as in the case of  Gr-valued 
maps, and hence we can use the results of  Proposition 1 to deduce the existence of 
smooth local diagonalizing functions ha E Map(U~, G) such that h2lg~h~ = t~ takes 
values in Tr. It then follows that on overlaps the t~ are related by 

t~. = (h~l g~hf~)t~(h~l g~h~) -I . (4.7) 

As the t~ are regular, (4.7) implies that the (transition) functions h~ag~hfi take 
values in N(T)  (otherwise t~ would be contained in two distinct maximal tori T and 
(h~lg@hB)T(h-~lg~h~) - l - a  contradiction). Moreover, if  G is simply-connected 
one can use the ambiguity ha -+ h~n~ with n~ : U~ ~ N(T)  to conjugate all the t~ 
into the same fundamental domain Pr N Tr/W. Thus the h2lg~h~ can actually be 
chosen to take values in T, 

h2l g~h~ : U~ N U~ --+ T (4.8) 

(hence reducing the structuxe group to T). Then the locally defined diagonalized 
maps t~ piece together to a globally well defined Tr-valued function t = {t,}, 

t~=t/~ on U~nU/~. (4.9) 

3 As Gr is invariant under conjugation, the notion of a regular section is independent of the choice 
of local trivialization and hence well defined. 
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The ha's, on the other hand, also define the corresponding section of Ec/r  and local 
sections of Pc  in the trivialization determined by (4.8). 

Conjuoation of  g-valued Maps into the Cartan Subalgebra. The question of diag- 
onalizability of Lie algebra valued maps (the case of interest in e.g. Yang-Mills 
or Chern-Simons theory) can be addressed in complete analogy with the analysis 
for group valued maps performed above. It will turn out that the only substantial 
difference between the two is that the first obstruction (non-trivial W-bundles) does 
not arise. That the second obstruction, related to non-trivial toms bundles, persists 
can already be read off from Example 2 of Sect. 3 as the map 9 = ~ k  xkak and 
its diagonalization t = • considered there can equally well be regarded as Lie 
algebra valued maps. 

Let us denote by g and t (a Cartan subalgebra of g) the Lie algebras of G 
and T respectively and by g~ and tr their regular elements. As in (2.2) there is a 
smooth I W]-fold covering 

However, g is a vector space 

q/:  G / T  x tr --~ gr , 

q'([h], ~) =- hzh -1 . (4.10) 

and hence simply connected. As a consequence gr 
is simply connected as well. Therefore this W-bundle is necessarily trivial and 
the first lifting problem can always be solved globally on M. This establishes the 
global existence of a lift ( f ,  ~) of a smooth map ~b E Map(M, gr) to G / T  x tr. In 
particular, a smooth global diagonalization z E Map(M, tr) of q~ always exists. 

The second lifting problem depends only on the G/T-part f of the lift and is 
identical with that for group valued maps. Therefore the situation concerning Lie 
algebra valued maps is the following: 

Proposition 3. Let ~b E Map(M, gr) be a smooth regular map into the Lie algebra 
g of  a compact Lie 9roup. Then a smooth diagonalization z E Map(M, tr) exists 
91obally. I f  f * G  is the total space of  a trivial principal T-bundle over M, then 
there exists a smooth functions h E Map(M, G) such that 4) = hzh -~ 9lobally. 

Corollary 3. I f  H2(M, •) = O, any ~b E Map(M, gr) can be smoothly diagonalized. 

5. Connections, Winding Numbers and Non-Regular Maps 

In this section we will briefly discuss a variety of topics related to the issue of 
diagonalization of maps and relevant to the application of the above results to the 
gauge theories which provided the original motivation for this investigation. In par- 
ticular, we will look at what happens to gauge fields under diagonalization and the 
accompanying restriction of the structure group. We illustrate these considerations in 
the case of two-dimensional manifolds (relating the Chern classes of P r  to winding 
numbers of g E Map(M, Gr)) and SU(n)-bundles on four-manifolds. We end with 
some non-conclusive comments on non-regular maps. 

Relation between Connections on G and T Bundles. Let A be a connection one- 
form on Pc  (we use A to distinguish it from the one-form A on the base manifold 
M we will use to represent a connection on a trivial G bundle). Then the torus part 
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~t  of ~ is a connection on the T bundle PG ---' Ec/r. Let s be a section of EG/r, 
P r  the corresponding restricted bundle and s,  : P r  ~ Pc  the corresponding bundle 
morphism. Then (s,)*~h t is a connection on Pr.  

I f  PG is trivial, we represent N as a one-form on M • G as ~ = g-lAg + 
g-ldg (g C G) and 

((Id x f ) . ) * ( g - i A g  + g - ldg) t  

is a connection on PT. By choosing local lifts h= E Map(U~, G) of  f E Map(M, 
G/T), one obtains the local representatives 

a~ = (h~J Ah~ + h~l dh~) t (5.1) 

on M of this connection on the possibly non-trivial bundle Pr .  In a slightly cavalier 
fashion we will also denote by a = (A h)t the possibly singular representative of  this 
connection on M obtained by choosing a possibly discontinuous lift of  f to G. 
The k-part B = (Ah) k of A h (where we orthogonally decompose the Lie algebra g 
as g = t | k), on the other hand, transforms as a section of the associated bundle 
Pr • k. Mutatis mutandis the same conclusions can be reached in the case of 
non-trivial PG. 

Torus Bundles on Two-Manifolds and Winding Numbers. In this subsection we 
consider the case when M = S is a two-manifold. The obstruction to finding a 
globally defined h accomplishing the diagonalization of some g E Map(S, Gr) is 
encoded in the Chem class 

c l (Pr )  E tt2(S, :gr) ~ :gr (5.2) 

of the corresponding toms bundle Pr .  One may wonder, how this topological infor- 
mation is encoded in the original map g as, after all, the space of maps Map(X, G) 
to a simply-connected group G is connected. The point is that, while this is true, the 
space of regular maps is not connected. Recalling the isomorphism G~ ~ G / T  • P~ 
one finds that 

7z0(Map(X, Gr)) ~ 7to(Map(Z, G / T ) )  ~ 7r2(G/T) ~ 2g r . (5.3) 

One thus expects the Chern classes of P r  to represent the winding numbers of the 
map g C Map(X, Gr). 

Abstractly this can be seen by noting that, for simply connected G, G/T is a 
classifying space for T bundles on X, so that T bundles are classified by homotopy 
classes of  maps from S to G/T. Furthermore, regular maps in Map(S, Gr) are 
regularly homotopic (i.e. homotopic in Map(S, Gr)) iff their lifts to Map(X, G/T) 
are homotopic so that T bundles can alternatively be classified by homotopy classes 
of maps into Gr. In particular, this establishes that all isomorphism classes of T 
bundles on S will arise upon diagonalization of elements of Map(X, Gr). This holds 
more generally if there are no non-trivial G btmdles on M. 

Concretely, one can establish a correspondence between the Chem-Weil rep- 
resentatives of c l (Pr )  and integral representations of winding numbers of  f E 
Map (S, G/T). Denoting by a = -a121, the {2 l} a set of  fundamental weights of 
G, the /th component of  the toms connection a, the Chern classes of  P r  can be 
represented by 

1 f d d .  (5.4) 
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Winding numbers of maps f from S to G/T, on the other hand, are also character- 
ized by an r-tuple of integers, associated with the pull-back of the r fundamental 
Kirillov-Kostant symplectic forms on the regular coadjoint orbit G/T. An integral 
representation for these winding numbers is 

1 fTr2t[h_~dh, h_ldh] ' (5.5) n(t)(f) = -~ z 

where we have identified f with the map h21h -1, Notice that the integrand is 
exact (and hence the winding number is zero) if h is globally defined. The relevant 
formula relating these expressions is 

1 f d ( T r f A ) ,  (5.6) c~l)(a) = n(1)(f = h21h -1) _ ~ 

where (Ah) t = a t a t  and {al} are the set of simple roots dual to {21}. The boundary 
term is automatically zero in the case of simply-connected groups we have been 
considering, as then both A and f are globally defined. The advantage of adding this 
boundary term to the winding number is that the resulting expression is invariant 
even under discontinuous gauge transformations which would change the ordinary 
winding number of f .  The reason for this is that, in terms of the fields A and h, 
the original gauge symmetry A ---+ A ~, # ~ g-~gg reads A ---+ A ~, h --+ ~-lh. Hence 
A h and the right-hand side o f  (5.6), which can be thought of as a generalized 
winding number n(l)(f, A) of f ,  are manifestly gauge invariant. As such they should 
provide integral representations for the magnetic numbers introduced in [4] in a 
related context. Using some trace identities it can be checked that in the case G = 
SU(2) the various expressions given above for the winding numbers reduce to those 
given in Example 2 of Sect. 3. 

Returning to our problem of conjugating maps into the torus, we can now read 
off directly from the above that a smooth map g E Map(S, Gr) can be smoothly 
conjugated into the torus iff the (generalized) winding number of f is zero. Fur- 
thermore, if one insists on conjugating into the torus nevertheless, albeit by a non- 
continuous h, the resulting map f is a constant map (with winding number zero) but 
nl( f ,  A) will remain unchanged, measuring the obstruction to doing this smoothly. 

SU(n)-Bundles on Four-Manifolds. We recall the observation made in Sect. 4 that 
a principal G bundle Pc  admits a restriction to T if and only if its adjoint bundle 
AdPG has a regular section. It explains the intimate relationship we found between 
diagonalization and restriction of the structure group and highlights the crucial role 
played by the assumption of regularity. 

In general, the question whether either of these two assertions has an affirmative 
answer (Is there a restriction? Is there a regular section?) has to be tackled by the 
methods of obstruction theory. In four dimensions, however, necessary and sufficient 
conditions for the existence of restrictions of SU(n) bundles can be read off more 
or less by inspection and this gives some insight into the nature of this problem. 

We recall first that SU(n) bundles P on a compact oriented four-manifold are 
completely classified by the second Chem class c2(P) E H4(M, 2~) ,'~ •. In terms of 
the curvature FA of a connection A on P the Chem-Weil representative of c2(P) is 

1 
c2(P) = ~2" fTrFAFA (5.7) 

57Z M 
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(with the trace normalized to T rz%b  = 2~ ab, the ra a basis o f  the Lie algebra 
of  SU(n)). Torus bundles P r ,  T ~ U(1) n-l ,  on the other hand are classified by 
HZ(M, ~n-1) .  As all T bundles can be regarded as SU(n) bundles, they will all 
arise as the restriction of  some SU(n) bundle but not necessarily as restrictions of  
the trivial SU(n) bundle. Moreover, some SU(n) bundles may have no restrictions at 
all while others may admit several inequivalent restrictions. In this four-dimensional 
context it is straightforward to find obstructions to such an Abelianization. For a 
principal SU(n) bundle which admits a restriction to a T bundle P r ,  its second 
Chern class is related to the curvature o f  a connection a on P r  by 

1 fTrdada.  (5.8) 
c2(P)  = 87~2 M 

By looking at some concrete examples o f  four-manifolds we will see that this 
relation can impose severe constraints on c2(P). 

Let us, for instance, take M to be the four-sphere M = S 4. Then there are 
no non-trivial T bundles on M as H2(M, 7 / ) =  0, and the right-hand side of  
(5.8) is zero as the integrand is then necessarily globally exact. Hence we reach 
the conclusion that only the trivial SU(n) bundle on S 4 admits a restriction to 
a T bundle (the trivial T bundle in this case). This may also be seen in a dif- 
ferent way by noting that, on any n-sphere, the bundle is characterized by the 
glueing (transition) function h from the equator ~ S n-1 to the group G. If  h 
takes values in T, then its winding number is zero (~cn_l(T) = 0 for n > 2) and 
hence 

892c2(P)  = fTr(h-ldh) 3 = 0.  (5.9) 
S 3 

Thus we conclude that the adjoint bundles of  non-trivial SU(n) bundles over S 4 
have no regular sections whatsoever. 

This is not to mean that only trivial SU(n) bundles can be reduced to T bundles. 
As another example consider M = [ ~ I P  2 and G =  SU(2).  In this case, HZ(M, 7Z) 
H4(M, 7Z) ~ ~,  generated by the K/ihler form c9. Thus there are non-trivial torus 
and SU(2)  bundles on ~IP 2. The curvature of  the connection on a U(1) bundle is 
cohomologous to kco for k C 7/ and, as co2[~;lP 2] = 1, a necessary condition for an 
SU(2)  bundle P to be reducible to U(1) is that c2(P)  = k 2 for some k E Z. As 
any U(1) bundle with first Chern class k is the reduction of  some SU(2) bundle, 
this condition is also sufficient and for every non-trivial SU(2)  bundle on ~;IP 2 with 
c2(P)  = k 2 there are two inequivalent reductions to U(1), characterized by the first 
Chern class ~k.  

This situation is more or less the same for all compact four-manifolds. I f  a torus 
bundle, thought of  as an SU(n) bundle, has second Chem class c2 = m, then it can 
be obtained as the reduction o f  this SU(n) bundle. Conversely, if an integer m does 
not arise as the second Chern class of  some torus bundle, the corresponding SU(n) 
bundle with c2(P) = m cannot be Abelianized. As a consequence of  the above result 
such bundles have no regular sections whatsoever. 

Non-Regular Maps. While we have seen above that non-trivial adjoint bundles may 
admit no regular sections at all, which forces us to face the task of  diagonalizing 
non-regular sections, one may have hoped that at least for trivial bundles regular 
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maps are, in some sense, generic. I f  this were so, then "most" maps could indeed be 
conjugated into smooth toms-valued functions by the results of  Sect. 4, at least via 
locally defined or discontinuous diagonalizing functions h. But, as the set of  non- 
regular points is of codimension three in g or G, a dimension counting argument 
shows that this will not be the case if the dimension of M is larger than two. Worse 
than that, in the case of  G-valued maps there may be entire connected components 
of  Map(M,G) not containing a single regular map. To see that, let us consider a 
simple example the space of maps from M = S 3 to G = SU(2) ~ S 3. This space 
consists of  an infinite number of  connected components labelled by the winding 
number of the map in ~3(SU(2)) = 77. As the only non-regular elements of  SU(2) 
are plus or minus the identity, regular maps are those which avoid the north and 
south poles of  the target S 3. But any map in one of the non-trivial winding number 
sectors has, in particular, the property that its image is the entire SU(2), covered 
an appropriate number of  times. Hence, no map with a non-trivial winding number 
can be regular. 

The fact that even for trivial bundles there may be too many non-regular maps 
for comfort provides an additional impetus for coming to terms with the diagonal- 
ization of these maps. 

As a simple example, consider the extension of the map of Example 2 of Sect. 3 
to the identity map from the three-sphere to SU(2), g(x) = x41 + ~kXkak. This map 
takes on non-regular values only at x4 = • 1. There is clearly no smooth diagonal- 
ization of the restriction of this map to any open set containing the north-pole 
{x4 = 1 }. I f  there were, this would in particular imply the existence of a global 
smooth diagonalization of a map from S 2 to SU(2) which is regularly homotopic 
to that of  Example 2 - a  contradiction. 

There are two conclusions that can be drawn from this example and Example 1 
of Sect. 3. The first is that, in general, a non-regular smooth (or continuous) map 
cannot be smoothly (or continuously) diagonalized even on open contractible sets. 
As a consequence, the second conclusion one can draw is that the framework of 
locally trivializable bundles is simply not suitable for addressing the question of 
diagonalization of non-regular maps. 

The source of the problem is, of  course, that the conjugation map from G / T x T  
to G is not proper at non-regular points of  G. This is reflected in the fact that the 
quotient 

G/AdG ~ T/W, (5.10) 

unlike its regular counterpart Tr/W, is not a smooth manifold (but the closure of 
a Weyl alcove or, rather, its image under the exponential map), and that the fiber 
of G---+G/AdG above a singular (non-regular) point is strictly smaller than that at 
a regular point. Clearly this is a rather singular situation to consider and different 
methods are needed to make some headway here. 

To end this section on a positive note we mention that there is one rather 
special type- of non-regular maps to which the considerations of  this paper continue 
to apply. These are maps g whose degree of non-regularity is constant (meaning 
that the centralizers C(g(x)) are isomorphic to some fixed C(g) D T for all x E M). 
All that one needs to do in that case is to replace G / T  in the fundamental fibration 
(2.2) by the appropriate smaller non-regular coadjoint orbit G/C(g). Typically, it is 
this type of non-regular maps that one encounters in topological field theory (see 
the remarks at the end of Sect. 6). 
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6. Applications: A Weyl Integral Formula for Path Integrals 
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In the previous sections we have analyzed the problem of diagonalizing maps from 
a manifold M into a compact Lie group G or its Lie algebra g. As mentioned in 
the Introduction, this problem arose in a field theoretic context when we attempted 
to exploit the rather large local gauge symmetry present in certain low-dimensional 
non-Abelian gauge theories to abelianize (and hence more or less trivialize) the 
theories via diagonalization [1,2, 12]. Assuming that the contributions from non- 
regular maps can indeed be neglected in these examples (and we have nothing to 
add to the arguments put forward in [2] to that effect), the analysis of the present 
paper can be regarded as a topological justification for the formal path integral 
version of the Weyl integral formula we used to solve these theories. 

The Weyl integral formula expresses the integral of a smooth (real or com- 
plex valued) function over G in terms of an integral over T and G/T,  using the 
conjugation map q (2.2) to pull back the Haar measure on G to G / T x T  and reads 

f d g f ( g )  = f dtA(t) f dgf(g-ltg). (6.1) 
G T G/T 

Here A(t), the Weyl determinant, is the Jacobian of q. Its precise form will not 
interest us here and we just note that it vanishes precisely at the non-regular points 
of T (this being the mechanism by which contributions from non-regular points 
should be suppressed in the functional integral). For an explanation of the standard 
proof of (6.1) and for a derivation in the spirit of the Faddeev-Popov trick see 
[1,2]. The case of interest to us is when the function f is conjugation invariant (a 
class function), i.e. when f satisfies 

f (h- lgh)  = f (g)  Vg, h E G.  (6.2) 

In that case, since any element of G is conjugate to some element of T, both f and 
its integral over G are determined by their restriction to T and the Weyl integral 
formula reflects this fact, 

fdg  f (g)  = fd tA( t ) f ( t ) .  (6.3) 
G T 

It is this formula which we would like to generalize to functional integrals, i.e. to 
a formula which relates an integral over a space of maps into G to an integral over 
a space of maps into T. 

For concreteness, consider a local functional S[g; A] (the "action") of maps g E 
Map(M, G) and gauge fields A E O I(M, g), i.e. of sections of AdPc and connections 
on a trivial principal G bundle PG ~ M x G (a dependence on other fields could 
be included as well). Assume that expiS[g; A] is gauge invariant, 

expiS[g; A] = expiS[h-lgh; A h] Vh E Map(M, G) ,  (6.4) 

at least for smooth h. If e.g. a partial integration is involved in establishing the 
gauge invariance (as in Chern-Simons theory), this may fail for non-smooth h's 
and more care has to be exercised when such a gauge transformation is performed. 
Then the functional F[g] obtained by integrating exp iS[g; A] over A, 

F[g] := fD[A] exp iS[g;A], (6.5) 
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is conjugation invariant, 

F[h-19h] = FIg]. (6.6) 

It is then tempting to use a formal analogue of (6.3) to reduce the remaining integral 
over 9 to an integral over maps taking values in the Abelian group T. In field theory 
language this amounts to using the gauge invariance (6.4) to impose the "guage 
condition" 9(x) E T. The first modification of (6.3) will then be the replacement 
of the Weyl determinant A(t) by a functional determinant A[t] of the same form 
which needs to be regularized appropriately (see the Appendix of [2]). 

However, the main point of this paper is that this is of course not the whole 
story. We already know that this "gauge condition" cannot necessarily be achieved 
smoothly and globally. Insisting on achieving this "gauge" nevertheless, albeit via 
non-continnous field transformations, turns the t-component a of the transformed 
gauge field A h into a gauge field on a possibly non-trivial T bundle PT (while the k- 
component transforms as a section of an associated bundle). Moreover we know that 
all those T bundles will contribute which arise as restrictions of the (trivial) bundle 
PG. Let us denote the set of isomorphism classes of these T bundles by [Pr; PG]. 
Hence the "correct" (meaning correct modulo the analytical difficulties inherent in 
making any field theory functional integral rigorous) version of the Weyl integral 
formula, capturing the topological aspects of the situation, is one which includes a 
sum over the contributions from the connections on all the isomorphism classes of 
bundles in [Pr; Pc]. 

Let us denote the space of connections on Pc  and on a principal T bundle 
PI r representing an element 1 E [Pr; Pc[ by d and s~r respectively and the 
space of one-forms with values in the sections of P~ x x k  by ~[l] .  Then, 
with 

Z[Pc] = fD[A]fD[9]exp iS[f; A], (6.7) 
d 

the Weyl integral formula for functional integrals reads 

ZIPGI = ~ f D[a] f D[B]fD[t]A{tJexpiS[t; a, B] (6.8) 
/~{PT; Fc] d{q ~[q 

(modulo a normalization constant on the right-hand side). The t-integrals carry 
no /-label as the spaces of sections of AdPlr are all isomorphic to the space of 
maps into T. There is an exactly analogous formula generalizing the Lie algebra 
version of the Weyl integral formula. On the basis of the results established in this 
paper it is also possible to write down a functional integral version of (6.1), in 
which the summation over the topological sectors in (6.8) will have to be replaced 
by a sum over integrals of the connected components (winding number sectors) 
of Map(M, Gr). This integral formula can then be applied to theories having less 
or no gauge symmetry (like the G/H gauged Wess-Zumino-Witten models for 
H C G ) .  

In the examples considered in [1,2], Chern-Simons theory on three-manifolds of 
the form ~r x S 1, 2d Yang-Mills theory and the G/G gauged Wess-Zumino-Witten 
model, the fields B entered purely quadratically in the reduced action S[t; a, B] 
and could be integrated out directly, leaving behind an effective Abelian theory 
depending on the fields t and a with a measure determined by A[t] and the 
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(inverse) functional determinant coming from the B-integration. The general struc- 
ture of  these terms and the "quantum corrections" coming from the regularization 
has been determined in [12]. 

A further property these models were found to have is that they localize onto 
reducible connections and their isotropy groups (in the case of  the G/G model) 
respectively algebras (for Yang-Mills theory) so that, in practice, the necessity 
only ever arose to diagonalize these maps. This is possible globally even if the 
group is not simply connected (when, as we recall from Sect. 4, the existence of  
a globally smooth diagonalized map t or r is not guaranteed a priori). The reason 
for this is the following (for group valued m a p s - t h e  Lie algebra case is entirely 
analogous). 

The reducibility condition Ag = A implies that Tr 9 n is constant for all n. This 
allows one to determine that g is conjugate to a t which is constant globally and 
(of  course) unique up to an overall W-transformation. This provides the Tr part 
of  the lift in diagram (4.2). Furthermore, the constancy of  the traces implies that 
g can itself be regarded as a map into G/T (or G/C(g)) and hence furnishes the 
G/T-part  f of  the lift. At this point the argument can then proceed as in the simply- 
connected case. The fact that isotropy groups of  connections are indeed conjugate 
to subgroups of  G (thought of  as spaces o f  constant maps) is well known. What 
seems to be less generally appreciated is the fact that the conjugation itself cannot 
necessarily be done globally. 

We have also applied this formula to several other models like BF theories 
in three dimensions (related to 3d gravity) and the supersymmetric Chern-Simons 
models of  Rozansky and Saleur [10]. The formula can also be used to go some 
way towards evaluating the generating functional for Donaldson theory on K~ihler 
manifolds with the action as in [11]. These results will be presented elsewhere. 
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