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We introduce a new class of topological gauge field theories in any dimension, based on 
anti-symmetric tensor fields, and discuss the BRST-quantization of these reducible systems as 
well as the equivalence of BRST-quantization and Schwarz’s method of resolvents in detail. 
As a consequence we can use path-integral techniques and BRST-symmetry to prove metric 
independence and other properties of the Ray-Singer torsion. We pay particular attention to 
the presence of zero modes and discuss various methods of treating them in these models and 
other topological field theories. Non-Abelian models in two dimensions provide us with a 
complete Nicolai map for Yang-Mills theory on an arbitrary two-surface, as well as with 
a theory of topological gravity which is closely related to Hitchin’s self-duality equation on a 
Riemann surface. Candidate observables for Abelian models in any dimension are linking and 
intersection numbers of manifolds for which we give explicit path-integral representations. 
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1. TNTR~DUCTI~N 

A novel class of field theories was introduced recently by Witten [l-3], which 
are purely topological in the sense that their partition functions are independent of 
the metric and that the only observables in these theories are topological (in the 
sense of smooth) invariants of the underlying space-time manifold M. 

These topological field theories (TQFTs) can basically arise in two different 
ways. On the one hand, the quantum action S, appearing in the path-integral treat- 
ment of these theories may be obtained by the BRST gauge fixing of a huge 
(topological) symmetry which permits all physical fields to be gauged away locally, 
thus leaving only one with the (usually finite-dimensional !) space of zero-modes as 
the true configuration space of the theory. The underlying classical action may 
either be zero [4], or have a form [S-7] which makes it obvious, that all physical 
(propagating) fields may be eliminated by a shift of integration variables in the 
path-integral. The latter formulation makes it particularly easy to see [6], that this 
type of TQFT has the aesthetically appealing feature of possessing a complete (non- 
perturbative) Nicolai map [8, 93, which trivializes the path-integral over all but 
a finite-dimensional subspace (moduli-space) of the space of fields. The models 
of Cl, 21 are of this type, and Witten has shown how-following the influential 
suggestions of Atiyah [lo]-they may be regarded as field-theoretic descriptions 
of certain remarkable developments in the study of two-[ 111, three-[ 121, and 
four-manifolds [13]. 

On the other hand, theories based on the Chern-Simons action in three dimen- 
sions have also been shown by Witten [3] to lead to TQFTs in the sense above. 
On the mathematical side, these are deeply related to the intrinsically three-dimen- 
sional knot-theory and its Jones polynomials [ 141, whereas physically they provide 
a three-dimensional understanding of a large class of conformal field theories in two 
dimensions and an honest gauge theory interpretation of three-dimensional Einstein 
gravity [ 151. 

Due to the fascinating phenomena both these types of TQFTs exhibit, it is 
certainly of interest to look for other models in other dimensions, which also 
qualify as topological field theories. But while the former type of theories clearly has 
great flexibility and exists in many dimensions, the Chern-Simons functional is 
firmly rooted in three, and the higher-dimensional Chern-Simons terms-although 



132 BLAU AND THOMPSON 

interesting in their own right-are somewhat problematical from the physical point 
of view, since they contain higher order derivatives. 

However a far-reaching suitable generalization of the Chern-Simons theory does 
exist and suggests itself by realizing that the relevant property of the Chern-Simons 
theory is the metric independence of the classical action, a property shared by any 
classical action written in terms of differential forms, without reference to the 
Hodge duality operator. 

Indeed a large class of TQFTs, i.e., field theories whose partition functions are 
independent of the metric on an arbitrary manifold, may be obtained from these 
classical actions. The reason for this is that for a large subset of these theories the 
BRST-gauge fixed quantum action will differ from the classical action only by a 
BRST-commutator which contains the whole metric dependence (gauge-fixing 
terms, ghost kinetic term) of the quantum action. This in turn implies that the 
metric variation of the partition function will be the vacuum expectation value of 
a BRST-commutator and hence zero if the vacuum is BRST-invariant. 

In more general theories (usually those plagued by on-shell reducible symmetries) 
the above argument is not directly applicable, since unlike the Faddev-Popov and 
BRST-procedures the more general Batalin-Vilkovisky algorithm [ 161 which is 
required here does not guarantee that the quantum action is just the classical action 
plus a BRST-commutator, But-as we shall see-we can go a long way towards 
proving metric independence in those theories which allow for a usual path-integral 
treatment. This restriction implies that we consider only those actions, whose 
quadratic parts are first order in derivatives (since the usual second-order kinetic 
terms are ruled out by the requirement of metric independence). This feature-as 
well as the result (Section 2.4) that these theories have no physical degrees of 
freedom-is shared by the Chern-Simons action. 

Such actions will be called (rather loosely) BF systems (the name coming from 
our later discussion of non-Abelian theories, where B will be an (n-2)-form and 
F= FA is the curvature two-form of some connection A, though we do not restrict 
ourselves to just these models), and in this paper we shall explore some of the 
interesting features these BF systems display. 

Returning now first to the question of metric independence of the partition func- 
tion, we shall see that for all Abelian BF systems in arbitrary dimensions (Section 
2.3) as well as their non-Abelian counterparts in two and three dimensions (Section 
3) the argument sketched above (i.e., as a consequence of the fact that the gauge- 
fixed action may be written as S + s (Q, Y} ) is sufficient to establish this. For the 
non-Abelian models in higher dimensions we present various pieces of circumstan- 
tial evidence in support of our conjecture that they also lead to TQFTs. For 
instance, when one specializes to n-manifolds of the form M, = C,- i x R an alter- 
native proof is available, as is for arbitrary four-manifolds (Section 3.4).” 

BF systems incorporate and generalize a class of models introduced by Schwarz 
[17], who used these actions to give a path-integral representation of the 

5 See note added in proof. 
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Ray-Singer torsion [18]. In that paper he anticipated much of the later develop- 
ments on the quantization of theories with reducible symmetries (i.e., systems which 
require the ghost for ghost mechanism). Indeed the construction of Schwarz 
provides the proper geometrical framework for an understanding of the algebraic 
BRST-procedure. As BRST-invariance is the cornerstone of our proof that the 
quantum theories so obtained are also metric independent, we present a rather 
detailed comparison of this approach with that of Schwarz (Section 2). 

As a consequence we shall be able to prove the metric independence of the 
Ray-Singer torsion as well as other properties (like its triviality in even dimensions) 
using path-integral techniques and BRST-symmetry (Section 2.5). 

The classical action being linear in derivatives means that the usual rules 
employed to count degrees of freedom in the BRST-framework do not match those 
presented by Schwarz and are incorrect in this situation. A correct count (a la 
BRST) will be given reconciling the two (Section 2.4), and the new count of degrees 
of freedom is shown to be easily read off from the Batalin-Vilkovisky ghost- 
triangle. 

Since in topological field theories a proper evaluation of expectation values 
requires a particularly careful handling of (harmonic) zero modes, we show in 
Section 2.6 how this can be done within the framework of Schwarz or via the 
Faddeev-Popov trick. The gauging of the harmonic modes is then shown to be 
equivalent to the more common prescription of inserting zero-modes into the 
measure of the path-integral. As an example we treat the chiral b - c system on a 
Riemann surface of genus greater than one. We also present two other methods of 
handling zero-modes within the BRST-framework, which are particularly useful if 
one wants to keep the zero-mode integration explicit instead of gauging the zero- 
modes to zero. In Section 3.2 the latter approach will be used to take proper 
account of zero-modes in manipulations involving a Nicolai map. 

To establish that our generalized models are not devoid of physical or mathe- 
matical interest, we consider in some detail (though not exhaustively) some exam- 
ples. In particular we shall see that two-dimensional non-Abelian BF systems have 
some very nice properties. They allow us, for instance, to formulate a theory of 
topological gravity (living on the moduli space of Riemann surfaces), which is-as 
we shall explain-closely related to Hitchin’s [ 191 deep investigations of the 
Yang-Mills self-duality equations on a Riemann surface (Section 3.3). 

A second feature of BF systems in two dimensions is the existence of a Nicolai 
map (Section 3.2), which trivializes the path-integral, bringing these models closer 
to those of the type [l, 23. This map is interestingly enough also a Nicolai map 
for two-dimensional Yang-Mills theory on an arbitrary two-surface and in 
arbitrary-also covariant-gauges, and in the particular case of the cylinder this 
permits us to recover the results of Rajeev [20], who recently solved this theory 
exactly. 

Candidate observables for Abelian BF systems in higher dimensions are expecta- 
tion values of Wilson loops and “Wilson surfaces,” which can be exactly evaluated. 
They precisely describe intersection and linking numbers of manifolds, thus 



134 BLAUANDTHOMPSON 

generalizing the path-integral representation of the linking number of two loops in 
three dimensions discovered by Polyakov [Zl] to arbitrary dimensions (Section 4). 

We close by listing some open problems (Section 5), and in an appendix we 
sketch, how regularization of these theories can be performed in a BRST-invariant 
way. 

2. ABELIAN MODELS 

2.1. General Aspects 

As an example of an Abelian BF system consider the following metric inde- 
pendent action on an n-dimensional manifold M (compact, without boundary), 

Sin, p)=j &,dAe-,, (1) 
M 

where the fields A and B are forms (possibly taking values in some flat vector 
bundle), the subscript indicating their rank, d is the corresponding exterior 
derivative, and the wedge-product among forms will always be understood. The 
abelian gauge symmetries of this action, 

(2) 

combined with the equations of motion following from (I), 

dBP=O 
(3) 

dA n-p-1= 0, 

tell us that the space JV of classical solutions (phase space) of the BF system (1) 
is a finite-dimensional vector space, 

N=Hf;(M)@H”,-P-l(M) (4) 

(where Hk,(M) is the kth deRham cohomology group of forms on M with values 
in a flat vector bundle). We can therefore regard the action (1) as providing us with 
a field theoretic description of the deRham complex on M. The quantization of (1) 
is straightforward and-as shown explicitly in Section 2.3-the quantum action is 
of the form 

S,h P) = S(n, PI + j- {Q, Y”>, (5) 

where Q is the BRST-operator and Y is (in the parlance of [16]) the gauge 
fermion. Thus according to the argument of the previous section this action will 
give rise to a partition function which is a topological invariant. The question 



TOPOLOGICAL GAUGE THEORIES 135 

therefore arises: is this invariant non-trivial, and-if so-can it be identified with 
any known topological invariant? 

Fortunately this question was already answered over 10 years ago by Schwarz 
[ 171 in a remarkable paper, which probably was the first to deal with the quantiza- 
tion of reducible theories. There he showed, that (for all values of p) the partition 
function of (5) is related to the Ray-Singer torsion [18], i.e., to the torsion of the 
deRham-complex of M. Since for n > 2 the gauge symmetries (2) are reducible and 
Schwarz’s method of resolvents is ideally suited to handle theories described by 
actions of the form (l), we shall discuss his method and its equivalence with BRST- 
quantization in some detail below. Before plunging into the technical details of this, 
however, we shall first give a heuristic discussion of reducibility. 

2.2. Resolvents and Quantization of Reducible Systems 

The picture one has in mind when using the Faddeev-Popov technique is that is 
provides one--despite the fact that one explicitly chooses a gauge-with a gauge- 
invariant way of factoring the volume of the whole gauge group out of the path- 
integral. This is what the Faddeev-Popov ghosts do. 

It may happen, however, that not the whole would-be gauge group acts effec- 
tively on the space of fields. For instance, in the case of the action (1) one can 
quotient out directly the space of (p - 1)-forms Qp- ‘(M). In doing so, however, 
one ignores the fact that, e.g., forms /i,-, E dLlPp2(M) do not transform B at all 
in (2). In the BRST-framework this is reflected in the fact, that the added ghost 
terms have a residual gauge invariance under Op-*. And just as the Faddeev- 
Popov ghosts serve to get rid of the volume of the gauge group, second generation 
ghosts with opposite statistics (ghosts for ghosts [22]) can be used to “reintroduce” 
the volume of the part of the gauge group, which one had erroneously got rid of 
in the first step, etc. 

Following Schwarz the above situation formally can be described as follows: Let 
the action S be a quadratic functional on the space r of fields cp, i.e., 

S(v) = (cp, Kv), (6) 

where K is a self-adjoint operator and ( , ) is some metric on r (in the case of 
a non-quadratic functional all considerations apply to the one-loop (stationary 
phase) approximation of the theory in question). Via this metric K can also be 
regarded as an operator K’ from I’ to its dual r’. 

In this setting the statement that S is degenerate (i.e., has a gauge symmetry) can 
be rephrased as saying that there exists an operator T, from some pre-Hilbert space 
ri to r, such that K’T, = 0. Reducibility of this gauge symmetry can then be 
encoded into the statement that there exists a second operator T, from some 
pre-Hilbert space r2 to r, with T, T, = 0, and so on. 

In this way-and under the assumption that K2 and Tt T, are regular 
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operators-we arrive at what Schwarz calls a resolvent of S, a sequence of 
pre-Hilbert spaces (Z’= r,, j 

0-Z-,Ar TN-i-l N~l--+..~rO~r~+O (7) 

connected by linear operators satisfying Ti T, + , = 0, which in the case K= 0 is just 
an ordinary complex. The assumption that all the operators Tl Ti are regular 
permits their determinant to be defined in the usual way (by zeta-function or heat- 
kernel regularization). 

Keeping in mind the fact that in the example (1) the Ti are just exterior 
derivatives on the spaces r, of differential forms, it is natural to define the 
Laplacians q i of the complex (7) by 

q ,=K+K+ T,Tf 
Eli= TfT;+ Ti+lTi+,. (8) 

At this point it may be worth remarking that changing the metrics on the spaces 
ri corresponds to changing the covariant (Feynman) gauge-fixing terms Ti Ti, and 
therefore metric independence of the results is related to independence of the 
(covariant) choice of gauge-fixing. 

By repeated application of a version of the Faddeev-Popov trick Schwarz has 
shown, that under the additional assumption that the sequence (7) is exact, i.e., 
Im Ti+ 1 = Ker Ti, the partition function Z(S) can be written in either of the following 
ways, 

Z=det(S)-‘I2 fi det(T,)‘-“‘-’ (9) 
1=1 

Z= fi det(Oi)“‘, 
,=O 

(10) 

where det denotes the regularized determinant and quite generally the regularized 
determinant of an operator T, such that TtT is regular and is defined by 
det T= det’12( TtT). Note that this definition coincides with the ordinary det T if T 
is itself already regular and self-adjoint. 

In particular, in the version (10) this is recognizable as the characteristic 
alternating ghost for ghost [22] contribution in the partition function for anti- 
symmetric tensor fields and agrees with the results one would obtain from the 
BRST-quantization. 

The assumption of exactness of (7) is, in the models to be discussed in this paper, 
equivalent to acyclicity of the relevant deRham complex of M. Since these models, 
on the other hand, are also interesting if some of the deRham cohomology groups 
are non-vanishing, more care has to be taken with the harmonic zero-modes of the 
gauge transformations (2). Before showing how this can be done (Section 2.6) we 
shall proceed under the assumption that no harmonic modes are present and turn 
to the resolvent- and BRST-computations for our BF systems next. 
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2.3. Quantization of BF-Systems 

To establish the usefulness of Schwarz’s formulation and its relation to the more 
conventional BRST-analysis let us consider first the following simple three-dimen- 
sional example: 

S(3,1)=jB,dA,. 

r, is then Sz’ 0 0’ (where SZk = Qk(A4) denotes the space of k-forms on M). The 
invariances of S(3, 1) are 

6B, = d/i,, CM, =d& (11) 

so that r, is identified as Q” 0 sZ” and T, = d 0 d. There are no secondary invarian- 
ces in this example and therefore the resolvent is 

o- QO@QO~ L?‘@2’~ O’@Q’- 0. (12) 

The partition function of this theory (remember we are ignoring zero-modes) is 
then given by Schwarz’s formula (lo), 

Z(3, 1) = det ~ ‘I4 0 o det3j4 0 1, 

where 0 o = A 1 @A 1 and Cl, = A, 0 A, with A, the Laplace operator on k-forms, 
leading to 

Z(3, 1) = det-“* A, det312 A,. (13) 

The BRST-quantization of S(3, 1) is also quite straightforward. Since the invarian- 
ces (11) are to be gauge fixed, one introduces zero-form multiplier fields E and 
ghosts (2, c) for the A, field and a similar set G and (0, o) for B,. The gauge-fixed 
quantum action then is 

S,(3,1)=jB,dA,+tESA,+tGc5B,++tiA,w+*~AOc, (14) 

where 6 denotes the exterior coderivative adjoint to the exterior derivative d with 
respect to the natural scalar product on the space Qk(M) determined by the Hodge 
duality operator *: Qk(A4) + SZnPk(M). Whether 6 denotes this or a variation 
should always be clear from the context. 

Integration over the ghost fields yields det* A,, while integration over the 
remaining (B, A, E, G)-system requires more care. To evaluate the determinant it 
is easiest to square the kinetic operator (which diagonalizes it) and then to take 
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the square-root of the determinant of this operator. In this way one finds the 
contribution to be 

det - ‘I* A 1 det ~ ‘I2 A 0. 

The result of the BRST-computation thus agrees with (13). 
This method of squaring the operator which involves K and T, is precisely that 

employed by Schwarz and may be viewed as the appropriate method for disen- 
tangling the determinants that arise in the BRST-formalism. 

As mentioned in the Introduction Schwarz has used actions of the form above to 
represent the Ray-Singer torsion. In particular it may be checked that the partition 
function of a BF system S(n, n - 2) in odd dimensions is simply the inverse of the 
Ray-Singer torsion, i.e., Z(n, n - 2) = T( M,) - ‘, and in this example, 

T=det’12 A det-3i2 A 1 0. 

In three dimensions the abelian Chern-Simons action s A dA (where the A’s may 
again take values in a flat vector bundle), on the other hand, gives a partition func- 
tion Zos which is related to the Ray-Singer torsion by Z,, = T(A4,) -I’*. Thus in 
a sense the three-dimensional Chern-Simons system is a “square-root” of the BF 
system and this relation also holds for the corresponding non-Abelian actions to be 
discussed in Section 3. Further properties of the Ray-Singer torsion will be dis- 
cussed in Section 2.5. 

We now return to the important question of metric independence of the partition 
function, a fact which may be established by invoking Theorem 2.1 of [18], which 
proves just this for Ray-Singer torsion, or by following the (related) argument of 
Schwarz [ 173. That the metric independence of the classical action is maintained 
at the quantum level is, however, especially easy to see in the BRST-approach, and 
indeed the BRST-argument can in turn be used to prove the metric independence 
of the Ray-Singer torsion ! 

We begin by rewriting (14) as 

where 

and 

(15) 

(16) 

{Q,B)=dm 

{Q,w)=O 

{Q,w)=G 

{Q>G)=O 

(17) 
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with identical equations for A and its ghosts and multiplier fields. Since the whole 
metric dependence of S, resides in Y, the variation of the partition function with 
respect to the metric leads to 

E=({QyE}) (18) 

which vanishes if Q is a symmetry of the vacuum. Notice that the statement of 
metric independence is precisely that of gauge invariance, since a change of metric 
may, according to (18), be compensated by a change of Y. The above argument 
straightforwardly generalizes to any Abelian BF system S(n, p), since the quantum 
action will always be of the form S&n, p) = S(n, p) + 1 {Q, ul}, and we thus have 

PROPOSITION 1. The partition function Z(n, p) of any Abelian BF s.ystem S(n, p) 
is independent of the metric. 

Alternatively we can appeal directly to [17], where Schwarz has proved 
rigorously the metric-independence, since in Proposition 2 below we shall show the 
equivalence between Schwarz’s method of resolvents and the BRST-approach. 

In the following we shall therefore always tacitly assume that all determinants 
have been regularized as in [17]. The compatibility of this regularization with 
BRST-invariance is analyzed in the Appendix. 

2.4. Degrees of Freedom and Corrected BRST-Counting 

From the discussion in Section 2.1 and in particular from (4) we expect to be 
dealing with a theory with no degrees of freedom (in the field-theoretic sense). After 
all the phase space is expected to be finite-dimensional if there are no “particles” 
present. 

The situation encountered here, however, with regard to degrees of freedom of a 
field is quite different from that which one normally meets in gauge theories. A con- 
venient method for counting degrees of freedom is to count the number of bosonic 
Laplacians in the partition function. For instance, in pure quantum electro- 
dynamics in d dimensions, integration over the (covariantly gauge fixed) vector 
potential leads to det-‘I* A,, while the ghosts contribute a factor det A,,. Now 
treating the Laplacian (solely for counting purposes) as if it acts on d copies of sZ” 
leads us to det’2-d)‘2 A,, and since det-‘I2 A, represents one bosonic degree of 
freedom, the QED-answer is d- 2. 

An easy count is therefore afforded by the observation that the vector potential 
has d degrees of freedom, while the ghosts c and C contribute minus one degree of 
freedom each (this exactly corresponds to their respective contributions in terms of 
determinants). Formalizing this, one may count degrees of freedom for a rank n 
field by counting fields, ghosts, ghosts for ghosts, . . . with appropriate weighting via, 
say, the Osp(d/2) supergroup [23] (there are many alternatives). 

This algorithm for counting degrees of freedom by counting fields and ghosts 
with the multiplicities as above is, however-as it turns out-strictly correct only 
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for classical actions which have the conventional kinetic term quadratic in 
derivatives. Indeed, using this count on (14), we would be led to the conclusion that 
the total number of degrees of freedom for the system would be three each from A 
and B and minus one for each of the four ghost fields, leaving two degrees of 
freedom, whereas from (13) we see, in fact, that there are none. 

A modified count could be that, as the operator that appears in the classical 
action is linear, one is overcounting by counting the fields A and B separately. Just 
counting the A-field (say) and all the ghosts leads us to minus one degree of 
freedom. The missing degrees of freedom are supplied by the multiplier fields E and 
G (i each), as can be seen by a direct calculation. In QED the E field does not con- 
tribute to this count; here, however, it becomes dynamical. Thus while Schwarz’s 
formulae lead us to the correct result directly, some rethinking is required in the 
BRST-framework. 

In order to see how the BRST-counting should be modified in general it is 
worthwhile analyzing a reducible theory. For this purpose consider the four-dimen- 
sional model 

S(4,2)={ B,dA,. 

Here r, = 52’ @ 0’ while the invariances are 

hB,=dA,, 6A, =d& 

with a secondary invariance given by S/i, = d/i,. We have thus identified 

r, =Q’@QO, r2=.0@o, T,=d@d= T,. 

The resolvent is 

and upon use of (10) one finds 

Z(4, 2)=det-li4 A2 det”” A, dettii2 A,. (19) 

A BRST-analysis requires the introduction of ghosts for ghosts due to the 
secondary invariance and this corresponds to the increased length of the resolvent. 
One may draw a diagram corresponding to the ghost system (Fig. l), where we 
have augmented the usual triangle [16] with the inclusion of the associated multi- 
plier fields of some of the ghosts. Now conventionally the count of degrees of 
freedom would lead to a positive result. However, as we saw in the previous exam- 
ple, multiplier fields may also have to be counted. Notice that, in the BRST-action, 
B2 couples to rrl as does y. (and C, is bypassed), while A, couples to E. (and not 
to Go). The contributions of all the other fields remain the same. But now the 
(B2> n, , yo, Al, E,) system is evaluated by diagonalizing as before. This gives a 
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FIG. 1. (a) Ghost triangle for the B-part of the BF system S(4,2) including the one multiplier field 
which becomes dynamical. (b) Ghost triangle for the A-part of the BF system S(4.2) including the 
multiplier tield. 

det P1’4 of the Laplacians on each of these spaces. The A I triangle contribution was 
determined previously (it is the same here), and whereas normally B, would con- 
tribute det - ‘I2 A,, here we see that this should be multiplied by det+li4 A, (i.e., half 
a rank two degree of freedom should be subtracted). At the second row we need to 
add the contribution of x, , namely det ~ “4 d i , while in the third row y. in the old 
count would give det -if2 A,, which now gets multiplied by det + 1/4 A,. The net 
effect then is to subtract off half of a degree of freedom of the rank and type at each 
row. In the (Pi, c,) row-though we have added half a commuting vector fields 
contribution-this is indeed the same as subtracting half an anticommuting vector 
contribution (like c,). Taking all this into account one is led to (19). 

The generalization of this result is now obvious. The length of the ghost triangle 
(Fig. 2), to which we have again added some of the multiplier fields, is just the 
length of the resolvent (7) (an observation which also facilitates the count of the 
unmatched zero modes in Section 2.6.). 

Fields on the far left edge on every odd row (with BP on row number one) couple 
to the B-system as do the multiplier fields on each even row. Therefore we see that 
the rule that one ought to subtract one half of the field type at each level is correct 
generally. In terms of partition functions this amounts to the following: Tradi- 
tionally the contribution to the partition function would be 

Zg= f) det”: Appi, 
(1 +i) vi=(-l)‘+‘- 

1=0 2 ’ 

whereas our modified count leads us to 

Z,= fi det” A,- ;, 
(2i+ 1) vi=(-l)‘+‘------ 

i=o 4 . 

BP 
4-l 5-l 5-l 

q-3 
7p--2 G-2 G-2 

7P--3 fPP--3 5-3 G-3 

etc.. . . 
FIG. 2. Ghost triangle for the B-part of the general BF system S(n, p), with some of the multiplier 

fields influencing the count of degrees of freedom also displayed. 
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The action (1) of course not only includes B, but also A,_,- i, and the modified 
count is also to be applied to its ghost triangle, i.e., 

n-p-l 
Z,= fl detv~A,-,P,Pj. 

j=O 

Now by Hodge duality we have *A = A*, implying det A, = det A, Pkr so that 

Z,= n detv~Aj+,+i. 
j=O 

The partition function of the BRST-quantized version of (1) is then just the product 
of Z, and Z,, and the fact that Schwarz’s geometric approach and the more 
algebraic BRST-quantization are equivalent for these topological theories is the 
content of the following proposition. It is easy to see (and may be read off from 
(10)) that both methods agree for more familiar (second-order) theories. 

PROPOSITION 2. The partition function of the BRST-quantized version of the 
classical action S(n, p) = s BP dA, PP- 1 coincides with the expression Z = 
n;=, det” Eli with vi= (- l)i+l (2i+ 1)/4 obtainedfrom the resoluent of S(n, p). 

Proof: Assuming without loss of generality that p > n -p - 1 the general 
resolvent is 

Now applying (10) and keeping in mind the definition (8) then completes the proof, 
since the resolvent gives 

Z= fi det”l 0, 
1=0 

= fi det’~A,,~i’-~~ldetvJA,~~-~~j, 
i=O j=O 

(20) 

which coincides with the expression Z,Z, derived above. 

It is now a straightforward matter to establish that the partition function (20) 
correctly reproduces the result (anticipated by (4)) that the number of physical 
degrees of freedom of the field theory described by (1) is zero: 

Fk0~0sIT10N 3. The degrees of freedom revealed by the partition function Z of 
S,(n, p) add up to zero. 



TOPOLOGICAL GAUGE THEORIES 

Proof The number of degrees of freedom # present 
dettli2 A, represents one bosonic degree of freedom) 
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in (20) is (recall that 

-#=2 i vi li +2”-yy,( 
n 

i=o b ) j=O 
n-p-l-j ) 

=2& ; 
i=O 0 

(21) 

(using v -, = vi- i ), which is seen to be zero upon use of the binomial identities 

i~ow ‘: =o 0 I 
igo(-l)ii n =O. 

0 i 

There are then no physical particle states and the phase space is finite-dimensional. 

It should be noted that often in supersymmetric theories Z- 1 as far as the deter- 
minants are concerned. The difference here is that ghost fields are not physical and 
so are to be counted in a different manner to spinors. 

2.5. Path Integrals, BRST-Symmetry, and Properties of the Ray-Singer Torsion 

It is well known that the path-integral encodes a great deal of information about 
determinants and eigenvalues. In this section we want to show how simple scaling 
properties of the path-integral can be used to obtain relations between determinants 
of Laplace operators acting on forms of different rank. In particular, we shall as a 
consequence of these relations be able to prove the triviality of the Ray-Singer 
torsion in even dimensions (Theorem 2.3 of [ 181) directly from properties of the 
path-integral. 

For example, in two dimensions it may easily be proven (we still assume absence 
of harmonic modes, i.e., acyclicity of the deRham complex of the forms under 
consideration) that det f(A,) = det* f(A,), where f is some function of the Laplace 
operator (e.g., f(A) = A). This is seen by considering the following partition 
function: 

The action is invariant under the following scaling of the fields: A + f(A,)A, 
B -f- ‘(A,) B, E -+ f- ‘(A,)E, and since 2 cannot be changed by this transforma- 
tion, the Jacobian of this transformation must be equal to one. This yields the 
desired result. 

In odd dimensions this procedure does not give us any information. Let us, for 

595/205!1-IO 
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instance, consider the three-dimensional example (14) of Section 2.3. The transfor- 
mations that leave the action invariant are 

‘4 -f(A,M, B-q’(A,)B 

E+f-‘(AoE G -f(Ao)G 

whose total Jacobian is identically one. It is, however, precisely this extra informa- 
tion that we have at our disposal in even dimensions which allows us to prove the 
triviality of the Ray-Singer torsion in that case. In two dimensions 

T(M,) = det - ‘I2 A, det A,=det-‘I2 A, det A,= 1 

as a consequence of duality and the above result. Generalizing these considerations 
one finds 

PROPOSITION 4. Let the deRham cohomology ring H*(M) of forms on an even 
(n = 2m)-dimensional orientable compact manifold A4 without boundary be trivial. 
Then the determinant of any function of the Laplace operator on m-forms can be 
expressed in terms of the determinants of the Laplace operator acting on lower rank 

f orms: 

n/2 - I 

det f(A.,,)= fl det2’~“‘f(An,2-i-,). 
i=O 

(22) 

Proof: Let S,(n, p) be the full BRST-extended quantum action corresponding to 
the classical action (1). If one scales B, by a factor f (A,) in the path-integral 

i 
9[allfields] eSq(“5P), 

this may be compensated in the first term of the action (which is just the classical 
action) by scaling AnePP, by f-‘(A,~p-l). All other fields that appear can then 
also be scaled in such a way that one returns to the original action. The product 
of determinants obtained in this way must therefore equal one. This implies 

l=detf(A,)dettlf(APP,)...det’-““f(A,) 

x dett’ f(A,-,-,) det f(A,_p_2)...det’-““-” f(A,), (23) 

where we have collected the contributions from the fields coming from the B- and 
A-triangles in the first and second rows respectively. For n odd (23) is identically 
satisfied because of Hodge duality, whereas for n even the two sets of terms do not 
cancel but rather add up upon using duality. Collecting all the terms together one 
then arrives at (22). 
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As a consequence of this proposition we can now prove 

COROLLARY 1 (Ray and Singer). Suppose M is an oriented compact manifold 
without boundary, of even dimension. Then log T(M) = 0. 

Proof In even dimensions, n = 2m, 

T(M) = fi det(-‘)‘@ d,. 
q=o 

(24) 

Extracting the term proportional to det A, from (24) and using duality on the 
remainder to express everything in terms of det d,‘s with k <m - 1, one arrives at 

m-1 

T(M) = &t(-1)mmi2 A,,, n detm(-“’ A,, 
q=o 

(25) 

which is equal to one by Proposition 4. 

2.6. Treatment of Harmonic Zero-Modes 

So far we have-as repeatedly emphasized above-assumed that there are no 
zero-eigenvalues of the Laplace operator A, on the space Q’(M) of k-forms on M 
with values in a flat vector bundle. By Hodge’s theorem this means that we have 
been assuming that all the deRham cohomology groups Hk(M) = Hk are trivial. 

Looking back at (1) and the discussion following it, we see that in this case all 
solutions to the equations of motion (3) are gauge-equivalent to zero, which implies 
that the reduced phase space N of (4) is just a point. We shall now show how to 
incorporate these so-far neglected zero-modes into our discussion and thereby 
promote the point to a finite-dimensional phase space of the form HP@ Hn--p-1, 
providing us with a field theoretic model for the deRham complex of a manifold. 

We shall show below how this is accomplished within the path-integral using 
the Faddeev-Popov procedure also to gauge the harmonic parts appearing in the 
Hodge decomposition of the fields. We shall then show that this is equivalent to the 
more commonly used prescription of “inserting zero modes into the path-integral 
measure.” Before doing so, however, let us try to understand geometrically what is 
required here within the framework of Schwarz’s approach explained above [24]. 

Schwarz’s definition of the partition function (10) may be regarded as the instruc- 
tion to choose as quantum action appearing in the path-integral definition of the 
partition function the action 

Sq=Wo)+ (Tlf,, T,f,)+ ...T (26) 

where the variables fi are Grassmann even (odd) for i even (odd), and the domain 



146 BLAU AND THOMPSON 

of integration for fi is the orthogonal complement to Im Ti+ 1 in Ti. Decomposing 
ri as 

where 

Ti=Im T,+,@Tf 

=Im T,+,@Ker Tr+l 

=Im T,+,@Im Tt@h,, (27) 

hi = Ker Ti+ Jim Ti = Ker TJIm Ti + , , 

one finds the domain of integration off, to be 

Tf=Im Tf@h, (28) 

and (10) is, in fact, the result obtained upon integration of (26) over all the 
Im Ti c r’. Thus the (finite-dimensional) integral over the cohomology groups hi 
remains to be done. 

In the context of our BF systems the above amounts to saying that one has per- 
formed the path-integral over the coexact pieces of all the fields involved, the exact 
pieces having been taken care of by the usual gauge fixing prescription, while the 
integral over the cohomology groups Hi (with alternating Grassmann parity) still 
remains. Before showing how this can be done in the BRSTdamework let us clarify 
a seeming discrepancy between the BRST-approach and the approach of Schwarz. 

In the ghost triangle many fields appear which do not tit into the resolvent of 
Schwarz (more precisely the fields in the resolvent correspond to the fields on the 
right edge of the ghost triangle). We have seen above that this does not prevent 
the partition functions from agreeing. But what about the zero-modes of fields 
appearing in the ghost triangle which have no counterpart in the resolvent? Do 
they or do they not play a role? Fortunately they do not, since they all have super- 
partners (i.e., {Q, Ek} = rck). Thus their zero-modes match precisely and-having 
opposite statisticsdo not influence the path integral. 

Thus to count unmatched modes one simply starts at the top of the triangle and 
counts cohomology groups along the right edge with alternating sign (symbolically, 
that is) corresponding to the alternating Grassmann parity of their respective repre- 
sentatives. This means that we get HP 0 HP- ’ @ Hpp2 0 . . . (where p is the rank 
of the classical field). It is important to realize that this count does not depend on 
the starting action in the sense that, e.g., B, dA , is as good as adAl * dA , , but the 
count must be made on the triangles of all the classical fields present. 

Thus, for example, in the three-dimensional BF system, S(3,2) = s B, dC,, B, 
leads to a zero mode contribution to the path integral of the form HZ 0 H’ @Ho, 
while Co contributes Ho. We are, therefore, led to the conclusion that the remaining 
zero mode integration needs to be performed over H20 H’ @2H”. Likewise, the 
Abelian Chern-Simons action s A, dA, leads to H’ 0 Ho, whereas its “square,” the 
BF system S(3, 1) which was discussed in Section 2.3, gives rise to 2H1 0 2H”. 
Generalizing this we find 
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PROPOSITION 5. The path-integral treatment of BF systems leads to the foRowing 
graded sum of cohomology groups for the zero-mode contribution: For the BF system, 
S(n, p) = s BP dA, -p- 1 in n dimensions, 

Zp--n 

,Fo (-l)iHP--@(l+(-l)n+l) i=2p$n+l (-l)‘HP-i (29) 

and for the BF system s A, dA, (i.e., the Abelian Kalb-Ramond Chern-Simons 
action) in 2p + 1 = 4k + 3 dimensions (in 4k + 1 dimensions the action is zero), 

f  (-1)iHv-i. (30) 
i=O 

Furthermore, this is in agreement with the conclusions drawn from the resolvent 
approach. 

We shall now give a prescription to perform this remaining integral which is par- 
ticularly transparent in the BRST-framework. Usually, to be able to do calculations 
with the path-integral in the presence of fermionic (i.e., Grassmann odd) zero- 
modes, one needs to insert the appropriate number of fields to ensure non- 
vanishing of expectation values (as a consequence of the rules of Berezinian 
integration). For bosonic zero-modes, on the other hand, there is an infinity 
problem (after all, bosonic determinants appear in the denominator and thus lead 
to infinities if there is a zero eigenvalue). 

In that case there are two possibilities available. The first is to accept them and 
to use the path integral measure over these variables as an appropriate one for 
calculating expectation values of certain functions on the zero-mode space. 

Alternatively (for both even and odd zero modes), thinking of the zero modes as 
representing gauge degrees of freedom, it is also possible to gauge-fix the theory in 
such a way from the outset that the resulting partition function is well defined. For 
fermions this automatically “inserts” the appropriate number of fermions into the 
measure to soak up the zero-modes, rendering the path-integral finite (not zero). 

This approach of treating zero-modes-or collective coordinates-as a gauge- 
fixing problem was advocated by Polyakov [25] and formalized in the BRST 
language by Amati and Rouet [26] and-using Ward identities-by Babelon [27]. 
It relies on straightforward use of the Faddeev-Popov procedure, so consequently 
the gauge-fixed action has a very simple BRST-invariance. 

The analogy with ordinary gauge invariance is that in QED (say) the part of the 
vector potential A which lies in the gauge direction does not enter into the action 
and is the cause of the problems associated with delining the partition function. 
This is precisely the situation we are confronted with in the presence of zero-modes. 
Using the Hodge decomposition (or (27) in the general case) of a p-form, 

A,=~~,+, +dBp-,+yp, (31) 

where yp is harmonic, we can read off what the appropriate gauge-fixing should be. 
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When the action is invariant under A, + A, + d/l, _ 1 this means that /?, _ I does not 
appear. Gauge-fixing then amounts to projecting p, _ 1 out by means of a Lagrange 
multiplier enforcing a delta function constraint on A in the path integral. Thus 
one adds a term to the action which does precisely this--(&, A )-plus the 
corresponding ghost terms. 

Now the zero mode problem is posed as the invariance of the action under 
A,+A,+A,, where Ap is harmonic, which means that yp of (31) does not enter 
into the action. Following the previous rationale we gauge-fix by projecting out yp, 
i.e., by adding a term (C, A) to the action, where Z is an arbitrary harmonic form. 
The Faddeev-Popov determinant one gets in this way is det u, where u is the 
volume of the compact manifold M. The gauge-fixed part of the action may then 
be written as 

&i 
i 

Ai. A + uC’c’, i= 1, . . . . bi = dim H’(M), (32) 

where C = aiLi, li chosen to be an orthogonal basis of harmonic p-forms, 

s nJj = lx&. 
The action then possesses the following BRST-symmetry (the “fields” c, E, and E are 
not functions of space-time !): 

6A = 2’cj 

SC,=0 

sEj=Ej 

hEI= 

s2=o. 

Unlike the conventional gauge invariance for p-forms we do not find that this ghost 
system entails ghosts for ghosts or ghost interactions (harmonic forms are their 
own Hodge decomposition). 

As an example consider the two-dimensional Lagrangian for the chiral (i.e., we 
only consider the term involving a _ ) b-c system on a Riemann surface Mg of genus 
822 

S=j c+ a-b,,. 

There are then no c + zero modes and 3g - 3 b + + zero-modes. The corresponding 
gauge fixed action is 

S,=S++tf+b++ +vc’q, 
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where i = 1, . . . . 3g- 3. The si are anticommuting, while (E’, ci) are Grassmann even. 
The partition function is 

z= a+ %!I,, ~Ei929Ckes~ 
I 

= .9c+ 9b,,es 
s 3~,3/l’+b+, 

(where the second line follows from the first by expanding the exponential). Thus 
we see explicitly that gauge fixing is equivalent to the insertion of the appropriate 
number of modes. 

The method outlined above works well for the fields that are present on the right- 
hand ledge of the ghost-triangle. For these fields the complete BRST-transformation 
is of the form 

{Q, Cp)=AiCj+dCp-1 

{Q, Cj} =O, 

giving as usual Q’= 0. As remarked earlier, for ghosts that do not lie on the right- 
hand ledge of the ghost diagram, an alternative procedure presents itself; let us 
make that statement precise here. These fields come in pairs (Ck, nk) with the 
BRST-transformation rules 

{Qd%}=% {Q, %} = 0. 

There is no point in adding the zero mode shifts explicitly in these formulae, since 
this would just amount to a redefinition of the rrk. Instead, add the ghosts 8, T’ 
satisfying 

{Q, 6’) = zi, {Q, T’} =0 

and add to the action the BRST exact term 

which represents the gauge-fixing of both sets of zero-modes simultaneously. In 
terms of the signed sums of cohomology groups this means that the ck contribute 
f Hk, while the xk yield T Hk, the sum being zero. 

So far we have dealt with the situation where one wishes to gauge-fix the zero- 
mode contributions to zero. In some instances it may be more desirable to keep the 
zero-mode integration explicit, as-say-in Witten’s topological Yang-Mills theory 
[ 11, or as in the two-dimensional non-Abelian theory to be discussed in Section 3.2 
below. The question that naturally arises is, how to decompose the fields into their 
harmonic and non-harmonic pieces in a BRST well-defined way. In this case 
decompose a p-form A, as 

A, = A; + A;(L), 
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where A; is the “quantum” part and A; is the corresponding classical part. The 
aim is to gauge-fix AZ in such a way that all components in the moduli space are 
projected out. Let 

61’ = (-Ji, GAjj = -d&A;(A) 

so that 6A, = 0. The complete BRST operator is thus taken to be Q + 6. To project 
out the components of A; that lie in the harmonic directions one makes use of the 
above symmetry. Introducing extra fields (3, zi) with Q-transformations as above, 
an appropriate addition to the action is 

s {Q + 6, CiA;A;, i(l)}. 

Once more for the natural pairs of fields that lie off the right-hand ledge of the 
ghost triangle, the situation can be simplified. The idea is to make use of the 
classical/quantum split as above, but to relate the classical components of the two 
members of the pair under the BRST transformation. Thus one splits Ck and n/, into 
their quantum and zero-mode parts, 

where y: form a basis of the cohomology group Hk and where one may take 

{Q, ll/i) = ~$3 

in this way dealing with both fields at once. Adding anti-ghosts $i and multipliers 
xi in the usual manner to complete the BRST algebra, an appropriate addition to 
the action is 

A general benefit of these procedures is that once more there is no spurious 
metric dependence introduced by the gauge fixing, since again the change in Z 
induced by a change in the metric is the vacuum expectation value of a BRST- 
variation and hence zero. 

3. NON-ABELIAN MODELS 

3.1. General Aspects 

In this section we shall analyze in some detail an obvious but-as it will turn 
out-interesting and rich generalization of the BF systems we have discussed so far, 
which amounts to replacing the Abelian gauge group of the models of the previous 
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section by a non-Abelian one. This is accomplished by replacing dA r by F = FA , the 
curvature two-form of a connection A on a principal bundle P over M with 
(simple) structure group G. B will then have to be a section of PP2(M, ad P), 
i.e., locally a Lie algebra valued form on M transforming under the adjoint 
representation of G. Our action will then be 

S= j tr(BF,) (33) 

and of particular interest to us will be the two-dimensional versions of these non- 
Abelian BF systems which are-in a precise sense, as we shall show below-the 
natural analogue of the Chern-Simons action in three dimensions. They allow us, 
for instance, to explicitly write down a Nicolai map [S] which trivializes (up to 
zero-modes, of course) not only these BF systems, but also true two-dimensional 
Yang-Mills theory in arbitrary covariant gauges (Section 3.2). 

Moreover, these systems will provide us with a two-dimensionaf theory of 
topological gravity (Section 3.3) giving rise to a field-theoretic description of the 
moduli spaces of Riemann surfaces. This description bears some striking resemblan- 
ces to Hitchin’s [19] approach to Teichmiiller space via the dimensionally reduced 
self-duality equations, and we will attempt to sharpen this analogy by recalling the 
pertinent features of his work. 

In addition to the usual gauge invariance, 

6A=d,A 

al?= [B, A], 
(34) 

one has (as a consequence of the Bianchi identity) the non-Abelian p = (n - 2)-form 
symmetry 

6A=O 

6B=d,@ 
(35) 

in dimensions greater than two. The action (33) leads to the equations of motion 

F,,,=O 

d,B=O 
(36) 

which imply that the symmetry (35) is on-shell reducible in four or more dimen- 
sions. This leads to some complications in the process of quantization which is 
therefore most conveniently accomplished by means of the Batalin-Vilkovisky 
algorithm [16]. For a detailed discussion of the four-dimensional case we refer to 
Section 3.4. 

The non-Abelian BF systems in two and three dimensions may be quantized 
directly by standard BRST-techniques. This implies in particular that our argument 
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of Section 2 concerning the metric independence of the corresponding partition 
function carries over directly to these theories. For higher-dimensional systems it is 
more difficult to establish their topological nature, and a complete proof may have 
to await a fuller elucidation of the Batalin-Vilkovisky procedure itself. Some 
arguments along this line and a proof of metric independence in four dimensions 
may be found in Section 3.4 as well as various pieces of further circumstantial 
evidence. 

Another class of potentially interesting actions for topological field theories with 
non-Abelian symmetries is provided by the Chern-Simons functionals. As discussed 
in the Introduction only the three-dimensional version 

S,,(A) = jM, tr (A dA + z .4’) (37) 

has so far been seriously considered as (part of) an action functional, due to the 
higher-derivative character of the higher-dimensional counterparts even in the 
Abelian case. This action has been studied in some detail recently by Witten 
[3, 151, and the remarkable properties of (37) he has uncovered may make the 
following observation concerning the intimate relationship between the Chern- 
Simons action (37) and the action of the non-Abelian BF system (33) in two 
dimensions of some interest. 

If the three-manifold M3 appearing in (37) is of the form M, = M, x S *, where 
M, is some orientable boundaryless two-manifold and S’ is the circle, one can 
dimensionally reduce the Chern-Simons action to an action on M, by assuming A 
to be independent of the coordinate on the circle and performing the integral over 
S’. In this way one arrives at a metric-independent action in two dimensions which 
turns out to be the two-dimensional non-Abelian BF system (upon identification of 
B with the coefficient of A along the circle). Higher-dimensional analogues of this 
relation exist only in the Abelian case. In 4k + 3 dimensions one can consider the 
action 

S=j&+l dAx.1 (38) 

which upon dimensional reduction as above yields the Abelian BF system 
S(4k + 2,2k). The would-be candidate in 4k + 1 dimensions, however, vanishes, due 
to the fact that the fields appearing in the action are forms of even rank, unless one 
is willing to regard them as anticommuting objects by equipping them with an 
additional Grassmann odd grading. The most trivial situation where this possibility 
occurs is in one dimension, where it leads to the usual fermionic action 

Whether a generalization of this to topological field theories with a priori anticom- 
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muting variables is interesting remains to be seen. However, it should be noted that 
these theories may also be formulated in any dimension, and-when used to 
calculate intersection numbers in Section &lead to essentially the same results as 
the bosonic theories. 

3.2. BF Systems, Nicolai Maps, and Yang-Mills Theory in Two Dimensions 

The action of the BF system in two dimensions (33) becomes upon BRST-gauge 
fixing of the symmetry (34) ((35) being absent in two dimensions) 

S,=jtr(BF,+*ESA+do)*d,w), (40) 

where E and (0, w) are the scalar multiplier field and the ghosts, respectively. 
Metric independence of the partition function is guaranteed, since-as in the 
abelian theories-S, may be written as 

S,=S+ j {Q,bXL4}, (41) 

where Q is the conventional non-Abelian BRST-operator. The prescription for 
counting degrees of freedom explained in Section 2.4 is valid here (since these are 
unaffected by the presence of the interaction-term in (33)) and leads to the conclu- 
sion that the configuration space is finite-dimensional. 

This can be made more explicit by using the equations of motion (36) and the 
gauge symmetries (34). From the B-equation of motion we learn that the connec- 
tion A has to be flat, whereas the A-equation of motion then tells us (taking into 
account the symmetries (34)) that the reduced phase space JV is a fibre bundle over 
the moduli space JZ of flat connections, with fibre over a point A of J% being the 
space 8A of gauge equivalence classes of covariantly constant B’s, i.e., locally 

Jtf=.A?XX (42) 

which is the non-linear generalization of the reduced phase space (4) of the Abelian 
BF system. Indeed the tangent space to J at a point (of equivalence classes of) 
(A, B) is the precise analogue of (4) 

where 

T ca,s,A’” = Ht(M, ad P) 0 Hi(M, ad P), (43) 

H’,(M, ad P) = 
Ker d, : Q’(M, ad P) + @+ ‘(M, ad P) 
Imd,:SZ’-‘(M,adP)~S2’(M,adP)’ (44) 

which makes sense since (dA)* = 0 for A, a solution to the equations of motion. 
We are thus led to suspect that the expression for the partition function of (40) 

reduces to a finite-dimensional integral over JZ, and in this two-dimensional 
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example this can be done quite explicitly by means of a Nicolai map [S, 91: The 
change of variables in (40), A + (5, q), defined by 

produces the Jacobian 

(45) 

(46) 

which cancels precisely the determinant arising upon integration over the ghosts in 
(40), leaving just a trivial Gaussian integral over the variables (B, E, 5, v]). 

The existence of this Nicolai map, however, by no means implies that the theory 
is trivial. Indeed we see from (45) that the transformation to the variables (5, q) 
permits us to trivialize the path-integral for the partition function over all but a 
finite-dimensional subspace & of fields, points of which are-modulo questions 
concerning the possibility of fixing the gauge globally in field space-in one-to-one 
correspondence with points in the moduli space A! Thus-as expected-we are 
only left with a path-integral over the finite-dimensional reduced configuration 
space M. 

To see the how to properly handle the zero-modes in this example we generalize 
the analysis of Section 2.6. Write 

A = A, + A,.(A), 

where FAc=O and d,, * (A,(i)- A,) = 0 (A,= A,(O)), so that 1 parameterizes 
H’(M, ad P). Also for simplicity assume H”(M, ad P) = 0, so that the connections 
are irreducible. The techniques developed here can also be applied in the more 
general setting when reducible connections are present. Now take 

{Q, 2) =d, {Q, a’} =O 

{Q,#}=8, {Q, 7’) =0 

{Q,A)=~P 

and choose the quantum action to be 

S=jBF,+{Q,GdA, * (A -A,) + C’A, a,A,(L)} 

= BF~+*EdAoAy+dAOO*dAco+~iA,&Ac(~) 
s 

+a’a’ajA,(~)d,A,(~)--‘d,oa,A,(~)-a’A,o’ajajA,.(~). 
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The integrations over B, E, and t lead to delta-functions that set A, to zero. This 
in turn implies that the last two terms in the action vanish. At this point it is now 
a straightforward exercise to show that the Jacobian that arises (defined and 
regularized as in [17]) exactly cancels the ghost determinant (also regularized via 
Schwarz’s method). 

The final result is thus an integration over the moduli space, in agreement with 
the argument based on the Nicolai map. While the Nicolai map seems to be less 
rigorous than the explicit introduction of the zero modes, it provides us with an 
alternative and intuitive picture of how the partition function reduces to an integral 
over the moduli space. 

To proceed with the evaluation of the partition function we have to obtain some 
more information on .,&z’. As a first step a simple estimate on its dimension may be 
obtained as follows: Via its holonomy a flat connection A on P gives rise to a 
homomorphism from the fundamental group 7c ,(M) of M to G, uniquely defined up 
to conjugation by elements of G. Conversely, given such a homomorphism h, we 
may construct a principal G-bundle with a flat connection whose holonomy is 
described by h, by associating it to the principal n,(M)-bundle fi+ M (where & 
is the universal covering manifold of M) via h. Thus M may be identified with the 
space of homomorphisms from the fundamental group of M to G modulo the 
action of conjugation by elements of G, 

A= Hom(rc,(M), G)/G. (47) 

If, for instance, M = M, is a Riemann surface of genus g > 1, rc i has 2g generators 
satisfying one relation. Thus if G is simple and compact .I is a space of dimension 

dim&!=(2g-l)dimG-dimG=(2g-2)dimG, (48) 

whereas if G = U(l), the one relation is automatically satisfied and the action of 
U(1) by conjugation is trivial, and hence 

dim &Z = 2g (49) 

in this case. This simply corresponds to assigning boundary conditions along the 2g 
homology cycles to charged fields or-equivalently-to a 2g-parameter family of 
&vacua. 

Returning now to our problem of defining the integral over &Z we see that we are 
faced with two alternatives. & may be zero-dimensional and consist of isolated 
points. This happens, for example, in the Abelian case, when the first homology 
group of M has torsion (as for RP*), which implies that there are topologically 
non-trivial flat complex line bundles on A4. In that case the partition function is a 
(normalized) sum over one’s (one for each point), since the determinants coming 
from the ghost part and the Jacobian were identical. It may be, though, that a more 
careful treatment will reveal additional sign factors for these l’s, as happens for the 
isolated instanton contributions in Witten’s work [ 1] on topological field theory. 
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On the other hand, A may be of finite non-zero dimension. Then the partition 
function, as it stands, is not really defined. However, treating the coordinates of A 
as collective coordinates, the Faddeev-Popov procedure can be adapted to handle 
this situation as well. We shall leave the details of this for future investigations. Suf- 
fice it to say here that the net effect of the extra ghost contribution is to modify the 
measure on AZ. This feature is, of course, familiar from instanton calculations [25]. 

We shall now briefly leave the issue of topological field theories and turn our 
attention towards (the closely related as we shall see) two-dimensional Yang-Mills 
theory. 

It has been known for a long time that great simplifications occur in the axial 
gauge (A,=O) in two dimensions. ‘t Hooft [28] used this to great effect in his 
study of the large N behaviour of QCD, (incorporating quarks). In this gauge there 
are no self-interactions among the gauge fields and the ghost terms decouple. On 
a space-time which is not of the form Z x R such a choice of gauge may not be 
possible. Covariant gauges, on the other hand, are allowed on any manifold 
(ignoring Gribov ambiguities), but the apparent drawback here is that gauge 
self-interactions are present and the ghosts do not decouple from the gauge fields. 
This makes it much harder to establish the triviality of Yang-Mills theory on two- 
dimensional Minkowski space in these gauges. 

However, using the Nicolai map introduced for the BF system above we shall 
now show that the partition function of two-dimensional Yang-Mills theory is 
exactly calculable in arbitrary gauges (and indeed for arbitrary surfaces). To that 
end, consider the action 

which is clearly no longer metric independent. The equations of motion following 
from S are 

F,=*B 

d,B=O. 

Combining these, one finds precisely the Yang-Mills equation 

(51) 

d, * FA=O; (52) 

while substituting (51) into (50) (or, alternatively, performing the Gaussian integral 
over B) one sees that S becomes just the usual Yang-Mills action 

S = i j tr(FA * FA). (53) 

Notice that, since (50) differs from the action of the two-dimensional BF system 
just by a term proportional to B2, the Nicolai map (45) still reduces the bosonic 
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part of the path-integral to a Gaussian, while its Jacobian still cancels against the 
contribution from the ghosts, since the gauge-fixing and ghost kinetic terms for (50) 
and the BF system are identical. 

Thus the partition function of two-dimensional Yang-Mills theory is now 
expressed as the integral over the same finite-dimensional moduli space 4! as 
before. This does, of course not by itself, imply that the phase spaces of the theories 
are identical. And, indeed, expectation values of observables (like FA, for instance) 
may well be (and are !) different. Furthermore, they will, in general, receive con- 
tributions from different parts of field space, since the Nicolai map will, in general, 
not be available to trivialize correlation functions. 

If M is a cylinder, however (and thus the only non-trivial two-dimensional 
surface admitting a space-time interpretation), the fact that A can nevertheless be 
identified with the phase space of two-dimensional Yang-Mills theory follows from 
recent work of Rajeev [20], who elegantly determined explicitly the reduced phase 
space of this system. Rajeev’s result is that if the gauge group G is simply connected 
and compact, the phase space ,V of two-dimensional Yang-Mills theory on a 
cylinder is 

Jf’= (G@L(G))/ad G, (54) 

where L(G) is the Lie algebra of G and the quotient is taken with respect to the 
adjoint action of G on L(G) and itself. On the other hand, our moduli space of flat 
connections is 

& = Hom(n,(M), G)/ad G = Hom(Z, G)/ad G = G/ad G; 

i.e., & is just the space of conjugacy classes of G. Thus rewriting JIr’ as 

X’=(G@L(G)*)/adG% T*G/adG= T*(G/adG), 

we indeed find 

(55) 

(56) 

JV”‘ZT*A’=JV, (57) 

as claimed. 

3.3. Topological Gravity and the Self-Duality Equation on a Riemann Surface 

Combining the strategy of earlier attempts [29] with an adaptation of the gauge 
theoretic formulation of three-dimensional Einstein gravity [ 151 Montano and 
Sonnenschein [30] have recently suggested a theory of topological gravity in two 
dimensions which leads in a fairly straightforward manner-paralleling the inter- 
pretation of the Donaldson polynomials [13] as observables of a topological 
quantum field theory [ 1 ]-to the construction of observables on the moduli spaces 
of Riemann surfaces. Their theory is (for genus greater than one) a topological 
SO(2, 1) gauge theory in the sense of [ 11, where the zweibein and the spin-connec- 
tion appear as a priori independent coefficients of the SO(2, 1)-connection. The 
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huge topological symmetry of the theory, however, permits them to impose the 
vanishing of its curvature as a gauge condition, which enforces the spin-connection 
to be torsion-free and furthermore requires the two-dimensional metric to be of 
constant negative curvature ( - 1). Since for all Riemann surfaces of genus greater 
than one there is precisely one such metric in each conformal class, this establishes 
the relation to the moduli space of Riemann surfaces. 

In this section we wish to present an alternative approach to two-dimensional 
topological gravity which is based on a non-Abelian BF system with the same 
gauge group SO(2, 1). This construction-though on the question of invariants on 
the moduli space is not as clear as [30] ( see Section 4)-seems to offer some 
advantages over that proposal, the most obvious perhaps being that the vanishing 
curvature condition (with the same implications as above) arises naturally as an 
equation of motion instead of as a gauge condition. Its quantization is very simple 
and another nice feature is that we can also interpret this theory as a classical 
theory of gravity, whereas the model of Montano and Sonnenschein is purely 
quantum in nature. 

Furthermore-and perhaps most importantly-this theory of topological gravity 
displays some striking analogies with Hitchin’s approach to moduli space [19] 
which we shall explain below after having discussed the two-dimensional gravity BF 
system itself. For simplicity we restrict our attention to Riemann surfaces of genus 
greater than one. 

Our basic object of interest will be the SO(2, 1)-connection A which we write as 

A=oJ+e”P,, a= 1, 2, (58) 

where the coefficients are ultimately to be identified with the spin-connection and 
zweibeins, respectively. The generators (J, P,) of the Lie algebra satisfy the com- 
mutation relations 

[Pa, f’bl = &,b J 
[J, J]=O 

[J, p,] = E,‘Pb. 

(59) 

The Killing-Cartan metric is in this basis, 

(J,J)=l 

<pa~ Pb) = sob, 

(60) 

and in addition to A we have to introduce another (scalar) field B which will, 
however-as long as we are not discussing observables (Section 4kplay a some- 
what passive role. With all this in mind the by-now familiar action (33) leads to the 
following equations of motion: 
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du + fEabeaeb = 0 (61) 

de” + oxa,eC = 0 (62) 

d,B=O. (63) 

Equation (62) says that the spin-connection w  is torsion-free, and using this equa- 
tion to express it in terms of e, we find that (61) is the statement that the metric 
g(e) determined by the zweibeins has constant negative scalar curvature R = - 1, 
which establishes the sought-for relation between flat SO(2, I)-bundles on a 
Riemann surface and its moduli space within the field theory provided by our BF 
system. In order to arrive at a phase space describing surfaces which are not too 
singular we could, of course, restrict our attention to those flat bundles which have 
Euler class 2g - 2. 

Then this relation is most easily understood in terms of uniformization and the 
relation between flat bundles and representations of the fundamental group. In the 
following, however, we do not want to further elaborate on this well-established 
fact, but rather explain how the above fits into Hitchin’s deep and beautiful 
investigations of the self-duality equations in two dimensions. In particular, we shall 
see that the equations of motion (61) and (62) do in fact provide a solution to these 
equations, thus explaining from a more simple-minded point of view why self- 
duality equations can provide information on the structure of moduli space. At this 
point it is perhaps of interest to mention that there exists an alternative topological 
theory in two dimensions [31] which is based on the Abelian Higgs system. The 
moduli space of this theory is also closely related to the equations considered by 
Hitchin. His work, therefore, also provides a link between these two topological 
models. 

Upon dimensional reduction of the four-dimensional self-duality equations 
F = *F for the curvature of a principal SO(3) bundle on R4 to two dimensions these 
may be written in a conformally invariant way to make sense on an arbitrary 
Riemann surface M, thus giving rise to Hitchin’s [19] self-duality equations on a 
Riemann surface, 

FA = - [Zp, @*I 

d:,@=O. 

(64) 

(65) 

Here the notation is the following: FA is the curvature of a connection A on a 
principal SO(3) bundle on M, di = d” + A, dZ is the anti-holomorphic part of dA 
with respect to a given complex structure on M, and @EQ~.‘(M, ad P’) and 
@* E Q”~‘(M, ad PC) are complex combinations of the 3- and 4-components of the 
original four-dimensional connection. 

In order to relate these equations to those of the gravity BF system we need 
-prior to making the appropriate identifications of the fields appearing in the two 
sets of equations-to understand what these have got to do with (a) flat SO(2, l)- 
bundles and (b) constant negative curvature metrics. We shall deal with these two 
aspects in turn now, sketching how these relations can be established. 

595005!1-II 
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As far as (a) is concerned observe that Eqs. (64), (65) imply that the PSL(2, C)- 
connection A + @ + @* is flat, 

F - 0. A+@+@* - (66) 

For irreducible flat PSL(2, C)-connections Donaldson [32] has proved that the 
converse is also true, and although this establishes the relation between the self- 
duality equations and flat bundles, this is not quite what we want yet, since our 
two-dimensional gravity theory is an SO(2, 1)-gauge theory, whereas (66) provides 
us with a flat PSL(2, C) = SO(2, l)‘-connection. Fortunately, however, it can be 
shown that the part of the moduli space of solutions to (64), (65) can indeed be 
described by flat SO(2, 1)-connections. Even a summary of the proof of this fact lies 
beyond the scope of the present paper, so let us just mention that it relies on a 
conspiracy between the existence of a hyper-Kaehler metric on this moduli space 
and the involution (A, @) -+ (A, - @) (obviously mapping solutions into solutions) 
equipping it with a real structure. 

Let us now turn to (b), i.e., the question of what the self-duality equations have 
to do with constant negative curvature metrics. Hitchin has constructed a family of 
solutions to these equations of the form (A(g), D(q)). Here A(g) is a connection on 
a certain rank two vector bundle (Kl” @ Kp’j2), which is necessarily reducible to 
U( 1) and is the Levi-Civita connection corresponding to a metric g on M which by 
Eq. (64) has constant negative curvature for an appropriate choice of @. q is a 
holomorphic (because of (65)) quadratic differential, q E H”(M, K’), and Hitchin 
has shown how to construct from (A, @) = (g, q) new metrics g(q) with constant 
negative curvature [ 19, Theorem 11.23 such that any metric of the same constant 
negative curvature is isometric to one of these for some q. This provides then an 
explicit realization of the well-known isomorphisms Y z Z-Z’(M, K’) z C 3g- 3, 
where Y is Teichmtiller space. 

Having recalled all this, the relation between solutions to the self-duality 
equations (64), (65) and solutions to the two-dimensional topological gravity field 
equations (61) (62) is now fairly obvious. Since the connection-form A = A, of 
Hitchin is reducible to U( 1) we identify it-up to possibly a constant factor-with 
the spin-connection Jo of (58), whereas the fields @ = Q(q) and Q*(q) are to be 
identified with the dz (resp. d?) components of some zweibeins e(q) corresponding 
to the metric g(q). 

Indeed, writing the BF SO(2,l )-connection A,, as 

Am= JO + Poe”(q) = A, + Poe’= dz + Poea dZ = A, + G(q) + Q*(q), (67) 

which we know is flat by (66) as it should be, we find-using the commutation 
relations (59)-that 

C@(q)> Q*(q)1 = Jg,,(q) dz d% (68) 

which implies that the first of the self-duality equations (64) is equivalent to the 
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held-equation (61). On the other hand, the holomorphicity condition (65) is then 
just the no-torsion equation (62). 

3.4. Quantization and Metric-Independence of BF Systems in Dimensions 24 

We have so far discussed Abelian BF systems in any and non-Abelian BF 
systems in two dimensions. For these models as well as for the non-Abelian BF 
system in three dimensions the standard BRST-argument was sufficient to establish 
the metric-independence of their partition functions. Non-Abelian BF-systems in 
four and more dimensions are on-shell reducible theories (i.e., some symmetries 
become reducible upon using the equations of motion). Thus quantization of these 
models requires the use of the full-fledged Batalin-Vilkovisky procedure [16]. As 
we shall see below this makes it much harder to establish their topological nature 
in general. 

The reducibility is completely manifest in the B-field. In four dimensions, for 
example, the classical gauge-invariance (34), (35) of the action is 

6A = d,A, 

6B=d,A, + [B, A,]. 
(69) 

Consequently there is a zero-mode of these transformations when /i I = dA&, and 
the equation of motion FA = 0 is used. This theory is easily quantized using the 
algorithm of [16] and (for a covariant gauge fixing on B) leads to the action 

S, = j tr(BF, + nldA *B+yd,*71,+C1dA*dac,+710dA*c1 

+~dA*c,+cod,*d,co+cod,~ld,cl+Eod*A+*cT,6d,w), (70) 

where the non-zero BRST-transformations are 

hB=d,c,-*[d,c,,cJ 

6c, = dAcO 

6C, = 7c1 

ar, = 7ln, 

6y = t 

6ti=E. 

(71) 

There are some things worth noting about the action (70). First, the ghost systems 
for A and B do not mix. This is true quite generally (i.e., in higher dimensions) 
provided that one uses covariant gauge conditions. Second, the gauge-fixing and 
the ghosts associated with B are exactly those found [33] for the Freedman- 
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Townsend model [34]. This is no accident since this model in an arbitrary number 
of dimensions is [35] 

S,,=jtr(BF,+AtA). (72) 

The only symmetry to gauge-fix here is the B-symmetry (due to the second term in 
(72)) and it corresponds to the B-symmetry in the BF systems, as the gauge-fixing 
of the B and A fields decouple. Yet another consequence of this split between the 
ghost systems is that the last two terms in (70) again do not introduce any metric 
dependence (by arguments which are by now quite familiar). We shall therefore in 
the following-where we discuss the quantization of non-Abelian BF systems in 
general-concentrate on the terms in the quantum action arising from the sym- 
metries of B. 

The ghost content is as usual given by the ghost triangle (which is the same in 
the Abelian and non-Abelian cases). The action S, satisfying the master equation 
[ 161 may be expressed as an expansion in the dual fields, 

S,(@,@*)=S(B)+x@,*G,(@)+ 1 @,*@;G,,(@)+ ..., (73) 
n n.m 

where CD represents B and all the ghosts for ghosts and @* represents the corre- 
sponding dual fields. This form of S holds also for a non-minimal set of fields. 

We are now to some extent in a position to discuss the metric dependence of 
these theories. Unlike in the Abelian models, the gauge fixing terms here are not 
necessarily expressible as {Q, I’} for some V. The Batalin-Vilkovisky procedure 
guarantees only that {Q, S,} = 0 (off-shell) and {Q, Q} =0 (on-shell) and that the 
degrees of freedom are incorporated correctly. The @*-fields are given in terms of 
the gauge fermion Y by CD* = aYJa@ and the partition function is independent of 
the choice of !P. The variation of the partition function with respect to the metric 
is 

sz 6s, 
sg,= &PY ( > 

The terms &?*/6gPy do not enter as they represent a change of Y which is an 
invariance of the theory. In the case of Abelian theories, only G, is non-zero and 
6G,/6g,, = 0 as G, represents the gauge transformation of the “n th field.” In 
general, 

(75) 
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and in the Abelian models the transformations are always in terms of the exterior 
derivative (there is no explicit metric). Our use of Y invariance here is precisely the 
statement in the Abelian models that a change in the metric induces a term 
( (Q, 6 V} ) ( V is the gauge fermion in that case). 

Having used an equivalent amount of information as in the Abelian theory, we 
have not been able to establish the metric-independence of the partition function, 
so some more work and information is required here. It could, of course, have 
turned out that 6G,,. ../6gicV = 0, but this is, for example, not realized in five 
dimensions, where G,, is metric-dependent. One must therefore hope that the 
weaker condition 

(76) 

holds. And, since there are a number of indications and pieces of circumstantial 
evidence which point towards the metric independence of Z, in general, we are led 
to formulate the following 

Conjecture’. The partition function of a non-Abelian BF system is independent 
of the metric in any dimension. 

We have already seen that this is true in two and three dimensions, and below 
we shall give a proof of this in the four-dimensional case, using an argument which 
is quite likely to be applicable in higher dimensions as well. Before doing this 
though we want to present two further arguments in favour of the above conjecture. 

First, on an arbitrary manifold in a background field gauge the non-Abelian 
theory at one loop level matches the Abelian system in the presence of a back- 
ground (this corresponds to the large k limit discussed by Witten in [3]). Thus the 
one-loop result of the non-Abelian model is some power of the appropriate 
Ray-Singer torsion and is certainly metric-independent. 

Second, we can prove metric independence of the partition function in any 
dimension n, provided that the n-manifold M is of the form A4 = LY, _ 1 x R: On such 
a manifold one may choose the “temporal” gauge for the A and B fields and, also, 
that gauge for all the consequent ghosts which need to be gauge-fixed. In this gauge 
all the interactions disappear and the theory devolves into several copies of an 
Abelian model (also in this gauge). As the partition function of the Abelian BF 
system is independent of the metric, so too is the non-Abelian partition function in 
this instance. 

Returning now to the four-dimensional model (70) we find that the above conjec- 
ture is indeed realized. The form of S, used to arrive at (70) is-writing it as in 
(73)- 

$(@, @*) = S(B) + s B* * dA cl + B*B*c, + A* SA 9 (77) 

’ We have now been able to prove this conjecture, cf., the “Note Added in Proof” at the end of this 

paper. 
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where ,4* represents all the dual fields except for B* and &4 is the BRST-transfor- 
mation for the LI field. The gauge fermion is chosen to be 

(78) 

so that B*=*d,C,+ .... The possible source of metric dependence is then 
contained in the term B*B*co, and although this term as a whole is metric- 
independent, we have to be more careful as we have already redefined the gauge 
fermion in such a way that any contribution 6B*/6g,,” is zero. Fortunately, 
however, this offending term is indeed zero in the path-integral. This phenomenon 
has also been discovered (in a non-covariant gauge) by deAlwis et al. [33] in the 
Freedman-Townsend model, and the reason for this is the following: It is possible 
to assign a U( 1 )-number (charge) to the ghosts separately which is not the ghost 
number. For example, the ghosts c0 and co (with ghost numbers 2 and -2) may 
be given the charges (1, - 1) with all other fields of charge zero. Then the inter- 
action term is the only one with non-zero charge. It therefore does not contribute 
to the partition function which is then metric-independent. 

4. LINKING AND INTERSECTION NUMBERS AND OBSERVABLES 

4.1. Path Integral Representation of Linking and Intersection Numbers in Any 
Dimension 

So far we have restricted our attention exclusively to the partition function of BF 
systems. However, in topological field theories, observables other than the partition 
function play a very important role: they provide us with path-integral represen- 
tations for smooth or topological invariants, as has, for instance, been shown 
by Witten [l] for the Donaldson polynomials [ 131 on the moduli spaces of 
instantons and [3] for the Jones polynomials [ 143 of knot theory. It also seems 
quite likely that the Mumford classes [36] of the moduli spaces of Riemann sur- 
faces will arise as vacuum expectation values of the observables presented in [30]. 
It may, therefore, be expected that a careful treatment of the zero-modes arising in 
non-Abelian BF systems will permit the construction of observables on the moduli 
spaces of flat bundles which are known to have a rich geometrical and topological 
structure. 

While this is certainly something that requires closer investigation we want 
to show in this section that interesting gauge invariant and metric independent 
observables may be defined in Abelian BF systems even if there are no zero 
modes present at all (as we shall assume). Indeed, we shall see below that these 
observables describe linking and intersection numbers of manifolds of any 
dimension. These comparably classical invariants are by their very definition 
metric-independent and are also homotopy-invariants in the sense that homotopic 
embeddings will give rise to the same intersection and linking numbers. 
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A clue as to why these should arise as observables in BF systems may be found 
in the work done recently on three-dimensional Chern-Simons theories. Witten [3] 
had advocated that in these theories Wilson loops are appropriate metric- 
independent and gauge-invariant objects. And although for non-Abelian gauge 
groups these are intimately related to the Jones polynomials of knot theory, which 
are unlikely to have any simple and straightforward generalization to other 
dimensions, the Abelian case looks more promising. 

Another reason for restricting our attention to the Abelian case is the fact that 
in the non-Abelian case the Wilson loops (or surfaces) of the B-field are not 
invariant under the p-form symmetry (35). This problem does, of course, not 
appear in two dimensions, but the task of defining non-trivial observables for the 
non-Abelian BF systems in more than two dimensions remains. 

Polyakov [21] has related the vacuum expectation values of Wilson loops in the 
Abelian Chern-Simons theory to the classical Gauss linking number of two loops. 
More precisely he has related the expectation value of a single Wilson loop to the 
somewhat singular concept of the self-linking number of a loop, but the generaliza- 
tion is obvious. However, even in the case of two loops there arises [3] a singular 
term in the computation of their linking number. As we shall see below the fact that 
in our theories we have two fields (A and B), instead of just one, allows us to 
bypass this dificulty altogether without the need for regularizing [21] or framing 
of the loops [3]. 

Reinterpreting [37, 381 this linking number as the intersection number of one 
loop with a disc bounded by the other loop, this “observable” has a natural 
generalization to higher dimensions. Indeed in the Abelian theories we have 
considered it is possible to define the appropriate analogues of Wilson loops. 

If X? and aZ’ are disjoint compact and oriented p- and (n -p - 1 )-dimensional 
boundaries of two oriented submanifolds of an n-dimensional oriented manifold M, 
the fields B, and A,_,_ 1 appearing in the action (1) of an Abelian BF system allow 
US to form the following metric independent and gauge invariant expressions 
(“Wilson surfaces”): 

wd-9 = exp js, 4 w.G’) = exp j3,. A. (79) 

Since it is easily seen (either by assigning opposite “charges” to A and B or by the 
simple rules of Gaussian integration) that the expectation value of either one of 
these is one, the simplest object to consider is the vacuum expectation value of the 
product of them which we shall denote by 

W& C’) := ( WB(‘q W,(W), (80) 

where the expectation value is, of course, taken with respect to the action S(n, p) 
(1) of the Abelian BF system. In addition to the fact that this is clearly a metric 
independent and gauge invariant expression, the following two crucial properties 
are worth noting: 
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(1) dim(Z)+dim(W)=dim(M)- 1 

(2) the fundamental classes of &Y and dC’ are (obviously) homologous to 
zero in H,(M). 

These are precisely [37] the conditions under which one expects to be able to 
define the linking number of LE and Z-as the intersection number of C and &5” 
or &Y and C’ determined in the following way [38]: 

As the dimension of (say) C is equal to the codimension of X5”, they will 
generically intersect transversally at isolated points xi. Having chosen orientations 
on M, .Z’, and dC’ one assigns to each xi the number sign(x,) which is + 1 or - 1 
depending on whether the orientation of (C, aZ’) at xi coincides with that of M or 
not. The intersection number of .Z and a,E’ is then defined as 

INT(Z, &Z”) = c sign(x,) (81) 

which we also identify with the linking number LINK(aZ, a,??). The reason why we 
have gone through all this is that we can show that the expectation value of the 
observable defined in (80) yields precisely the linking number defined above. 

THEOREM. Under the assumptions on C and 27 stated above we have 

log W(C, C’) = LINK(BZ, &X”). (82) 

Before turning to the proof of this theorem we shall-in order to acquire some 
familiarity with (82) and to understand why it is correct-look at some low-dimen- 
sional examples. 

EXAMPLE 1. In M= R2 we can, for instance, ask for the linking number of a 
point P and a circle y. From the discussion above we know that we can define this 
in two ways: either as the intersection number of P with a disc D bounded by y; 
or as the intersection number of y with any ray pP starting at P. In both cases a 
look at the definition (81) reveals that the result of our computation should be (if 
the theorem is correct) + 1 or 0 depending on whether P lies inside or outside y. 

Choosing B to be a zero-form and A to be a one-form the observable we should 
be looking at is, therefore, (79), (80), 

WA,) w,(D) = exp (B(P) + 6 A). (83) 
\ JY / 

By introducing “sources” for the A and B fields we can write the expectation value 
of (83) as 

(B(x) J2k p) + A(x) K,(x, Y)) 
M 
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where y is a coordinate on y and J2 and K, are deRham currents [39] (dual to the 
embedding of P and y into M) restricting the domain of integration to P and y, 
respectively. As usual, gauge-invariance or consistency with the “equations of 
motion” following from the “action” 

S(J, K)=j(BdA+BJ+AK) 

requires the currents J and K to be closed (this condition is of course empty for in 
this case for J-being a distribution-valued two-form in two dimensions). 

The Gaussian integral over A and B in (84) is easily performed using the 
equations 

A= -Ap’6J 

B=A-‘6K, 
(85) 

following from dA + J = 0 = dB - K, and leads to 

log WP~, D) = j J(.r, P) A,’ WG, Y). 
M 

(86) 

Recalling that the whole purpose of J is to restrict the integrand to P and using 
Stoke’s theorem (which is permitted here because of the compact support of K) to 
reexpress this as an integral over pp, we find 

log W(P~, D) = j K(x, Y). (87) 
PP 

Thus clearly the only contributions to this integral will come from those points 
where the ray pp and the circle y intersect. Now if P lies inside the circle, any ray 
starting at P will hit the circle exactly once and therefore (87) will give f 1 in this 
case (depending on the chosen orientations). On the other hand, if P lies outside 
y, the ray will either not intersect the circle at all or twice (with opposite relative 
orientation). In either case, the integral (87) will then be zero, confirming that the 
expectation of the observable (83) indeed computes the linking number of a point 
and a circle in this case. 

Alternatively-by an integration by parts in (86kwe could have expressed the 
result as an integral over the disc D given (say) the orientation induced by M= R*, 

1% W(PP, D) = j J(P, x) = 1 d*x 6(x-P), 63) 
D D 

which is clearly equal to 1, if P lies on the disc, and zero, otherwise, in agreement 
with the previous calculation. 

Physically, of course, the above computations just reproduce Gauss’s law that the 
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total flux emmanating from a charge at P through an n-sphere is non-zero iff the 
charge is inside the n-sphere. This example therefore also straightforwardly 
generalizes to higher dimensions, the U( 1)-gauge field A being replaced by an 
appropriate higher rank Abelian “KalbRamond” field. 

EXAMPLE 2. In three dimensions we have the by-now familiar [37, 38, 21, 31 
example of the Gauss linking number of two loops y and y’, 

LINK(?/, y’) = & + dx’ f- dy’+ s 
Y Y’ 

which possesses as its electro-magnetic analogue Faraday’s law. In the Abelian BF 
system S( 3, 1) this linking number arises as the expectation value 

W(D,LY)=[SA9Bexp($ B+$ 
i’ Y’ 

A) 

and it may be checked that the offending self-linking number terms appearing in the 
analogous calculation for the Abelian Chern-Simons theory in three dimensions 
(A = B) do not arise here. 

After having discussed these examples we shall now turn to the proof of the 
general formula (82). The reason for having performed the computations in 
Example 1 in such an abstract way is that they carry over almost verbatim to any 
dimension. 

Proof of the Theorem. As in Example 1 we introduce deRham currents J=JI?= 
and K = K,,. for B and A to write 

log ,,,,,)=log(exP(~~=B+~~~A)) 

(91) 
M 

Using (85) which is (modulo signs) valid in this case as well to perform the 
Gaussian integrals over A and B, one arrives at 

log W-G z’) = s, dx(J(x, z)4? &J(x, y)), 
where x, y, z are coordinates on M, C’, and C, respectively, which reduces upon 
elimination of J or K and use of Stoke’s theorem to either of the following two 
expressions: 

log W(Z, C’) = JZ Kz (92) 

=(-1) dmZ’(dimZ ~ I) J 
Z. (93) 
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Clearly-as above-(93) and (94) will only receive contributions (+ 1) from points 
where C and dZ’ or aZ and L” intersect, the correct orientation dependent sign 
arising as a consequence of the functional properties of the b-functions in J and K. 
This completes the proof. 

5. CONCLUSIONS 

In this paper we have introduced a new class of topological field theories, and 
there are of course many questions that we have not dealt with fully yet and 
undoubtedly many more points that we have not even touched upon. We 
nevertheless hope to have conveyed to the reader a flavour of these models by 
exhibiting by means of some examples the rich mathematical structure they display 
despite their apparent simplicity. 

One of the topics that has been left incomplete is the technical question of metric 
independence of non-Abelian BF systems in dimensions greater than four. In Sec- 
tion 3.4 we were able to show this for manifolds on which the global choice of an 
axial gauge is possible as well as for arbitrary manifolds for one loop. The gap still 
left between these two partial results certainly needs to be closed (cf. the “Note 
Added in Proof” at the end of this paper). 

Another important question that has been left open is, what information one can 
extract from the observables that are available in the two-dimensional topological 
gravity model of Section 3.3. And whereas we have seen in Section 4.1 that there 
exists a large class of interesting observables in the Abelian BF systems, in the 
non-Abelian case one is confronted with the problem of finding any non-trivial 
observables. 

In Section 2 we saw that the path-integral encodes a great deal of information 
about determinants*nough to prove metric-independence of the Ray-Singer 
torsion and its triviality in even dimensions, for instance. And here, at least, the 
prospects are favourable for making use of the path-integral to (re-)derive interest- 
ing results. Is it possible to derive Theorem 2.5 of Ray and Singer in this way? 

And finally, recalling the Nicolai maps of Section 3: Are there analogous maps 
that trivialize the BF system in dimensions other than two? We have already seen 
that at the one loop level the BF systems and the Abelian Ray-Singer torsion 
models of Schwarz agree, so that in even dimensions it is in principle possible to 
trivialize the action while in odd dimensions the situation will be more complex. 

APPENDIX 

While a proof that regularized path integrals (including properties of the path 
measure) retain their naive properties is beyond the scope of this paper, it is at least 
possible to show that the regularization procedures used by Ray-Singer and 
Schwarz are compatible with BRST-invariance. To see what this statement amounts 
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to consider the Chern-Simons theory in three dimensions. Its unregularized parti- 
tion function is 

Z= 9A9E9c??Fexp AdA+Ed* A+*FAc. 
s s (1) 

The last two terms come from {Q, Fd * A}, where Q is the ordinary Abelian BRST- 
operator. To introduce regulators into the gauge fixing terms in a BRST-invariant 
way (without formally altering Z), we adopt 

{Q,FeGd*A}=EeGd*A+*FdeGc, (2) 

where G is a function of the Laplacian such that it regularizes the determinants of 
the Laplacians involved. For example, the ghost term in (2) yields a determinant 

log det de” = Tr G + Tr log A 

=Tr 
I 

cc dt 

-FA t 

(3) 

(4) 

or 

=$Tr[” dtt.5 ~ 1, -IA 

0 

with the choices 

or 

G=iog(A(A”- l)), (7) 

(5) 

(6) 

respectively. A completely regularized form of ( 1) would then be 

ZR = [ 9A .9E $92 9c exp 5 A deGi2A + EeG12d * A + *Fe’ AC. (8) 

Notice that in the first two terms eGi2 rather then eG appears in order to regularize 
the first-order operators that appear there. As a consequence the second term does 
not match that in (2) and as the next step we have to relate Z and Z,. This is 
achieved by scaling A + e -GJ4A, E + e’G/4E, so that 

zR = z&-1/4 eWo) det3’4 eGC4), (9) 

where Z has the ghost structure of (2). But the right-hand side of (9) is of the 
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correct form if 2 has the form given in (1 ), and it is this that is guaranteed by the 
BRST-invariance. Roughly speaking, the BRST-invariance allows one to deal with 
regularization at the level of resolvents. 
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Note added in ProoJ: As we were completing this manuscript we received a preprint by Gary T. 
Horowitz (Exactly soluble diffeomorphism invariant theories, Santa Barbara Preprint ITP-NSF-88-178; 
Commun. Murh. Phys. 125 (1989), 417) dealing with the same general class of theories as we do. The 
examples and techniques used are, however, substantially different. since the analysis of Horowitz relies 
on the canonical formalism, whereas ours is almost exclusively covariant. Consequently, there exists only 
an overlap with Sections 2.1 and 3.1 of our paper. While preparing the revised versions of this paper 
some works based on or directly related to it have appeared. G. T. Horowitz and M. Srednicki have also 
discovered the relation (Section 4) to linking and intersection numbers (Santa Barbara Preprint UCSB- 
TH-89-14). J. C. Wallet (Orsay Preprint IPNO-TH-8973; Phys. Letf. B 235 (1990), 71) has completed the 
quantization of the non-Abelian BF systems. Based on his results, we have now been able to establish the 
metric independence of the partition functions of non-Abelian BF systems in arbitrary dimensions 
(Marseille Preprint CPT-90/p. 2430). The reader may wish to keep this in mind while reading Sections 
3.4 and 5 of this paper. And we have answered the question (raised in Section 5) in the aflirmative, if 
there are Nicolai maps in more than two dimensions trivializing the BF systems (Phys. Lett. B 228 
(1989), 64). 
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