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Recently proposed topological theories with classical action Tr B ̂  F are investigated. Their partition function is shown to be 
an integral, over the moduli space of flat connections with measure determined by the Ray-Singer torsion. 

1. Introduction 

Topological field theories have aroused some in- 
terest since last year when Witten in separate papers 
first showed that Donaldson's  polynomials have a 
natural setting in field theory [ 1 ] and secondly that 
the three-dimensional Chern-Simons  theory gives 
new insight into conformal field theories and to three- 
dimensional gravity [ 2,3 ]. 

A natural question that arises is if it is possible to 
generalize the Chern-Simons models to higher di- 
mensions? This is indeed the case and has been done 
by Horowitz [ 4 ] and ourselves [ 5 ]. The idea here is 
to write down a metric independent action, which one 
can quantize in the path integral and which leads to 
a theory with no physical degrees of  freedom, but is 
nonetheless interesting in that it has a finite dimen- 
sional phase space, which in turn corresponds to some 
moduli space. 

In refs. [4,5] we are led to consider the classical 
theories with action 

cally a Lie algebra valued form on M transforming 
under the adjoint representation ofG.  ( 1 ) represents 
a generalization of  the models considered by Schwarz 
[ 6 ] namely 

S = T r  f H ^ d 4 C  (2) 

where dA is the covariant derivative of  a flat bundle 
and H a n d  Care  ap-form and ( n - p -  1 )-form (with 
values in the bundle ) respectively. These models (2) 
are intimately related [ 6 ] to the Ray-Singer  torsion 
[7 ]. In ref. [5] we pointed out that at the one loop 
level the partition function of  ( 1 ) becomes the par- 
tition function of  (2) when H is chosen to be an 
( n - 2 )-form ( otherwise they are related by a power ). 

The purpose of  this short note is to show that the 
partition function of  ( 1 ) is the sum (integral) over 
the moduli  space of  flat connections modulo gauge 
transformations o f  the partition function for a flat 
connection given by (2), i.e. 

S = T r  f B A F ,  (1)  

where F is the curvature two-form of  a connection A 
on a principle bundle P over M with (simple) struc- 
ture group G. B is a section of t2  ' ' -z  (M,adP)  i.e. lo- 

Z~l) = f Z~2) • (3)  
. / /  

Furthermore, in even dimensions, as the R a y -  
Singer torsion is trivial [7 ] (a field theory proof  of  
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this may be found in ref. [ 5 ] ) this expression simpli- 
fies to 

Z~l>= f 1=  V//, 
/ /  

where V//is the volume of  the moduli  space. In gen- 
eral ZI 2), that is the Ray-Singer  torsion, provides the 
measure on the moduli  space. Eq. (3) requires fur- 
ther explanation especially with regard to questions 
of  zero modes, this is best done after we have devel- 
oped the formalism a little and in terms of  the ex- 
amples. Recall that as the Ray-Singer  torsion is a 
topological invariant, Z~ 2~ is metric independent,  we 
will also come back to this in the text. 

The equations of  motion that arise from ( 1 ) are 

F = 0 ,  d jB=0 .  (4a,b) 

One now expands the fields about the solutions to 
(4a, 4b) 

A~A+Q, B~Bc+B, (5) 

where now A and Bc are the classical solutions and A 
is taken to satisfy 8.~A = 0 so as to distinguish gauge 
inequivalent solutions (8~ is the covariant coderiva- 
tive). Firstly we want to show that Bc (the holon- 
omy)  does not enter. ( 1 ) is now expressed as 

S=Tr fB~AQ^Q+BAdAQ+BAQ^ Q. (6)  

The path integral over B leads to a delta function 

O(d,Q+QAQ), 

so that fB~AQ^Q in (5)  may be replaced with 
fBc ̂  d~Q which vanishes. Hence in the following we 
will simply set Be-- 0. The action of  interest through- 
out is then 

S = T r  fB^F(A+Q). (7) 

At this point we are in a position to discuss the 
question of  the B field zero modes, that is, the B~. We 
should in principle integrate (sum) over all the gauge 
inequivalent Bc but as there is no weighting for these 
in the action, one will obtain the volume of  the mod- 
uli space of  B zero modes, which is suppressed on the 
right-hand side of  (3).  On the other hand when tak- 
ing expectation values o f  products of  fields on the 

moduli  space (of  B and A) it must be remembered 
that there is still this integration to be performed. 

2. Two-dimensional theory 

In the case of  two dimensions the field B entering 
( 1 ) is a zero form and does not possess its own gauge 
transformation (though it transforms homogene- 
ously under the A fields gauge transformation),  so we 
need gauge fix only the vector potential A. We do this 
covariantly around the classical solutions, 

8.4Q=0 . 

The corresponding BRST invariant action is 

$2 = S + T r  f * E ^  8,4Q+ *to' ^ 5AdA+oto • (8) 

This is the gauge fixed version of  (1) in a back- 
ground. In principle we must integrate (or sum) over 
all flat connections not related by gauge transforma- 
tions, in the following this is implicitly assumed, ex- 
cept in some instances it will be made explicit. 

To put (7) into the form (2) we change variables. 
Let 

~= *F(A+Q), rl=SAQ. (9) 

Then $2 becomes 

Tr f *B ̂  ~+ *E^ rl+ *to' ̂  ~Ad,4+Qto, (10) 

however, we still need to take into account the jaco- 
bian of  the change of  variables 

J a c = d e t  [8Q/8(~, t/)] = det [8(~, q)/SQ]-' 

= d e t [  (*dA +e, 8A) ]--~ - 

This has a simple path integral representation, namely 

Jac=fdHdCdaexp(TrfHAdA+QC 

+ *~r^ SAC) ,  

where all the fields are bosonic, C is a one-form while 
H and a are zero-forms. The integrals over B and E 
constrain Q to be zero by the assumption implicit in 
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the split made in ( 5 ). Our final action is therefore of  
the desired form, 

S2=TrJHAdAC+ *aA~AC+ *~' ^SAd^09. (11) 

( 1 1 ) is the gauge fixed form of (2) where the gauge 
symmetry is 

C' = C+ dA2. 

This establishes in this example the desired result 
(3). When the cohomology groups associated with 
d~, H* (M, adP),  are taken to be trivial as then ( 1 1 ) 
leads to the Ray-Singer torsion (the triviality of  
H*(M, adP) is part of  the definition of the torsion ). 
When the fields have zero modes these must also be 
taken into account, how to do this is explained in refs. 
[5,8]. So one more interpretational adjustment of 
(3) is that on the right-hand side one has the modi- 
fied Ray-Singer torsion in the presence of zero modes. 

In ref. [ 5 ] this model was used to describe a theory 
whose configuration space is the moduli space of 
Riemann surfaces, and is a variant of  the theories 
proposed in ref. [ 9 ] and is closely related to the work 
of Hitchin [10]. Furthermore, this change of vari- 
ables may be made in two-dimensional Yang-Mills 
theory [ 5 ] and leads to the results of  Rajeev [ 1 1 ] 
which are based on a canonical analysis. This comes 
about as follows. In two dimensions the Yang-Mills 
action is obtained by taking the action (7) and aug- 
menting it with Tr f *B ̂  B, the B integration giving 
rise to the usual F 2 action. The change of variables 
(9) is then still suited to trivializing the action. Fur- 
ther details may be found in ref. [ 5 ]. 

3. Three-dimensional theory 

When considering the model in three dimensions 
the new feature that arises is that the B field also 
posseses a gauge symmetry above and beyond that of  
its transformation associated with the gauge transfor- 
mation of the vector potential A. This symmetry is a 
consequence of the Bianchi identity, indeed we see 
that for any dimension n >/3, 

8B= d~+QA. (12) 

The BRST invariant gauge fixed action in a back- 
ground field A is 

$3 = T r  j S +  *EA ~AQ'k- *HA ~A+QB 

-t- *¢J.)' A ~AdA+QO)"I t- *)(' A ~A+QdA+Q~, , 

where the Z fields are the ghosts associated with the 
symmetry ( 12 ). The required change of variables is 

~=*F(A+Q)+dA+eH, q=SAQ (13) 

Notice that ¢ differs from the choice made in two di- 
mensions (9). The reason is that if one wants to ob- 
tain a gaussian action in the new variables then ¢ must 
be the precise combination of fields that couple to B. 

In terms of these fields $3 is rewritten as 

$3 = Tr f *B ̂  ~+ *E A q 

"}- *09' A ~AdA+Q(D'k- *X' A ~A+QdA+Q)~, (14) 

while the jacobian adds the following terms (follow- 
ing precisely the two-dimensional example): 

Tr f H^dA+QC+ *aA~)AC+ *pA~A+QH, (15) 

where H and C are one-forms while a and p are zero- 
forms. From (14) and ( 15 ) we have both Q and H 
zero. On integrating out both B and E, and adding 
(14) and ( 15 ) we arrive at the action 

S~ = T r  f HA dA C'q-*O'A ~AC-F *(.0' ̂  ~AdA(D 

+ *)~' A ~AdAZ+ *pA 6A H , (16) 

which once more is the appropriately quantized ver- 
sion of (2) in three dimensions, thus establishing (3) 
in this case. 

Notice now that the map (13) has zeros not only 
at H = 0  but also at dm H = 0  (with Q = 0  in both 
cases), which can occur when H°(M, adP) is not 
trivial. This in turn is reflected in the zero mode ofa.  
Once more this implies a modification of the Ray-  
Singer torsion and of what is the argument of  the in- 
tegral in (3). For nontrivial H* (M,adP) this situa- 
tion also persists in higher dimensions, but we will 
refrain from reiterating this in the next sections. 

is an invariance of (7), where A is an ( n -  3 )-form. 
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4. n >~ 4 dimensions 

As already discussed in the introduction in higher 
dimensions the symmetry (12) leads to the usual 
phenomenon of ghosts for ghosts, a property shared 
by both theories (7) and (2). Indeed they have the 
same ghost content in the sense that they share com- 
mon ghost kinetic terms as determined by their ghost 
triangles [ 8 ]. A real difficulty arises however in that 
the ghost structure of the models with action (7) when 
quantized in the Batalin-Vilkovisky framework [ 12 ], 
includes at least cubic ghost interactions and possibly 
higher order terms (as far as we know the explicit 
expressions in five dimensions and higher have not 
been worked out yet in the lagrangian formalism). A 
simple argument in four dimensions [5,13] shows 
that the cubic term that makes an appearance does 
not contribute to the partition function (in the ab- 
sence of ghost zero modes). It is not clear that we will 
be so lucky in higher dimensions, however, we will at 
the end present arguments in favour of this conclu- 
sion. So for now we ignore this complication, and 
presume that the ghost terms are as those for (12), 
that is entering either with a kinetic operator 
8~+~d~+c) or as multiplier fields enforcing a gauge 
condition. 

To determine the required change of variables in n 
dimensions it is easiest to make use of the Batalin- 
Vilkovisky ghost triangle of fig. 1. Included in the 
diagram to the left of the edge of the triangle are var- 
ious multiplier fields associated with the (anti or 
Kallosh-Nielsen) ghost that they lie directly to the 
left of, so for example the BRST variation of Z" is Hn. 
The change of variables that we performed in the two 
and three dimensional examples were to define a new 
field that included all the terms that B was coupled to 
in the action (13) which included H~ (in the nota- 
tion of fig. 1, we called it Hpreviously). However Ht 
couples to Z'2 as does H 3 so  we define a new field ~1 
which is the precise combination of H~ and/73 that 
couples to Z'2, H3 also couples to Z~ as does/75 so a 

/3 
, /  \ 

Fig. 1. Ghost triangle for the B-part of the general B ^ F system, 
with some of the multiplier fields displayed. 

new field ~2 is defined with this precise combination 
of H3 and//5 and so on, in this way we arrive at the 
field redefinitions 

~= *F(A+Q)+dA+QHI, ~'=6AQ, 

~i=SA+Ql-[zi_l-l-dA+QIIzi'+ l, l <~i<~n--2. 

In n dimensions the ~ for j>~ n - 3  are zero. The 
jacobian of such a change of variables is not degen- 
erate (if the forms took values in R rather than in a 
bundle the maps above would be the Hodge decom- 
position without harmonic pieces). The jacobian 
when expressed as a path integral adds to the action 
the terms, 

T r  f HAdA+QC+ *0"1 ^ SACq- *Pl ^ ~A+Q H 

~- E *ai A (6A+QP2i--I "l-dA+QP2i+l) • 

With the sum from i= 1 to i = n - 3  (recall that the 
pi with i~> n - 3  vanish). Now the integration over E 
and Z~i+ ~ will set Q and the ~i to zero. However, by 
simple relabeling ai=~Z~ and p ~  H, we arrive back to 
the original action, except that B ^ F is replaced with 
H ^ dAC. With Q = 0 the ghost terms of the B ^ F sys- 
tem devolve to those o f H  ̂  d,4 C. This establishes (3) 
in general providing one may ignore the complica- 
tions of ghost interactions alluded to above. 

5. Ghost interactions and metric independence 

Within the Batalin-Vilkovisky framework ghost 
interactions arise in the following way. On quantiz- 
ing the B field the ghost action that arises is of the 
form Z', ^ 8A+QdA+oZ,. This term does not have an 
off-shell invariance. However if one transforms Z,to 
z,+dA+QX2 the varied ghost term will be Z~ ^ 
6A+Q[F(A+Q) ^Z2]. Now as B couples to F(A+Q) 
we see that there is an on shell invariance and that a 
way of realizing this is to alter the B transformation 
to get rid of the unwanted term. In fact such terms 
(Z~A~A+f~[F(A+Q) Azi+~]) will arise in all the 
variations of the ghost for ghost. 

The implications of this are quite important. While 
one may doctor the B (and also ghost) transforma- 
tion to soak up the unwanted terms, the gauge fixing 
pieces are not invariant under the new transforma- 
tion rules. It is precisely for this reason that cubic (and 
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possibly higher) ghost interactions are introduced in 
the Batal in-Vilkovisky procedure, their variat ion 
cancels that coming from the gauge fixing parts. As a 
consequence of the altered variations of the fields and 
the existence of the interaction terms one cannot write 
the complete set of gauge fixing and ghost terms as 
the BRST variation of some functional. This in turn 
means that we have no easy way of establishing the 
metric independence of the part i t ion function, for re- 
call that [1,5,14] if the metric dependence is con- 
tained in a BRST commuta tor  and the BRST opera- 
tor is metric independent  then by BRST invariance 
the parti t ion function is metric independent .  We are 
faced with a situation in which the ghost terms can- 
not be expressed as a BRST commutator  and because 
of the extra terms in the t ransformation rules the 
BRST operator is metric dependent.  
The situation in four dimensions is heartening. There 
the ghost interaction term is not relevant in that it 
does not contribute to the part i t ion function Z and 
the issue of metric dependence is clarified (there is 
none (see ref. [5] ). There is an argument  as to why 
this should continue to be the case in higher dimen- 
sions which we now present. Rather than follow the 
Batal in-Vilkovisky algorithm we adopt a rather dif- 
ferent point  of view. Let us decide not to alter the 
BRST charge (so that it does not pick up a metric 
dependence)  then for example the variations of the 
fields B, Zi are, 

~)B=dA+QZI , ~Zi =dA+Q~i+I • (17) 

Now the ghost terms g'~ ̂  8A+QdA+o_Zi are not in- 
variant  under  this change, however, because of the B 
integration there is a delta function constraint  setting 
F(A + Q) to zero. In the path integral the non  invar- 
iant terms are then zero by this constraint.  So relax- 
ing the usual rules for deriving a BRST invar iant  ac- 
t ion to allow one whose BRST variat ion is zero in the 
path integral brings us to the situation we have been 
considering throughout the previous section. Fur- 
thermore, (QBRST) 2 ~ F which also vanishes " in"  the 
path integral (this holds for Z and also in the pres- 
ence of sources providing there is no source for B). 
Accepting this philosophy one is led directly to the 
metric independence of Z and (via our previous dis- 
cussion) to the identity ( 3 ). 

This argument as it stands is not complete of course 
but  it is suggestive. Indeed the four-dimensional  case 
where the ghost interactions do not contribute is an 

example of the type ofquant iza t ion  that we envisage. 
A more complete analysis of this procedure would re- 
quire a better unders tanding of the geometric basis of 
the Batalin-Vilkovisky algorithm. In this direction 
one expects Schwarz's not ion of a resolvent [ 6 ] will 
play an important  role. 

Note added 

On completing this manuscript  we received papers 
by Karlhede and Ro~ek [ 15 ] and by Wit ten [ 16 ] 
which have some overlap with the present work. 
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