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Path integrals and geometry of trajectories 
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A geometrical interpretation of path integrals is developed in the space of trajectories. This yields a supersymmetric 

formulation of a generic path integral, with the supersymmetry resembling the BRST supersymmetry of a first class constrained 

system. If the classical equation of motion is a Killing vector field in the space of trajectories, the supersymmetry localizes 

the path integral to classical trajectories and the WKB approximation becomes exact. This can be viewed as a path integral 

generalization of the Duistermaat-Heckman theorem, which states the conditions for the exactness of the WKB approximation 

for integrals in a compact phase space. 

There is an old conjecture [1,2] that also appears in some textbooks [3], and states that in some models 
corrections to the WKB, or gaussian approximation to a path integral can be ignored. The argument uses 
Hamilton-Jacobi theory and the formal invariance of phase space path integrals under canonical transformations. 
The conjecture has been verified in certain cases, but there are also many examples where it fails. Since the 
WKB approximation is widely used, it is very important to understand when the conjecture is correct and why 
it can fail. 

Independently, the exactness of the WKB approximation has also been investigated in the mathematics 
literature [4-71. There, a theorem by Duistermaat and Heckman states that if the exponential of a hamiltonian 
with torus action is integrated over a compact phase space with Liouville measure the integral localizes to the 
critical points of the hamiltonian, hence the WKB approximation is exact. The derivation of the theorem can 
be formulated using equivariant cohomology [5], and there are interesting connections to supersymmetry and 
Witten’s work on Morse theory [8]. However, thus far the results have not been extended to path integrals. 

In the present Letter we shall investigate the geometrical structure of phase space path integrals. We are 
particularly interested in the geometry associated with phase space trajectories. From the ensuing structure we 
conclude that a generic path integral admits a hidden supersymmetry which is very similar to the BRST 
supersymmetry encountered in the quantization of first class constrained systems. Generalizing techniques of 
the hamiltonian BRST quantization, we find that if the determinant of Jacobi fields is nontrivial and if the 
space of trajectories admits a metric tensor for which the classical equation of motion is Killing, this super- 
symmetry localizes the path integral to classical trajectories. As a consequence the WKB approximation becomes 
exact, which can be viewed as an extension of the Duistermaat-Heckman theorem to path integrals. Our 
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conditions are satisfied whenever the phase space admits a metric tensor such that the classical hamiltonian 
determines a Killing vector field. Our results are consistent with recent evaluations of character formulas using 
phase space path integrals [9], and the observation that for a point particle propagating on a group manifold 
the classical and quantum Green's functions coincide [10]. 

As an introduction we shall first present a "false" derivation of the conjectured exactness of the WKB 
approximation [1,3]. For this we consider the phase space path integral 

Z= f [dpdq]exp(i f p(t-H ). (1) 

Hamilton-Jacobi theory tells that whenever S(q, P; t) with P a parameter, solves the Hamilton-Jacobi equation 

H(q, oS/aq; t) + aS/Ot = 0, (2) 

it also generates a (time dependent) canonical transformation between the canonical pairs Pi, qi and Pi, Qi 
such that in the new variables Pi, Qi the hamiltonian vanishes, 

p dq - H d t +  Q dP = dS(q, P; t). (3) 

Eq. (2) is solved by the classical action S(qf, Pf; qi, Pi, t) when evaluated along a classical trajectory of the 
system connecting the end points qi and qf. 

Formally, the measure in (1), 

N N - - I  

[dp dq] N ~  l-I dp, I-I dq,, (4) 
n = l  n = l  

differs from the Liouville measure only by an integration over momenta at the end points. Hence, (1) is formally 
equal to 

z= f [dP dO],(P, O) exp(-i f O') exp[iS(qf, Pf; qi,Pi; t)], (5) 

with ,,~(P, Q) the jacobian. We find that this jacobian is the square root of the Van Vleck determinant, hence 

z= f[dp dq] exp( i  f po--H)=Eclassical x/detHa2S(qf' qi)/aqfaqi[' exp[iS(qf, qi)], (6) 

where the summation extends over all classical trajectories that connect the end points. The Van Vleck determinant 
can be interpreted as the density of trajectories, and it is the inverse of the determinant of Jacobi fields. 
Consequently (6) assumes that the determinant of Jacobi fields does not vanish, which means e.g. that there 
are no coalescing classical trajectories. 

The RHS of (6) is equal to the expression that we find, if we apply the WKB approximation to the LHS of 
(6). Hence (6) suggests that corrections to the WKB approximation can be ignored provided the determinant 
of Jacobi fields is nontrivial. However, in addition of overlooking difficulties associated with nonlocal, time 
dependent canonical transformations and the N ~ co limit in (4), the derivation also ignores e.g. the fact that 
the kinetic term 

pil~ ~ Pn(qn-q.-,) (7) 
n = I  

remains invariant only under canonical transformations which act linearly on the fields. As a consequence (6) 
cannot be justified by a detailed analysis based on a careful discretization of the path integral (1). 

For an integrable model the previous argument becomes somewhat stronger. For an integrable model there 
exists a time independent canonical transformation to action (Ii) and angle (~i) variables such that H becomes 
a function of Ii only. This has led to a refinement of the conjecture, that at least for certain integrable models 
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the WKB approx imat ion  could reliably describe the exact quantum theory [2,3]. However,  since the canonical  
t ransformat ion to the act ion-angle variables is in general  highly nonl inear  and nonlocal  and since it also fails 
to preserve the polar izat ion of  the quantum theory [ 11 ], we expect that in general the original and  the action-angle 
path  integrals describe inequivalent  quantum theories. 

In order  to systematical ly analyze the exactness and corrections to the WKB approximat ion ,  it is necessary 
to look for formulat ions which avoid the difficulties associated with the Hami l ton-Jacob i  theory and its t ime 
dependent  and nonlocal  canonical  t ransformations.  We shall now proceed with such an analysis, which will 
be based on the geometry of  phase space trajectories and the ensuing supersymmetry.  For  this we consider  a 
general  path  integral 

z =  f [d(Liouville])exp(iS)= f [ d ¢ ~ ] ~ e x p ( i  f O~(~)¢a-H(¢)),  (8) 

with Ca coordinates  in the phase space F. The symplect ic  potential  Oa(Cb) determines the symplectic two-form 

by 

wab(¢) = ~a0~ - 0b0o (9) 

and assuming that w~b(¢) is nondegenerate ,  its matrix inverse defines Poisson brackets by 

{A(&), B(¢)}  = (8A/OCa)w ab OB/Sda b. (10) 

In the fol lowing we shall find it convenient  to introduce a real ant icommuting field c a, so that  we can write (8) 

in the form 

Z= I [d4~a dca]exp(i f o~¢a-H(¢)+~c~wabcb ). (11) 

We shall now interpret  the classical action S in (8) as an observable on the space of  phase space trajectories 
TF. The corresponding hamil tonian  vector field in TF is then identified with the classical equation of  motion,  

X.~(t)= dt' to"bS(t-t ) ~ S ( ¢ ) = ¢ a ( t ) - w  abobH(¢(t)). (12) 

Notice that  the classical trajectories are zeros of  X~s(t). In order  to realize (12) canonical ly,  we introduce a 
canonical  structure on TF. For  this we introduce a variable )ta (t)  which is conjugate to the trajectory described 
by ~b" (t) ,  

{Aa(t,), &~(t2)} = ~abr(tl -- t2). (13) 

We can then identify the components  of  (12) with 

co~ Xs b = {A~, S (¢ )}  = ~oab (b b(t) - OaH(cb(t)). (14) 

Similarly, we introduce an ant icommuting field ?a(t) which is conjugate to ca(t), 

{?~(t~), cb(  t2)} = ~5~8( t, - t2). (15) 

We can identify ca(t) with the basis of  one-forms dCa( t )  in TF, and ?o(t) with a basis of  vector fields in TF. 
Polynomials  in c"(t) then determine the exterior  algebra in TF. The hamil tonian vector field (12) can be 
represented in the form ~1 

Xs = X~e~ = ( c~" -to ab ~H)e,, (16) 

*' Notice that we use the convention, that a summation over the indices a, b, . . . ,  also includes an integration over the variable t. 
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and the exterior differential operator  d on TF can be defined by the canonical  action of  

d =  dtd~b~(t )  g ¢ a ( t ) = A , c  a. (17) 

It maps p-forms of  TF, i.e. p-polynomials  in c"( t )  into ( p +  1)-forms. 
In the exterior  algebra of  TF we can also introduce an inner mult ipl icat ion that maps p-forms into (p  - 1)-forms 

in TF. It is defined by the canonical  action of  

i s - -  a - - X s C , .  (18) 

Using (17) and (18) we then define the opera tor  

Qs = d + i s .  (19) 

It maps a p-form into a l inear combinat ion of  a ( p + l ) - f o r m  and a ( p -  1)-form. Therefore,  if  we split  the 
space of  exterior forms into its even (TF +) and odd (TF-)  elements, Qs determines a mapping  between TF + 
and TF- .  Furthermore,  if  we interpret  the even elements TF + as bosons and the odd elements T F -  as fermions,  
we can interpret  Qs as a supersymmetry operator .  The corresponding supersymmetry algebra is 

½{Qs, Qs}  = ~ s  = c " {A . ,  XbS}~b + A . X ]  = 2c" (8  b O, - O.[tobc OcH])~b + A . X ] ,  (20) 

where ~Z s is the Lie derivative along the vector field Xs in TF. In part icular,  in the subspace where ~ s  = 0 the 
opera tor  Qs becomes nilpotent  and can be viewed as an exterior differential operator.  ~2 

The supersymmetry t ransformation of  the canonical  variables is 

6s¢ ~ = {Qs, ¢~} = c", ~sA~ = {Qs, h~} = - [ 6 ~  a, - a.(eo bc ¢3~H)]~b, (21a, b) 

6sC" = { Qs,  c"  } = dp " - to "b ObH, 6s~. = { Qs,  c.}  = h . .  (21c, d)  

Notice that (21c) vanishes when the classical equation of  motion is satisfied, while the vanishing of  (21b) 
determines the Jacobi equation; see ref. [12] for a discussion of  similar relations in the supersymmetr ic  
formulat ion in classical mechanics.  Furthermore,  we find that the action in (11) is supersymmetric,  

{ Qs, S +  ½C'~toabCb}=O, (22) 

and the measure in (11) is also (at least formally) supersymmetric.  
We shall now assume that TF admits a metric tensor  O,b(~b; t, t ')  = l-lab(¢)8(t -- t ' )  such that the hamil tonian 

vector field Xs is a Killing vector, 

~sg2 = 0. (23) 

Locally, such a metric tensor  can be constructed whenever the original phase space F admits  a metric tensor  
for which the hamil tonian vector field of  H is a Killing vector. With the help of  ~'~ab w e  introduce the dual  
one-form of  the vector field gs, 

X*s = Oat, X~ ca = "Qab( ~a -- Wac ~H)c t , ,  (24) 

and as a consequence of  (23) we find that its Lie derivative along Xs vanishes, 

~sX*s  = o. (25) 

Together  with (20) this implies that 

,¥S} -- ~"~ab,~(S~.S + ca(Oaf~bc,]( b + ~'~ab OcXbs) cc (26) ( d + i s ) X . = { Q s  ' , _  a b 

,2 Notice that this supersymmetry is quite different from the supersymmetry in the path integral formulation of classical mechanics 
[12]. Here we have generalized the supersymmetry of refs. [5,7] to the loop space, while the supersymmetry in ref. [12] emerges 
from the Parisi-Sourlas supersymmetry [13]. 
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is supersymmetric, i.e. has a vanishing commutator  with Qs. Notice that (26) is trivially supersymmetric since 
it is the supersymmetry variation of  X* which is an element in the subspace ZPs = 0. However, in general the 
supersymmetry (22) of  the action is nontrivial since a generic action S+~CaW,bC b cannot be represented as a 
supersymmetry variation of  some other functional. 

Consider the following path integral: 

Ze= f [d4)a dca]exp(i f Oa~b'~-H(4))+½Ca~Oabcb+{Qs,~}), (27) 

where ~(4', c) is a functional such that its Lie derivative along Xs vanishes, 

~s~b = O. (28) 

This means that qJ is in the subspace where Qs is nilpotent. Formally, the path integral (27) is invariant under 
the supersymmetry determined by Qs. For ~ = 0  (27) reduces to the original path integral (11), and we shall 
now argue that (27) is independent of  the functional form of ~ whenever @ satisfies (28). For this we consider 
a variation 0 ~ O + S0 where ~0 also satisfies (28), 

~sB~b = O. (29) 

In order to establish the ~b-independence of  (27) it is then sufficient to verify that 

Z~0 = Z~+~,. (30) 

Notice that this is reminiscent of  the arguments used in hamiltonian BRST quantization, with Qs the BRST 
operator [14]. Indeed, in the subspace where Lfs = 0 the supersymmetry generator Qs is nilpotent and can be 
viewed as a BRST operator. Our statement (30) is then related to the Fradkin-Vilkovisky theorem [14] provided 
we only consider "gauge fermions" ~ which are in the subspace (28). 

In order to establish (30) we consider a local supersymmetry transformation parametrized by gq,, 

6°--, ~° +s6{O~, 4,°}, c°--,c°+~{Os, C°}. (31a, b) 

The action in (27) is invariant under (31). However, since S0 is a nontrivial function of  ~b a and c a the measure 
fails to be supersymmetric. I f  we exponentiate (31) and evaluate the pertinent superjacobian, we find that the 
only effect of  (31) is to replace 

{Qs, 4,}-~ {Os, 6 +s4,} (32) 

in (27). Provided the boundary conditions in (27) are supersymmetric, we have then verified (30). 
We shall now apply (30) to the following family of  "gauge fermions": 

I]l~ = ~" X~S = ~" OabX~C b (33) 

in (27), with ~ a parameter that scales the metric tensor Oab ~ /2e.b = 6" /2.b" By (25) and linearity of  the Lie 
derivative, these qJe's satisfy the condition (28). Explicitly, the action in (27) is now 

Se = I 10~" -H + }C%J.bCb + 6 • fI.b( $ a --W ~ 8~H)( ~ b -o) bd 8aH) 

+ ~:- c~[n,b O, - Oh,, 0,(to `d OaH) +OoObc(6 c - o~ d aaH)]c b} (34) 
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and the 0-independence (30) ensures the ~:. Dab-independence of  the corresponding path integral (27). In the 
se~0 limit the path integral reduces to (11), and in the ~ o o  limit we get 

Ze_,o~ = f [dqba]~8(Xa)x/detllSxa/Sc~b II exp(iS) 

= f [ d q ~ ° ] ~ 8 (  ~ba--toab ObH)x/detllS~b O,--Ob(toac OcH)ll exp(i f oa~a-- H) 

= E ~ ~  expOS) . (35) 

classical 4 d e t  II 8~ O, - O~ (o, a, o~n)  II 

Notice that the ~:. /2ab dependence has indeed disappeared in (35), consistent with the 0-independence of  the 
path integral (27). 

The final result (35) coincides with the WKB approximation of  (8). This means that we have established, 
that if our assumptions are satisfied corrections to the WKB approximation vanish. This result can be viewed 
as a path integral generalization of  the Duistermaat-Heckman theorem. The assumptions that we have introduced 
are, that the determinant of  Jacobi fields in (35) is nontrivial, that the phase space F admits a metric tensor for 
which the hamiltonian vector field of  H is a Killing vector, and that the change of  variables (31), (32) can be 
justified. The first two are assumptions on the classical properties of  the theory, while the third is an assumption 
on the properties of  the measure in (27). 

In the present case the change of  variables (31) corresponds to a variation of  ~:, which by (33) is a scale 
transformation of  the metric tensor Oab. Since (31) is of  the same functional form as the changes of  variables 
introduced in the BRST quantization of  first class constrained systems [14], we expect that our evaluation of  
the superjacobian in (32) is as reliable as the corresponding evaluation in BRST quantization. There, corrections 
to the superjacobian can be related to anomalies and breaking of  BRST supersymmetry. Provided our assumptions 
on the classical properties of  the hamiltonian are satisfied, we can then expect that our derivation is correct 
unless the supersymmetry (20) is broken in the quantum theory by a scale anomaly in £2ab ~ ~" ~'~ab" 

Examples where our conditions are valid include the propagator for a point particle on a group manifold 
[10], and the evaluation of  character formulas using phase space path integrals with the symplectic structure 
determined by the Kirillov two-form [9]. Further examples will be presented in future publications. 

In conclusion, we have established that a generic path integral admits a "hidden" supersymmetry, which 
localizes the path integral to the classical trajectories provided the classical trajectories are sufficiently regular 
and the supersymmetry remains unbroken in the quantum theory. Our result can be viewed as a path integral 
generalization of  the Duistermaat-Heckman theorem, and it provides a systematic, geometric method for 
analyzing corrections to the WKB approximation. 

M.B. is indebted to G. Thompson for numerous discussions about the Duistermaat-Heckman theorem. Both 
M.B. and A.N. thank S. Shatashvili for explaining his work on the path integral evaluation of  character formulas. 
A.N. also thanks L. Faddeev and E. Fradkin for discussions. 
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